Výsledky vyhľadávania - acm: c.: computer system organizacion/c.1: process architectural/c.1.4: parallel architectural
-
1
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: Software Architecture for Big Data and the Cloud ; https://inria.hal.science/hal-01507344 ; Ivan Mistrik; Rami Bahsoon; Nour Ali; Maritta Heisel; Bruce Maxim. Software Architecture for Big Data and the Cloud, Morgan Kaufmann, 2017, 9780128054673
Predmety: ACM: C.: Computer Systems Organization/C.2: COMPUTER-COMMUNICATION NETWORKS/C.2.4: Distributed Systems, [INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], [INFO.INFO-OS]Computer Science [cs]/Operating Systems [cs.OS], [INFO.INFO-PF]Computer Science [cs]/Performance [cs.PF], [INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR]
Relation: info:eu-repo/grantAgreement/EC/FP7/318521/EU/Hardware- and Network-Enhanced Software Systems for Cloud Computing/HARNESS
-
2
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Procesamiento de imagenes, Simulación, Energía, Sensores, Sistemas inteligentes, Inteligencia artificial, TIC, Cobertura 5G, Plataformas Web, Procesamiento digital de señales, Prototipos, Automatización, Control, Tecnologías remotas, Bioingeniería -- Congresos, conferencias, etc. -- Memorias, Energía -- Congresos, Sistemas de control inteligente -- Congresos, Procesamiento de señales -- Congresos, Automatización -- Congresos, etc. -- Memoria, Desarrollo de prototipos -- Congresos, Ingeniería biomédica -- Congresos, Tecnologías de la información y de la comunicación -- Congresos, Procesamiento digital de imágenes -- Congresos, Redes neuronales (Computadores) -- Congresos, Matemáticas -- Enseñanza -- Congresos, Inteligencia artificial -- Congresos
Popis súboru: pdf; application/pdf
Relation: H. Y. Vivian-Ip, A. Abrishami, P. W. H. Peng, J. Wong, and F. Chung, “Predictors of Postoperative Pain and Analgesic Consumption: A Qualitative Systematic review”, Anesthesiology, vol. 111, no. 3, pp. 657–677, september 2009. https://doi.org/10.1097/ALN.0b013e3181aae87a.; O. L. Elvir-Lazo and P. F. White, “Postoperative pain management after ambulatory surgery: role of multimodal analgesia”, Anesthesiology Clinics, vol. 28, no. 2, pp. 217–224, june 2010. https://doi.org/10.1016/j.anclin.2010.02.011.; American Academy of Pain Medicine, “Get the facts on pain”. [Online]. Available at:http://www.painmed.org/patientcenter/facts-on-pain/.; P. J. Mathew and J. L. Mathew, “Assessment and management of pain in infants”,Postgraduate Medical Journal, vol. 79, no. 934, pp. 438–43, august 2003. http://dx.doi.org/10.1136/pmj.79.934.438.; M. Clarett, “Escalas de evaluación de dolor y protocolo de analgesia en terapia intensiva”,Clínica y Maternidad Suizo Argentina Instituto Argentino de Diagnóstico y Tratamiento, Buenos Aires, Argentina, 2012.; L. J. Duhn and J. M. Medves, “A systematic integrative review of infant pain assessmenttools”, Advance in Neonatal Care, vol. 4, no. 3, pp. 126–140, june 2004. 10.1016/j.adnc.2004.04.005.; R. Slater, A. Cantarella, L. Franck, J. Meek, and M. Fitzgerald, “How Well Do Clinical PainAssessment Tools Reflect Pain in Infants?” PLoS Medicine, vol. 5, no. 6, p. e129, june 2008. https://doi.org/10.1371/journal.pmed.0050129.; N. C. de Knegt. et al., “Behavioral Pain Indicators in People With Intellectual Disabilities: ASystematic Review”, The Journal of Pain, vol. 14, no. 9, pp. 885–896, september 2013. https://doi.org/10.1016/j.jpain.2013.04.016.; G. Zamzmi. et al., “An approach for automated multimodal analysis of infants’ pain”, in 201623rd International Conference on Pattern Recognition (ICPR), pp. 4148–4153, 2016.; V. Guruswamy, “Assessment of pain in nonverbal children”, Association of PaediatricAnaesthetists of Great Britain and Ireland, vol. APA Leeds, no. 41st Annual Scientific Meeting in Leeds, p. 33, 2014.; Registered Nurses’ Association of Ontario, Assessment and management of pain, vol. 3.Toronto, Canada, 2013.; R. Srouji, S. Ratnapalan, and S. Schneeweiss, “Pain in Children: Assessment andNonpharmacological Management”, International Journal of Pediatrics, july 2010. https://doi.org/10.1155/2010/474838.; K. Brand and A. Al-Rais, “Pain assessment in children”, Anaesthesia and Intensive CareMedicine, vol. 20, no. 6, pp. 314–317, june 2019. https://doi.org/10.1016/j.mpaic.2019.03.003.; D. Freund and B. N. Bolick, “Assessing a Child’s Pain”, AJN, American Journal of Nursing,vol. 119, no. 5, pp. 34–41, may 2019. 10.1097/01.NAJ.0000557888.65961.c6.; M. Pérez, G. A. Cavanzo Nisso, and F. Villavisán Buitrago, “Sistema embebido de detecciónde movimiento mediante visión artificial ", Visión Electrónica, vol. 12, no. 1, pp. 97-101, 2018. https://doi.org/10.14483/22484728.15087.; J. F. Pantoja Benavides, F. N. Giraldo Ramos, Y. S. Rubio Valderrama, and V. M. RojasLara, “Segmentación de imágenes utilizando campos aleatorios de Markov", Visión Electrónica, vol. 4, no. 2, pp. 5-16, 2010. https://doi.org/10.14483/22484728.432.; J. Forero C., C. Bohórquez, and V. H. Ruiz, “Medición automatizada de piezas torneadasusando visión artificial", Visión Electrónica, vol. 7, no. 2, pp. 36-44, 2013. https://doi.org/10.14483/22484728.5507.; S. Brahnam, C.-F. Chuang, R. S. Sexton, and F. Y. Shih, “Machine assessment of neonatalfacial expressions of acute pain”, Decision Support System, vol. 43, no. 4, pp. 1242–1254, august 2007. https://doi.org/10.1016/j.dss.2006.02.004.; A. Beltramini, K. Milojevic, and D. Pateron, “Pain Assessment in Newborns, Infants, andChildren”, Pediatric. Annals, vol. 46, no. 10, pp. e387–e395, october 2017. https://doi.org/10.3928/19382359-20170921-03.; X. Cong, J. M. McGrath, R. M. Cusson, and D. Zhang, “Pain Assessment and Measurementin Neonates: An Ipdated Review”, Advances in Neonatal Care, vol. 13, no. 6, pp. 379–395, december 2013. 10.1097/ANC.0b013e3182a41452.; C. L. von Baeyer and L. J. Spagrud, “Systematic review of observational (behavioral)measures of pain for children and adolescents aged 3 to 18 years”, Pain, vol. 127, no. 1–2, pp. 140–150, january 2007. https://doi.org/10.1016/j.pain.2006.08.014.; J. Zieliński, M. Morawska-Kochman, and T. Zatoński, “Pain assessment and managementin children in the postoperative period: A review of the most commonly used postoperative pain assessment tools, new diagnostic methods and the latest guidelines for postoperative pain therapy in children”, Advances in Clinical and Experimental Medicine, vol. 29, no. 3, pp. 365–374, febrary 2020. 10.17219/acem/112600.; C. Greco and C. Berde, “Pain Management in Children”, Gregory’s Pediatric Anesthesia,Wiley, pp. 929–954, 2020. https://doi.org/10.1002/9781119371533.ch37.; G. Zamzmi, R. Kasturi, D. Goldgof, R. Zhi, T. Ashmeade, and Y. Sun, “A Review ofAutomated Pain Assessment in Infants: Features, Classification Tasks, and Databases,” IEEE Reviews in Biomedical. Engineering, vol. 11, pp. 77–96, noviembre 2017. 10.1109/RBME.2017.2777907.; T. Voepel-Lewis, J. Zanotti, J. A. Dammeyer, and S. Merkel, “Reliability and Validity of theFace, Legs, Activity, Cry, Consolability Behavioral Tool in Assessing Acute Pain in Critically Ill Patients”, American Journal of Critical Care, vol. 19, no. 1, pp. 55–61, january 2010. https://doi.org/10.4037/ajcc2010624.; G. Guillen, “Digital Image Processing with Python and OpenCV”, Sensor Projects withRaspberry Pi, Springer, pp. 97–140, 2019. https://doi.org/10.1007/978-1-4842-5299-4_5.; Momtahina, R. Hossain, M. M. Rahman, and O. A. Tania, “Image Capturing and AutomaticFace Recognition”, Dhaka, Bangladesh, 2019.; O. Subea and G. Suciu, “Facial Analysis Method for Pain Detection”, InternationalConference on Future Access Enablers of Ubiquitous and Intelligent Infrastructures, pp. 167–180, 2019. https://doi.org/10.1007/978-3-030-23976-3_17.; D. E. King, “Dlib-ml: A Machine Learning Toolkit”, The Journal of Machine LearningResearch, vol. 10, pp. 1755–1758, december 2009. 10.1145/1577069.1755843.; K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”,Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [Online]. Available at: https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html.; O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition”, Proceedings of theBritish Machine Vision Conference (BMVC), vol. 1, no. 3, p. 6, september 2015. https://dx.doi.org/10.5244/C.29.41.; S. J. Pan and Q. Yang, “A Survey on Transfer Learning”, IEEE Transactions on knowledgeand data engineering, vol. 22, no. 10, pp. 1345-1359, october 2010. 10.1109/TKDE.2009.191.; F. Zhuang. et al., “A Comprehensive Survey on Transfer Learning”, Proceedings of theIEEE, pp. 1-34, july 2019. 10.1109/JPROC.2020.3004555.; H.-W. Ng, V. D. Nguyen, V. Vonikakis, and S. Winkler, “Deep Learning for EmotionRecognition on Small Datasets using Transfer Learning”, Proceedings of the 2015 ACM on International Conference on Multimodal Interaction (ICMI ’15), pp. 443–449, november 2015. https://doi.org/10.1145/2818346.2830593.; W. Ding et al., “Audio and face video emotion recognition in the wild using deep neuralnetworks and small datasets”, Proceedings of the 18th ACM International Conference on Multimodal Interaction (ICMI ’1), pp. 506–513, october 2016. https://doi.org/10.1145/2993148.2997637.; K. Zhang, L. Tan, Z. Li, and Y. Qiao, “Gender and smile classification using deepconvolutional neural networks”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [Online]. Available at: https://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/html/Zhang_Gender_and_Smile_CVPR_2016_paper.html.; V. Campos, A. Salvador, B. Jou, X. Giró-i-Nieto and B. Jou, “Diving Deep into Sentiment:Understanding Fine-tuned CNNs for Visual Sentiment Prediction”, Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia (ASM '15), pp. 57-62, october 2015. https://doi.org/10.1145/2813524.2813530.; H. Ding, S. K. Zhou, and R. Chellappa, “FaceNet2ExpNet: Regularizing a Deep FaceRecognition Net for Expression Recognition”, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 118–126, june 2017. 10.1109/FG.2017.23.; F. Wang et al., “Regularizing face verification nets for pain intensity regression,” in 2017IEEE International Conference on Image Processing (ICIP), pp. 1087–1091, september 2017. 10.1109/ICIP.2017.8296449.; M. S. Hossain and G. Muhammad, “Emotion recognition using deep learning approach fromaudio–visual emotional big data,” Information Fusion, vol. 49, pp. 69–78, september 2019. https://doi.org/10.1016/j.inffus.2018.09.008.; “Una herramienta nueva de aprendizaje automático predice con exactitud el cáncer depróstataIndustriaMedimaging.es.”[Online].Available:https://www.medimaging.es/industria/articles/294777132/una-herramienta-nueva-de-aprendizaje-automatico-predice-con-exactitud-el-cancer-de-prostata.html. [Accessed: 06-Nov-2020].; N. A. Ram, “Clasificadores supervisados del cáncer de próstata a partir de imágenes deresonancia magnética en magnetic resonance images in T2 sequences .,” no. June, pp. 19–22, 2019.; Ramírez; N, Aparicio; E, Gómez; E, “SUPERVISED CLASSIFIERS OF PROSTATECANCER. A GEOMETRIC STUDY ON MAGNETIC RESONANCE IMAGES T2 WEIGHTED (T2W), BY DIFFUSION (DWI-ADC),” Congr. Int. electrónica, Control y telecomunicaciones, vol. 51, no. 1, p. 51, 2018.; J. C. Batlle et al., “Diagnóstico del cáncer de próstata mediante espectroscopia deresonancia magnetica endorectal,” Arch. Esp. Urol., vol. 59, no. 10, pp. 953–963, 2006.; "Diferenciación entre prostatitis y cáncer de próstata utilizando el sistema PI-RADS %7C.”[Online]. Available: https://cbseram.com/2016/06/22/diferenciacion-entre-prostatitis-y-cancer-de-prostata-utilizando-el-sistema-pi-rads/. [Accessed: 06-Nov-2020]; T. Hambrock et al., “Prospective assessment of prostate cancer aggressiveness using 3-Tdiffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort,” Eur. Urol., vol. 61, no. 1, pp. 177–184, 2012.; 7]“Cáncer de Próstata - SEOM: Sociedad Española de Oncología Médica © 2019.” [Online].Available: https://seom.org/info-sobre-el-cancer/prostata?showall=1. [Accessed: 06-Nov-2020].; A. B. Rosenkrantz and S. S. Taneja, “Radiologist, be aware: Ten pitfalls that confound theinterpretation of multiparametric prostate MRI,” American Journal of Roentgenology, vol. 202, no. 1. pp. 109–120, Jan-2014.; "The Radiology Assistant : Prostate Cancer - PI-RADS v2.” [Online]. Available:https://radiologyassistant.nl/abdomen/prostate/prostate-cancer-pi-rads-v2. [Accessed: 05-Nov-2020].; P. Guzmán F and A. Messina, “Cáncer de próstata, el problema del diagnóstico ¿Es laresonancia multiparamétrica de próstata la solución?,” Rev. Chil. Radiol., vol. 25, no. 2, pp. 60–66, 2019.; I. Robles, Identificacion de Biomarcadores Predictivos ,Pronosticos y de Respuesta alCancer de Prostata. 2018.; J. I. Díaz, “Matemáticas y Ciencias de la Salud,” pp. 65–67, 2005.; R. Cuocolo et al., “Machine learning applications in prostate cancer magnetic resonanceimaging,” Eur. Radiol. Exp., vol. 3, no. 1, 2019.; S. L. Goldenberg, G. Nir, and S. E. Salcudean, “A new era: artificial intelligence andmachine learning in prostate cancer,” Nat. Rev. Urol., vol. 16, no. 7, pp. 391–403, 2019.; S. Yoo, I. Gujrathi, M. A. Haider, and F. Khalvati, “Prostate Cancer Detection using DeepConvolutional Neural Networks,” Sci. Rep., vol. 9, no. 1, pp. 1–10, 2019.; I. Simon, C. R. Pound, A. W. Partin, J. Q. Clemens, and W. A. Christens-Barry, “Automatedimage analysis system for detecting boundaries of live prostate cancer cells,” Cytometry, vol. 31, no. 4, pp. 287–294, 1998.; S. Sarkar and S. Das, “A Review of Imaging Methods for Prostate Cancer Detection,”Biomed. Eng. Comput. Biol., vol. 7s1, p. BECB.S34255, 2016.; Christian, R., Juan, F. O., y-Alejandro, M. C. (2018). Detección precoz de cáncer depróstata: Controversias y recomendaciones actuales. Revista Médica Clínica Las Condes, 29(2), 128–135. https://doi.org/10.1016/j.rmclc.2018.02.013.; Hambrock, T., Hoeks, C., Hulsbergen-Van De Kaa, C., Scheenen, T., Futterer, J.,Bouwense, S., . Barentsz, J. (2012). Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. European Urology, 61(1), 177–184. https://doi.org/10.1016/j.eururo.2011.08.042.; Nguyen, K., Sabata, B., Jain, A. K. (2012). Prostate cancer grading: Gland segmentationand structural features. Pattern Recognition Letters, 33(7), 951–961. https://doi.org/10.1016/j.patrec.2011.10.001.; Ng, Y.-M. H. Diagnosis of sheet metal stamping processes base on 3-D thermal energydistribution. IEEE Transactions on automation science and engineering. Pp, 22-30. Jan. 2007.; Prakash Surya. 3D mapping of surface temperature using thermal stereo. 9th InternationalConference on Control, Automation, Robotics and Vision. ICARCV 2006. Pp, 1- 4. 5-8 Dec. 2006.; Fan, Y., X. Li, et al. (2009). "3D numerical simulation on temperature field and flow field inthe tuyere of blast furnace (BF) based on the fluent software." Tezhong Zhuzao Ji Youse Hejin/Special Casting and Nonferrous Alloys 29(4): 324-326.; Cornacchia, T. P. M., E. B. Las Casas, et al. (2010). "3D finite element analysis on estheticindirect dental restorations under thermal and mechanical loading." Medical and Biological Engineering and Computing: 1-7.; Chethan, Y. D., Ravindra, H. V., gowda, Y. T., & Bharath Kumar, S. (2015). Machine Visionfor Tool Status Monitoring in Turning Inconel 718 using Blob Analysis. In Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2015.07.124.; Siddhpura, A., & Paurobally, R. (2013). A review of flank wear prediction methods for toolcondition monitoring in a turning process. International Journal of Advanced Manufacturing Technology, 65(1–4), 371–393. https://doi.org/10.1007/s00170-012-4177-1.; Azimi, S. M., Britz, D., Engstler, M., & Fritz, M. (2018). Advanced Steel MicrostructureClassification by Deep Learning Methods. Scientifics Reports, 8, 1–14.; Kesireddy, A., & Mccaslin, S. (2015). Using Mathematica to Accurately Approximate thePercent Area of Grains and Phases in Digital Metallographic Images. Lecture Notes in Electrical Engineering, 313. https://doi.org/10.1007/978-3-319-06773-5.; Kesireddy, A., & McCaslin, S. (2015). Application of Image Processing Techniques to theIdentification of Phases in Steel Metallographich Specimens. Lecture Notes in Electrical Engineering, 312. https://doi.org/10.1007/978-3-319-06764-3.; E. J. Guerra Monterroza, “Reconocimiento de primitivas 3D, usando autocorrelación yANFIS", Visión Electrónica, vol. 1, no. 1, pp. 56-61,2008. https://revistas.udistrital.edu.co/index.php/visele/article/view/251.; Forero C., J., Bohórquez, C., & Ruiz, V. H. (2013). Medición automatizada de piezastorneadas usando visión artificial. Visión electrónica, 7(2), 36-44.https://doi.org/10.14483/22484728.5507.; Forero C., J., Gaitán, D., & Martínez, H. (2018). Recolector autónomo de bolas de tenismediante vision artificial. Visión electrónica, 7(2), 36-44. https://doi.org/10.14483/issn.2248-4728.; S. Andreo, «Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water,» Iaea Trs, Austria, 2000.; Sociedad Española de Oncología Médica SEOM, 2020. [En línea]. Available: https://seom.org/. [Último acceso: 03 2020].; Instituto Nacional de Salud, Observatorio Nacional de Salud, «Primer Informe ONS, aspectos relacionados con la frecuencia de uso de los servicios de salud, mortalidad y discapacidad en Colombia,» Imprenta Nacional de Colombia, Bogotá D.C., 2011.; F. SALVAT, J. M. FERNÁNDEZ-VAREA y J. SEMPAU, PENELOPE-2006: A code system for Monte Carlo simulation of electron and photon transport, Barcelona: OECD, 2006.; Computerized Imaging Reference Systems CIRS, Manual Tissue Simulation & Phantom Technology, Norfolk, Virginia, 2017.; A. Brosed, Fundamentos de física médica, vol. 1, Madrid: ADI, 2011.; H. Andreo, Fundamentals of ionizing radiation dosimetry, 2017.; Agostinelli, «Simulation toolkit, Nuclear instruments and methods in physics,» sciencedirect, vol. 506, nº 3, pp. 250- 303, 2003.; Ministerio de Salud y Protección Social, «https://www.minsalud.gov.co,» 25 Marzo 2020. [En línea]. Available: https://www.minsalud.gov.co/salud/publica/PET/Documents/Circular%2019.pdf.pdf. [Último acceso: 8 11 2020].; Asociación Colombiana de Infectologia, «Consenso colombiano de atención, diagnóstico y manejo de la infección,» Revista de la Asociación Colombiana de Infectologia, vol. 24, nº 3, pp. 20-21, 2020.; L. Gamboa O, «Atlas de mortalidad por cancer en Colombia,» Instituto Nacional de Cancerologia, vol. 1, nº 4, 2017.; G. de Fernicola, «Arsénico en el agua de bebida: un problema de salud pública,» Revista Brasileira de Ciências Farmacêuticas, vol. 39, nº 4, pp. 365-372, 2003.; J. C. Ramirez, «Tomografía computarizada por rayos X: fundamentos y actualidad,» Revista Ingeniería Biomédica, vol. 2, nº 4, 2008.; l.R.Raudales Díaz, «IMÁGENES DIAGNÓSTICAS: CONCEPTOS Y GENERALIDADES,» Revista Facultad Ciencias Médicas, vol. 1, nº 1, pp. 35-43, 2014.; A. P. Montenegro, «Repositorio Pontificia Universidad Javeriana,» 19 07 2019. [En línea]. Available: https://repository.javeriana.edu.co/handle/10554/44080. [Último acceso: 14 11 2020].; A. Amer, T. Marchant, J. Sykes, J. Czajka y C. Moore,, «Imaging doses from the Elekta Synergy X-ray cone beam CT system,» The British Journal of Radiology, vol. 80, nº 954, p.476–482, 2007.; CSN, «Interaccion de la radiación con la materia,» 2013. [En línea]. Available:http://csn.ciemat.es/MDCSN/recursos/ficheros_md/133100241_2411200913036.pdf.; A. Brosed, Fundamentos De Fisica Medica, vol. 2, ADI, 2012.; E. B. Podgorsak, Radiaton Physics for Medical Physicists, 2 ed., Springer, 2010.; CIRS, «IMRT Thorax Phantom,» [En línea]. Available: www.cirsinc.com. [Último acceso: 22 02 2020].; A. Castillo, «Caracteristicas del sistema de IGRT de ELEKTA,» Grupo CROASA, Granada.; Elekta AB, «Elekta Synergy Digital accelerator for advanced IGRT,» 2017. [En línea]. Available: https://www.elekta.com/radiotherapy/treatment-delivery-systems/elekta- synergy/. [Último acceso: 14 11 2020].; C. David, «Estudio de la viabilidad de las imágenes de CBCT para planeación de tratamientos,» Pontificia Universidad Javeriana, Bogotá, 2020.; J. Allison, «Geant4 Developments and Applications,» IEEE TRANSACTIONS ON NUCLEAR SCIENCE, vol. 53, 2006.; J DeMarco, «A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms,» PHYSICS IN MEDICINE ANDBIOLOGY, nº 50, p. 3989–4004, 2005.; O. Apostolakis, «The Geant4 Simulation Toolkit and Applications For the Geant4 Collaboration,» NATO Science for Peace and Security Series B: Physics and Biophysics, 2008.; C. Giraldo, «Desarrollo y aplicaciones de GEANT4 para radioterapia y microdosimetria en detectores y circuitos integrados,» 04 2011. [En línea]. Available: https://idus.us.es/handle/11441/15762. [Último acceso: 14 11 2020].; Geant4 Collaboration, Book For Application Developers, Geant4 Collaboration, 2017.; P. Montenegro, «Repositorio Pontificia Universidad Javeriana,» 19 07 2019. [En línea].Available: https://repository.javeriana.edu.co/handle/10554/44080. [Último acceso: 14 10 2020].; M. Mostazo Caro, «Interacción Radiación-Materia Conceptos B ásico,» de Técnicas Experimentales Avanzadas, 2013, pp. 4-6.; C. Vidal Silva and L. Pavesi Farriol, “Desarrollo De Un Sistema De Adquisición Y TratamientoDe Señales Electrocardiográficas,” Rev. Fac. Ing. - Univ. Tarapacá, vol. 13, no. 1, pp. 39–46, 2005, doi:10.4067/s0718-13372005000100005.; C. Correa Flórez, R. Bolaños Ocampo, and A. Escobar, “Análisis de esquemas de filtradoanálogo para señales ecg.,” Sci. Tech., vol. 5, no. 37, pp. 103–108, 2007.; Tortora, Gerald. Derrickson, Bryan. 2006. Principios de Anatomía y Fisiología. 11ª. Edición.Editorial Médica Panamericana. México DF. México. Cap 20.; M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cybersecurity intrusion detection: Approaches, datasets, and comparative study,” J. Inf. Secur. Appl., vol. 50, p. 102419, 2020, doi:10.1016/j.jisa.2019.102419.; G. Zeng, Y. He, Z. Yu, X. Yang, R. Yang, and L. Zhang, “Preparation of novel high copperions removal membranes by embedding organosilane-functionalized multi-walled carbon nanotube,” J. Chem. Technol. Biotechnol., vol. 91, no. 8, pp. 2322–2330, 2016, doi:10.1002/jctb.4820.; T. Park, Introduction to digital signal processing. Singapore: World Scientific, 2010.; M. O. Alzate, “Clasificación de Arritmias Cardíacas usando Transformada Waveleth - tesispregrado.pdf,” 2003.; A. D. E. Maquina and C. O. N. Interfaz, “Mediante Aprendizaje De Máquina Con Interfaz aUsuario Model of Dynamic Classification of Arrhythmias Cardiac By,” Leonardo, vol. 16, pp. 86–95, 2006.; A. Behrad and K. Faez, “New method for QRS-wave recognition in ECG using MART neuralnetwork,” ANZIIS 2001 - Proc. 7th Aust. New Zeal. Intell. Inf. Syst. Conf., no. November, pp. 291–296, 2001, doi:10.1109/ANZIIS.2001.974093.; M. Mitrokhin, A. Kuzmin, N. Mitrokhina, S. Zakharov, and M. Rovnyagin, “Deep learningapproach for QRS wave detection in ECG monitoring,” 11th IEEE Int. Conf. Appl. Inf. Commun. Technol. AICT 2017 - Proc., pp. 1–3, 2019, doi:10.1109/ICAICT.2017.8687235.; I. A. Tarmizi, S. S. N. A. S. Hassan, U. K. Ngah, and W. P. W. Ibrahim, “A journal of realpeak recognition of electrocardiogram (ECG) signals using neural network,” 2012 2nd Int. Conf. Digit. Inf. Commun. Technol. its Appl. DICTAP 2012, pp. 504–510, 2012, doi:10.1109/DICTAP.2012.6215429.; M. Llamedo and J. P. Martínez, “Clasificación de ECG basada en Características de Escala, Dirección y Ritmo,” Caseib 2009, pp. 2–5, 2009.; E. D. A. Botter, C. L. Nascimento, and T. Yoneyama, “A neural network with asymmetricbasis functions for feature extraction of ECG P waves,” IEEE Trans. Neural Networks, vol. 12, no. 5, pp. 1252–1255, 2001, doi:10.1109/72.950154.; S. H. El-Khafif and M. A. El-Brawany, “Artificial Neural Network-Based Automated ECGSignal Classifier,” ISRN Biomed. Eng., vol. 2013, pp. 1–6, 2013, doi:10.1155/2013/261917.; N. Maglaveras, T. Stamkopoulos, K. Diamantaras, C. Pappas, and M. Strintzis, “ECGpattern recognition and classification using non-linear transformations and neural networks: A review,” Int. J. Med. Inform., vol. 52, no. 1–3, pp. 191–208, 1998, doi:10.1016/S1386-5056(98)00138-5.; C. Rose-Gómez and M. Serna-Encinas, “Procesamiento del Electrocardiograma para laDetección de Cardiopatías,” Researchgate.Net, no. May, pp. 3–6, 2015, [Online]. Available: http://enc2014.cicese.mx/Memorias/paper_19.pdf%5Cnhttps://www.researchgate.net/profile/Cesar_Rose/publication/277324231_Procesamiento_del_Electrocardiograma_para_la_Deteccion_de_Cardiopatias/links/5567b77d08aeab77721eac2b.pdf.; S. Jiménez Serrano, “Clasificación automática de registros ECG para la detección deFibrilación Auricular y otros ritmos cardíacos,” 2018, [Online]. Available: https://riunet.upv.es:443/handle/10251/111113.; S. G. Artis, R. G. Mark, and G. B. Moody, “Detection of atrial fibrillation using artificial neuralnetworks,” Comput. Cardiol., pp. 173–176, 1992, doi:10.1109/cic.1991.169073.; J. Wang and W. Lu, “A method of electrocardiogram classification based on neural network,”Chinese J. Biomed. Eng., vol. 14, no. 4, pp. 306–311, 1995.; M. Hammad, A. Maher, K. Wang, F. Jiang, and M. Amrani, “Detection of abnormal heartconditions based on characteristics of ECG signals,” Meas. J. Int. Meas. Confed., vol. 125, pp. 634–644, 2018, doi:10.1016/j.measurement.2018.05.033.; T. H. Chen, Z. Yu, L. Q. Han, P. Y. Guo, and X. Y. He, “The sorting method of ECG signalsbased on neural network,” 2nd Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2008, pp. 543–546, 2008, doi:10.1109/ICBBE.2008.132.; Taylor GJ. 150 Practice ECGs: Interpretation and Review. Blackwell Science, 2002. ISBN0-632-04623-6.; Committee on Engineering Education, "Educating the Engineer of 2020: AdaptingEngineering Education to New the Century", NAE, pp. 1-209, 2010. Available at: http://www.nap.edu/catalog/11338.html.; World Health Organization, “World health statistics overview 2019: monitoring health for theSDGs, sustainable development goals”, Geneva: World Health Organization; pp. 1-28, 2019 (WHO/DAD/2019.1). License: CC BY-NC-SA 3.0 IGO.; World Health Organization, “Human resources for medical devices, the role of biomedicalengineers”. Geneva: World Health Organization; pp.: 1-240, 2017. License: CCBY-NC- SA 3.0 IGO.; J. Sappey and S. Relf, “Digital Technology Education and its Impact on Traditional AcademicLists and Practice”. J. Univ. Teach. & Lear. Pract. 7(1), 7(3), 2007.; J. Candle-Valdés, “The challenges of the Cuban new university”. Paper presented at thePedagogy 2007, Havana, Cuba, pp. 1-14, feb. 2007.; K. M. Galotti, et al., “To New Way of Assessing Ways of Knowing: The Attitudes TowardsThinking and Learning Survey (ATTLS)”. Sex Lists, 40(9/10), 745-766, 1999.; Ministerio de Educación Superior, Documento Ejecutivo Plan de Estudio: IngenieríaBiomédica, MES, La Habana, Cuba, págs. 1-10, 15 julio, 2017.; T. T. Bekele, “Motivation and Satisfaction in Internet-Supported Learning Environments: ToReview”. Educ. Tech. & Soc., 13(2), 116-127, 2009.; S. N. Karagiannis, “The Conflicts Between Science Research and Teaching in HigherEducation: An Academic's Perspective”. J. Teach. and Lear. Higher Educ., 21(1), 75-83, 2010.; R. Garrote and T. Pettersson. “The use of learning management systems: A LongitudinalCase Study”. Eleed, 8. 2011.; R. Hernández-Sampieri y otros, “Metodología de la Investigación. 6ta Ed., Ed. McGraw-HillEducation. México D. F., págs. 1- 634, 2014.; R. N. Strickland, Image-Processing Techniques for Tumor Detection, Boca Raton, Florida: CRC Press, 2002.; J. Thirumaran y S. Shylaja, «Medical Image Processing – An Introduction,» International Journal of Science and Research (IJSR), vol. 4, nº 11, pp. 1197-1199., 2015.; F. Ballester y J. M. Udías, «Física Nuclear y Medicina,» Rev Esp Fís, vol. 22, nº 1, pp. 29- 36, 2008.; P. Mildenberger, M. Eichelberg y E. Martin, «Introduction to the DICOM standard,» European Radiology, vol. 12, p. 920–927, 2002.; C. E. J. Kahn, J. A. Carrino, M. J. Flynn, D. J. Peck y S. C. Horii, «DICOM and Radiology: Past, Present, and Future,» TECHNOLOGY TALK, vol. 4, nº 9, pp. 652-657, 2007.; A. P. Bhagat y M. Atique, «Medical images: Formats, compression techniques and DICOM image retrieval a survey,» 2012 International Conference on Devices, Circuits and Systems (ICDCS), pp. 172-176, 2012.; D. P. Hanson y R. A. Robb, «Chapter 45 - Three-Dimensional Visualization in Medicine and Biology,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 755-784.; El Hospital, Reconstrucción 3D de la anatomía humana a partir de imágenes médicas obtenidas por ayuda diagnóstica, 2016.; J. M. Selman R., «Aplicaciones clínicas del procesamiento digital,» Revista Médica Clínica Las Condes, vol. 15, nº 2, 2004.; M. Solaiyappan, «Chapter 44 - Visualization Pathways in Biomedicine,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 729-753.; J. Rogowska, «Chapter 5 - Overview and Fundamentals of Medical Image Segmentation,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 73- 90.; A. Escobar Díaz y L. A. Calderón, «Modelo tridimensional de extremidad inferior basado en imágenes de resonancia magnética,» Visión electrónica, vol. 3, nº 1, pp. 4-15, 2009.; DICOM Library & medDream, «Dicom Library (Modality CT),» 2011. [En línea]. Available: https://www.dicomlibrary.com/.; L. Atanelov, S. A. Stiens, and M. A. Young, “History of physical medicine and rehabilitationand its ethical dimensions”, AMA journal of ethics, vol. 17, no. 6, pp. 568–574, 2015. DOI:10.1001/journalofethics.2015.17.6.mhst1-1506 URL: https://journalofethics.ama-assn.org/article/history-physical-medicine-and-rehabilitation-and-its-ethical-dimensions/2015-06; M. C. Garcia and T. Vieira, “Surface electromyography: Why, when and how to use it”,Revista andaluza de medicina del deporte, vol. 4, no. 1, pp.17–28, 2011. URL: https://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-surface-electromyography-why-when-how-X1888754611201253.; J. C. Guerrero Pupo, I. Amell Muñoz, and R. Cañedo Andalia, “Tecnología, tecnologíamédica y tecnología de la salud: algunas consideraciones básicas”, Acimed, vol. 12, no. 4, pp. 1–1, 2004. URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352004000400007.; J. A. A. Londoño, E. C. Bravo, and J. F. C. García, “Aplicación de tecnologías derehabilitación robótica en niños con lesión del miembro superior”, Revista Salud UIS, vol. 49, no. 1, pp. 103–114, 2017. DOI: http://dx.doi.org/10.18273/revsal.v49n1-2017010 URL: http://www.scielo.org.co/scielo.php?pid=S012108072017000100103&script=sci_abstract&tlng=es.; F. Salvuci and R. Kohanoff, Tecnologías de rehabilitación. Wiley-Interscience, 2016.; A. Merlo and I. Campanini, “Technical aspects of surface electromyography for clinicians”,The open rehabilitation journal, vol. 3, no. 1, 2010. DOI:10.2174/1874943701003010098 URL: https://benthamopen.com/ABSTRACT/TOREHJ-3-98.; F. J. Juan, “Utilidad de la electromiografía de superficie en rehabilitación” URL:https://www.researchgate.net/profile/Francisco_Juan-Garcia/publication/316588275_UTILIDAD_DE_LA_ELECTROMIOGRAFIA_DE_SUPERFICIE_EN_REHABILITACION/links/5905b86c4585152d2e957860/UTILIDAD-DE-LA-ELECTROMIOGRAFIA-DE-SUPERFICIE-EN-REHABILITACION.pdf.; J. W. Meklenburg, S. K. Patrick, and S. D. Jung, “Surface electromyogram simulator formyoelectric prosthesis testing,” 2010. URL: https://digitalcommons.wpi.edu/mqp-all/1402/.; Merletti Roberto, and Dario Farina. Surface electromyography: physiology, engineering, andapplications. Piscataway, NJ: IEEE Press, 2016, online. ISBN: 9781119082934, DOI:10.1002/9781119082934.; E. Guzmán, G. Méndez, “Electromiografía en las Ciencias de la Rehabilitación”, SaludUninorte, Vol 3, no. 3, pp 753-765, 2018.; W. A. Marrison, “Apparatus for converting radiant energy to electromechanical energy”, U.S.,Patent 2919358, Dec. 29, 1959. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/e7/ce/c2/f8074398301da9/US2919358.pdf.; D. M. Chapin, C. S. Fuller and G. L. Pearson, “Solar energy converting apparatus”, U.S.,Patent US2780765, Feb. 5, 1957. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/36/ee/af/d21dacd3884160/US2780765.pdf.; H. E. Hall, “Solar motor”, U.S., Patent US3296469, Ene. 3, 1967. [En línea]. Disponible en:https://patentimages.storage.googleapis.com/7e/58/b3/09cf657161e51f/US3296469.pdf.; B. Sepp, “Rotating advertising device”, U.S., Patent US3325930, Ene. 20, 1967. [En línea].Disponible en: https://patentimages.storage.googleapis.com/2e/14/de/57d7f191d20af2/US3325930.pdf.; Y. Nakamats, “Apparatus for converting radiant energy such as light or heat directly intoturning force”, Japón, Patent US4634343, Ene. 6, 1987. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/78/4e/a0/414270d9bad0e0/US4634343.pdf.; H. Izawa, “Solar Energy Motor”, Japan. Patent 4751413, Jun. 14, 1988. [En línea]. Disponibleen: https://patentimages.storage.googleapis.com/3f/8b/a3/9e59494a100d1e/US4751413.pdf.; G. J. Shea, “Solar energy magnetic resonance motor”, U.S., Patent US5408167, Abr. 18,1995. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/77/c4/f7/c12b523e12bfdc/US5408167.pdf.; A. Coty, “Automatically switched photovoltaic motor”, Francia, Patent WO2010082007A3,Jul. 22, 2010. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/36/8f/25/4c5399bdb634a4/WO2010082007A3.pdf.; W. Amrhein, H. Mitterhofer, E. Marth, G. Bramerdorfer, “Aufbau eines Mendocino-Motors”,Ene 2018 [En línea]. Disponible en: http://www.bis0uhr.de/projekte/magnet/projektseminar.pdf.; T. Kornher, M. Noebels, J. Roeller, S. Schwieger, F. Weller, “Mendocino-Motor”, Feb 2018[En línea]. Disponible en: https://ap.physik.uni-konstanz.de/projektpraktikum/PP2011/Bericht_Mendocinomotor.pdf.; Z. Novák, M. Hofreiter. “Mendocino motor and a different approaches to its control”,Proceedings of 15th International Conference MECHATRONIKA, Prague, pp. 1-6, 2012. [En línea]. Disponible en: https://ieeexplore.ieee.org/document/6415075.; C.M. Estupiñán, J.P. Puerto-Reyes, M. A. Beltrán, “Desarrollo de un motor mendocinocomo herramienta de enseñanza en la aplicación de energías renovables y generación de alternativas energéticas”, Revista Loggin, vol. 1, no. 1, pp. 78-89, 2017.; K. Berger, et al, “Solar Electric Motor on Superconducting Bearings: Design and Tests inLiquid Nitrogen" en IEEE sobre aplicaciones de superconductividad, vol. 27, no. 4, pp. 1-5, Jun. 2017, https://doi.org/10.1109/TASC.2016.2642140.; Fawzi Boufatah. “Réalisation d’un moteur à énergie solaire sur paliers supraconducteurs”,2016, hal-01824246. [En línea]. Disponible en: https://hal.univ-lorraine.fr/hal-01824246/document.; W. K. Lane, “Light emitting unit for continuous light production”, U.S., PatentUS20130141900A1, Jun. 6, 2013. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/f6/89/60/242f9861427fb1/US20130141900A1.pdf.; Supermagnete, “Anillo imán”, Nov, 2019. [En línea]. Disponible en: https://www.supermagnete.de/eng/ring-magnets-neodymium/ring-magnet-25mm-4.2mm-5mm_R-25-04-05-N.; Supermagnete, “Disco magnético autoadhesivo” noviembre de 2019. [En línea]. Disponibleen: https://www.supermagnete.de/eng/adhesive-magnets-neodymium/disc-magnet-self-adhesive-25mm-2mm_S-25-02-FOAM?group=discs.; Supermagnete, “Bloque imán” diciembre de 2019. [En línea]. Disponible en: https://www.supermagnete.de/eng/block-magnets-neodymium/block-magnet-40mm-20mm-10mm_Q-40-20-10-N.; H. Polo, A. Valencia, J. Roldan, J.Diaz, “Evaluación de la seguridad estructural de unsistema de seguimiento solar en Colombia”, Colombia, Universidad Distrital Francisco José de Caldas, Oct. 06, 2013. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/5522.; D. Gomez, J. Leal, H. Montaña, A. Sanchez, “Detección de posición a partir de la mediciónde un campo magnético”, Colombia, Universidad Distrital Francisco José de Caldas, Ene. 01, 2013. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/4397.; A. Nataraj and B. Ramasamy, "Modeling and FEA analysis of axial flux PMG for low speedwind turbine applications," 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), pp. 1-5, Kollam, 2017. doi:10.1109/TAPENERGY.2017.8397290.; M. Carrillo, C. Claudio y A. Mayorga, “Caracterización de un generador de flujo axial paraaplicaciones en energía eólica,” Revista de Ciencia y Tecnología, INGENIUS, N°19, pp. 19-28, 2018. https://doi.org/10.17163/ings.n19.2018.02.; S. S. Laxminarayan, M. Singh, A. H. Saifee and A. Mital, “Design, Modeling and Simulationof Variable Speed Axial Flux Permanent Magnet Wind Generator”, ELSEVIER, Sustainable Energy Technologies and Assessments, India, 2017. https://doi.org/10.1016/j.seta.2017.01.004.; G. Ahmad and U. Amin, “Design, Construction and Study of Small-Scale Vertical Axis WindTurbine based on a Magnetically Levitated Axial Flux Permanent Magnet Generator”, ELSEVIER, Renewable Energy, 2016. https://doi.org/10.1016/j.renene.2016.08.027.; M. Castillo García, “Diseño Electromagnético de un Generador Eléctrico para Turbina Eólicade 100 kW”, trabajo de fin de grado, Universidad Politécnica de Madrid, Madrid, España, 2017. http://oa.upm.es/49261/1/TFG_MONTANA_CASTILLO_GARCIA.pdf.; C. F. González Velázquez, “Optimización de Banco de Pruebas y Sistema de Monitoreo deAerogenerador de Baja Potencia”, trabajo de fin de tecnólogo, Centro de Ingeniería y Desarrollo Industrial, Santiago de Querétaro, 2017. http://cidesi.repositorioinstitucional.mx/jspui/handle/1024/269.; J. Kappatou, G. Zalokostas and D. Spytatos, “3-D FEM Analysis, Prototyping and Tests ofan Axial Flux Permanent-Magnet Wind Generator,” Energies, Greece, 2017. https://doi.org/10.3390/en10091269.; R. D. Chavan and V. N. Bapat, "The study of different topologies of Axial Flux PermanentMagnet generator," IEEE, 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), pp. 202-206, Pune, 2016. doi:10.1109/ICACDOT.2016.7877579.; T. Asefi, J. Faiz and M. A. Khan, “Design of Dual Rotor Axial Flux Permanent MagnetGenerators with Ferrite and Rare-Earth Magnets”, IEEE, 18th International Power Electronics and Motion Control Conference (PEMC), Budapest, 2018. doi:10.1109/EPEPEMC.2018.8522004.; Yicheng Chen, Pragasen Pillay and A. Khan, "PM wind generator comparison of differenttopologies," IEEE; Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting., pp. 1405-1412 vol.3, Seattle, WA, USA, 2004. doi:10.1109/IAS.2004.1348606.; R. Rusmana, A. A. Melkias, N. Nurrohman and I. M. W. Kastawan, “Voltage GenerationCharacteristics of an Axial Flux Permanent Magnet (AFPM) Generator”, IOP Conference Series: Materials Science and Engineering, ICIEVE, Indonesia, 2019. doi:10.1088/1757-899X/830/4/042019; I. M. W. Kastawan and Rusmana, “Voltage Generation of Three-Phase Double SidedInternal Stator Axial Flux Permanent Magnet (AFPM) Generator”, IOP Conference Series: Materials Science and Engineering, 1st Annual Applied Science and Engineering Conference, Indonesia, 2017, doi:10.1088/1757-899X/180/1/012105.; H. Gör and E. Kurt, “Preliminary Studies of a New Permanent Magnet Generator (PMG)with the Axial and Radial Flux Morphology”, ELSEVIER, ScienceDirect, Turkey, 2016. https://doi.org/10.1016/j.ijhydene.2015.12.195.; H. Gor and E. Kurt, “Waveform Characteristics and Losses of a New Double Sided Axialand Radial Flux Generator”, ELSEVIER, ScienceDirect, Turkey, 2015. https://doi.org/10.1016/j.ijhydene.2015.12.172.; A. Habib, H. Che, N. Rahim, M. Tousizadeh and E. Sulaiman, “A fully coreless Multi-StatorMulti-Rotor (MSMR) AFPM generator with combination of conventional and Halbach magnet arrays,” Alexandria Engineering Journal, vol n. 59, Issue 2, pp 589-600, April 2020. https://doi.org/10.1016/j.aej.2020.01.039.; N. Georgiev, “Study of Three-Phase Axial Flux Generators”, IEEE, 20th InternationalSymposium on Electrical Apparatus and Technologies (SIELA), Bourgas, 2018. doi:10.1109/SIELA.2018.8447093.; E. Celik, H. Gör, N. Öztürk and E. Kurt, “Application of Artificial Neural Network to EstimatePower Generation and Efficiency of a New Axial Flux Permanent Magnet Synchronous Generator”, ELSEVIER, ScienceDirect, Turkey, 2017. https://doi.org/10.1016/j.ijhydene.2017.01.168.; M. R. Minaz and M. Celebi, “Design and Analysis of a New Axial Flux Coreless PMSG withThree Rotors and Double Stators”, ELSEVIER, Results in Physics, Turkey, 2016. https://doi.org/10.1016/j.rinp.2016.10.026.; M. Dranca, M. Chirca and S. Breban, “Comparative Design Analysis of Axial FluxPermanent Magnet Direct-Drive Wind Generators”, IEEE, The 11st International Symposium on Advanced Topics in Electrical Engineering, Technical University of Cluj-Napoca, Romania, 2019. doi:10.1109/ATEE.2019.8724928.; N. E. Lastra, “Diseño y Construcción de un Generador de Flujo Axial con ImanesPermanentes de Bajo Costo para Aplicaciones Eólicas”, ResearchGate, 2019, https://www.researchgate.net/publication/336071436_Diseno_y_Construccion_de_un_Generador_de_Flujo_Axial_con_Imanes_Permanentes_de_Bajo_Costo_para_Aplicaciones_Eolicas.; A. Rasekh, P. Sergeant and L. Vierendeels, “Fully Predictive Heat Transfer CoefficientModeling of an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Parameters of the Magnets”, ELSEVIER, Applied Thermal Engineering, Ghent University, Belgium, 2016. https://doi.org/10.1016/j.applthermaleng.2016.09.019.; M. Irfan, R. F. Ariyanto, L. Syafaah, A. Faruq and N. Subeki, “Stator Slotted Design of AxialFlux Permanent Magnet Generator for Low-Speed Turbine”, IOP Conference Series: Materials Science and Engineering, ICEAT, Indonesia, 2020. doi:10.1088/1757-899X/821/1/012027.; H. Polinder, “2 - Principles of electrical design of permanent magnet generators for directdrive renewable energy systems,” Woodhead Publishing Limited, Delft University of Technology, pp. 30-50, The Netherlands, 2013. doi:10.1533/9780857097491.1.30.; V. N. Antipov, A. D. Grozov and A. V. Ivanova, “Design and Analysis of a New Axial FluxPermanent Magnet Synchronous Generator for Wind”, IOP Conference Series: Materials Science and Engineering, International Scientific Electric Power Conference, Russia, 2019. doi:10.1016/j.rinp.2016.10.026.; M.M. Radulescu, S. Breban and M. Chirca, “Novel topologies of low-speed axial-fluxpermanent- magnet micro-wind generator,” The 18 th National Conference on Electrical Drives, CNAE 2016, Acta Electrotechnica, vol. 57, n° 3-4, Special Issue, 2016. doi:10.4283/JMAG.2014.19.3.273.; B. J. Chalmers and E. Spooner, "An axial-flux permanent-magnet generator for a gearlesswind energy system," in IEEE Transactions on Energy Conversion, vol. 14, no. 2, pp. 251-257, June 1999. doi:10.1109/60.766991.; A. R. Dehghanzadeh, V. Behjat and M. R. Banaei, “Dynamic Modeling of Wind TurbineBased Axial Flux Permanent Magnetic Synchronous Generator Connected to the Grid with Switch Reduced Converter”, ELSEVIER, Ain Shams Engineering Journal, Azarbaijan Shahid Madani University, Iran, 2015. https://doi.org/10.1016/j.asej.2015.11.002.; N. Radwan-Praglowska, D. Borkowski and T. Wegiel, "Model of coreless axial fluxpermanent magnet generator," 2017 International Symposium on Electrical Machines (SME), pp. 1-6, Naleczow, 2017. doi:10.1109/ISEM.2017.7993568.; S. Khan, S. Amin and S. S. Hussain Bukhari, “Design and Comparative PerformanceAnalysis of Inner Rotor and Inner Stator Axial Flux Permanent Magnet Synchronous Generator for Wind Turbine Applications”, IEEE, International Conference on Computing-iCoMET, Sukkur IBA University, Pakistan, 2019. doi:10.1109/ICOMET.2019.8673537.; L. Wei, T. Nakamura and K. Imai, “Development and Optimization of Low-Speed and High-Efficiency Permanent Magnet Generator for Micro Hydro-Electrical Generation System”, ELSEVIER, Renewable Energy, Kyoto University, Japan, 2019. https://doi.org/10.1016/j.renene.2019.09.049.; M. Ardestani, N. Arish and H. Yaghobi, “A New HTS Dual Stator Linear Permanent MagnetVernier Machine with Halbach Array for Wave Energy Conversion”, ELSEVIER, Physyca C: Superconductivity and its Applications, Semman University, Iran, 2019. https://doi.org/10.1016/j.physc.2019.1353593.; P. Khatri and X. Wang, “Comprehensive Review of a Linear electrical Generator for OceanWave Energy Conversion”, IET Renewable Power Generation, IET, Vol. 14, Lss. 6, pp. 949-958, February, 2020. doi:10.1049/iet-rpg.2019.0624.; O. S. Muñoz Muñoz, “Dimensionamiento electromagnético de un Generador Lineal para laConversión de Energía Undimotriz de Acuerdo a las Características del Océano Pacífico Colombiano”, trabajo de fin de grado, Universidad del Valle, Colombia, 2020.; C. García Saiz, “Diseño, Dimensionado y Simulación de un Generador Lineal para elDesarrollo de una Boya de Generación de Energía Undimotriz”, trabajo de fin de grado, Universidad de Cantabria, España, 2015. https://repositorio.unican.es/xmlui/handle/10902/7332.; A. García Villalmanzo, “Diseño de un Motor Lineal de Reluctancia Autoconmutado conImanes Permanentes”, trabajo de fin de grado, Universidad Rovira I Virgili, Tarragona, 2017. http://deeea.urv.cat/public/PROPOSTES/pub/pdf/2459pub.pdf.; A. Shiri and A. Shoulaie, “End Effect Braking Force Reduction in High-Speed Single-SidedLinear Induction Machine”, ELSEVIER, Energy Conversion and Management, Iran University of Science and Technology, Iran, 2012. https://doi.org/10.1016/j.enconman.2011.11.014.; X. Chen, S. Zheng, J. Li, G. T. Ma and F. Yen, “A Linear Induction Motor with a CoatedConductor Superconducting Secondary”, ELSEVIER, Physyca C: Superconductivity and its Applications, Southwest Jiaotong University, China, 2017. https://doi.org/10.1016/j.physc.2018.04.002.; SS. Rathore, S. Mishra, M. K. Paswan and Sanjay, “A Review on Design and Developmentof Free Piston Linear Generators in Hybrid Vehicles”, IOP Conference Series: Materials Science and Engineering, ICCEMME, India, 2019. doi:10.1088/1757-899X/691/1/012053.; Y. Gao, S. Shao, H. Zou, M. Tang, H. Xu and C. Tian, “A Fully Floating System for WaveEnergy Converter with Direct-Driven Linear Generator”, ELSEVIER, Energy, Beijing, China, 2015. https://doi.org/10.1016/j.energy.2015.11.072.; J. F. Fortes, L. M. Ferraz and I. E. Chabu, “Optimized Double Sided Linear Generator forWave Energy in Sao Paulo’s Coast”, 7th International Conference on Ocean Energy (ICOE), Polytechnic School of University of Sao Paulo, France, 2018. https://www.icoe-conference.com/publication/optimized-double-sided-linear-generator-for-wave-energy-in-sao-paulo-s-coast/.; V. Boscaino, G. Cipriani, V. Di Dio, V. Franzitta and M. Trapanense, “Experimental Testand Simulations on a Linear Generator-Based Prototype of a Wave Energy Conversion System Designed with a Reliability-Oriented Approach”, MDPI, Sustainability, University or Palermo, 2017. doi:10.3390/su9010098.; O. Farrok, M. R. Islam, Y. G. Guo and J. G. Zhu, “Design and Analysis of a NovelLightweight Translator Permanent Magnet Linear Generator for Oceanic Wave Energy Conversion”, IEEE, 2015. doi:10.1109/TMAG.2017.2713770.; K. Cruz, F. Dator, J. Ong, N. Bumanlag and M. C. Pacis, “Harnessing of Wave Energy usingAxially Magnetized Linear Generator with Data Logger using Gizduino Microcontroller”, IOP Conference Series: Journal of Physics: Conference Series, CEEPE, Mapua University, Philippines, 2019. doi:10.1088/1742-6596/1304/1/012013.; A. Tapia-Hernández, M. Ponce-Silva, N. Mondragón-Escamilla y L. Hernández-González,“Impacto de la Geometría en el Efecto Fin de Generadores Lineales”, Información Tecnológica, Vol.27, No. 4, pp. 133-138, México, Agosto, 2016. http://dx.doi.org/10.4067/S0718-07642016000400014.; P. Naderi, M. Heidary and M. Vahedi, “Performance Analysis of Ladder-Secondary-LinearInduction Motor with Two Different Secondary Types using Magnetic Equivalent Circuit”, ELSEVIER, ISA Transactions, Shahid Beheshti University, Iran, 2020. https://doi.org/10.1016/j.isatra.2020.03.013.; Y. Xu, X. Xue, Y. Wang and M. Ai, “Performance Characteristics of Compressed Air-Driven-Free-Piston Linear Generator (FPLG) System – A Simulation Study”, ELSEVIER, Applied Thermal Engineering, 2019. https://doi.org/10.1016/j.applthermaleng.2019.114013.; J. Xi, Z. Dong, P. Liu and H. Ding, “Modeling and Identification of Iron-less PMLSM EndEffects for Reducing Ultra-Low-Velocity Fluctuations of Ultra-precision Air Bearing Linear Motion Stage”, ELSEVIER, Precision Engineering, Shanghai Jiaotong University, China, 2017. https://doi.org/10.1016/j.precisioneng.2017.01.016.; X. Luo, C. Zhang, S. Wang, E. Zio and X. Wang, “Modeling and Analysis of Mover Gaps inTubular Moving-Magnet Linear Oscillating Motors”, ELSEVIER, Chinese Journal of Aeronautics, Chinese Society of Aeronautics ans Astronautics & Beihang University, China, 2017. https://doi.org/10.1016/j.cja.2017.11.008; K. S. Rama Rao, T. Sunderan and M. Ref’at Adiris, “Performance and Design Optimizationof Two Model Based Wave Energy Permanent Magnet Linear Generators”, ELSEVIER, Renewable Energy, 2016. https://doi.org/10.1016/j.renene.2016.07.019.; M. F. M Naafi, T. Ibrahim, N. M. Nor and M. A. Firdaus bin M. Hamim, “Design and Modellingof a Portable Pico Linear Generator for Wave Energy Conversion System”, Applied Mechanics and Materials, Vol. 785, pp. 300-304, Malaysia, 2015. https://doi.org/10.4028/www.scientific.net/AMM.785.300.; W. Rentería Palacios, “Diseño y Evaluación Electromagnética de un Motor Síncrono Linealde Imanes Permanentes en Disposición Halbach”, trabajo de fin de máster, Universidad Autónoma de Occidente, Colombia, 2018. https://hdl.handle.net/10614/10454.; J. Kim, J. Y. Kim and J. B. Park, “Design and Optimization of a 8kW Linear Generator for aDirect-Drive Point Absorber”, IEEE, Yonsei University, Seoul, Korea, 2013. doi:10.23919/OCEANS.2013.6741125.; W. Li, T.W. Ching and K.T. Chau, “Design and Analysis of a New Parallel-Hybrid-ExcitedLinear Vernier Machine for Oceanic Wave Power Generation”, ELSEVIER, Applied Energy, China, 2017. https://doi.org/10.1016/j.apenergy.2017.09.061.; L. Huang, J. Liu, H. Yu, R. Qu, H. Chen and H. Fang, “Winding Configuration andPerformance Investigation of a Tubular Superconducting Flux-Switching Linear Generator”, IEEE, Transactions on Applied Superconductivity, Vol. 25, No. 3, 2015. doi:10.1109/TASC.2014.2382877.; X. Liu, H. Yu, Z. Shi, T. Xia and M. Hu, “Electromagnetic-Fluid-Thermal Field Calculationand Analysis of a Permanent Magnet Linear Motor”, ELSEVIER, Applied Thermal engineering, Southeast University, China, 2017. https://doi.org/10.1016/j.applthermaleng.2017.10.066.; 288; CREG - Comisión de Regulación de Energía y Gas, «Regulación Aplicable al Biogás,» Comisión de Regulación de Energía y Gas, 2009.; O. Harker, «Presentación del proyecto - Prototipo de Sistema de generación de energía eléctrica a partir de residuos sólidos,» Colciencias, Fusagasugá, 2019.; I. Vera, J. Martínez, M. Estrada y A. Ortiz, «Potencial de generación de biogás y energía eléctrica Parte I: excretas de ganado bovino y porcino,» Ingeniería Investigación y Tecnología, vol. 15, nº 3, pp. 429-436, 2014. Doi: https://doi.org/10.1016/S1405- 7743(14)70352-X.; I. D. B. Sierra, «Actualización del Plan de Gestión Integral de Residuos Sólidos PGIRS de Fusagasugá,» Alcaldía de Fusagasugá, Fusagasugá, 2017.; L. D. Romero, «EL ESPECTADOR,» Tratar las basuras, lucha contrarreloj, 18 Junio 2015. [En línea]. Available: https://www.elespectador.com/noticias/bogota/tratar-basuras-lucha- contrarreloj-articulo-567135. [Último acceso: 13 abril 2020].; J. Niemczewska y G. Kolodziejak, «Landfill Gas Energy Technologies,» Instytut Nafty I Gazu, Cracovia, 2010. Disponible: https://www.globalmethane.org/Data/1022_LFG-Handbook.pdf.; R. Bove y P. Lunghi, «Electric power generation from landfill gas using traditional,» Energy Conversion and Management, vol. 47, p. 11, 2006. Doi: https://doi.org/10.1016/j.enconman.2005.08.017.; G. Blanco, E. Santalla, V. Córdoba y A. Levy, «Generación de electricidad a partir de biogás capturado de residuos sólidos urbanos: Un análisis teórico-práctico,» División de Energía: Banco Interamericano de Desarrollo, Buenos Aires, 2017. Disponible: https://publications.iadb.org/publications/spanish/document/Generación-de-electricidad- a-partir-de-biogás-capturado-de-residuos-sólidos-urbanos-Un-análisis-teórico- práctico.pdf.; Cogenera Mexico, «COGENERA MEXICO,» 2012. [En línea]. Available: http://www.cogeneramexico.org.mx/menu.php?m=77. [Último acceso: 5 Junio 2020].; ICONTEC, «Norma Técnica Colombiana GTC-24 "Gestión Ambiental. Residuos Sólidos. Guía para la separación en la fuente".,» Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), 2009.; Universidad de Cundinamarca, «Anexo 1. Protocolo para el manejo y pretratamiento de los RSO de la Plaza de Mercado del municipio de Fusagasugá.,» Anexos convocatoria Colciencias 829 - 2018 , Fusagasugá , 2020.; A. Andrade, A. Restrepo y J. Tibaquirá, «Estimación de biogás de relleno sanitario, caso de estudio: Colombia,» Entre ciencia e ingeniería, vol. 12, pp. 40-47, 2018. Doi: http://dx.doi.org/10.31908/19098367.3701.; Aqualimpia Engineering , «Aqualimpia,» [En línea]. Available:https://www.aqualimpia.com/biodigestores/biogas-purificacion/. [Último acceso: 22 05 2020].; W. Lema, «DESOTEC Actived Carbon,» 14 05 2014. [En línea]. Available: https://www.desotec.com/es/carbonologia/casos/eliminaci-n-del-sulfuro-de-hidr-geno-en- el-biog-s-parte-1. [Último acceso: 2020].; COLCIENCIAS, «Presentación del proyecto - Prototipo de Sistema de generación de energía eléctrica a partir de residuos sólidos,» Fusagasugá, 2019.; “El papel de la ciencia y la tecnología en la sociedad de conocimiento,” OCyT. https://www.ocyt.org.co/el-papel-de-la-ciencia-y-la-tecnologia-en-la-sociedad-de conocimiento/ (accessed Oct. 27, 2020).; A. Kapoor, S. I. Bhat, S. Shidnal, and A. Mehra, “Implementation of IoT (Internet of Things) and Image processing in smart agriculture,” in 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), Bengaluru, India, Oct. 2016, pp. 21–26, doi:10.1109/CSITSS.2016.7779434.; J. Zhou, D. Xiao, and M. Zhang, “Feature Correlation Loss in Convolutional Neural Networks for Image Classification,” in 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, Mar. 2019, pp. 219–223, doi:10.1109/ITNEC.2019.8729534.; T. Treebupachatsakul and S. Poomrittigul, “Bacteria Classification using Image Processing and Deep learning,” in 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), JeJu, Korea (South), Jun. 2019, pp. 1–3, doi:10.1109/ITC-CSCC.2019.8793320.; S. Dutta Gupta and A. K. Pattanayak, “Intelligent image analysis (IIA) using artificial neural network (ANN) for non-invasive estimation of chlorophyll content in micropropagated plants of potato,” Vitro Cell. Dev. Biol. - Plant, vol. 53, no. 6, pp. 520–526, Dec. 2017, doi:10.1007/s11627-017-9825-6.; A. M. Moreno-Jiménez, S. Loza-Cornejo, and M. Ortiz-Morales, “Efecto de luz LED sobresemillas de Capsicum annuum L. var. serrano,” vol. 17, no. 3, p. 7, 2017.; A. Rojas, “Flora Urbana Del Área Metropolitana De Bucaramanga,” Innovaciencia Fac.Cienc. Exactas Físicas Nat., vol. 5, no. 1 S1, Dec. 2017, doi:10.15649/2346075X.454.; A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with DeepConvolutional Neural Networks,” in Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105.; Y. A. Arévalo Ortega, S. R. Corredor Vargas y G. A. Higuera Castro, «Análisis forense con herramientas de hacking en dispositivos android,» Visión Electrónica, vol. 13, nº 1, pp. 162-177, 2019.; L. iyuan y H. Wenfeng, «Development of Puzzle Game for IOS Platform Based on Unity3D,» de 3rd International Conference on Applied Computing and Information Technology/2nd International Conference on Computational Science and Intelligence (ACIT-CSI), 2015.; A. Lima y E. A. da Costa, «Experimental Approach of the Asymptotic Computational Complexity of Shaders for Mobile Devices with OpenGL ES,» de Brazilian Symposium on Computer Games and Digital Entertainment, 2014.; B. J. Cox, The objective-C environment: past, present, and future, 1987.; G. Bournoutian y A. Orailoglu, «On-device objective-C application optimization framework for high-performance mobile processors,» de Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014.; R. Rawlings, «bjective-C: an object-oriented language for pragmatists,» de Colloquium on Applications of Object-Oriented Programming, 1989.; G. Song, S. Ren, D. Zhang, K. Liu, Y. Sun y X. A. Wang, «Research on War Strategy Games on Mobile Phone based on Cocos2d-JS,» de 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2015.; S. Guozhi, R. Shuxia, Z. Dakun, L. Kunliang, S. Yumeng y A. W. Xu, «Research on War Strategy Games on Mobile Phone,» 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 151-155, 2015.; B. A. Brady, A. K. Jones y I. S. Kourtev, «Efficient CAD development for emerging technologies using Objective-C and Cocoa,» de International Conference on Electronics, Circuits and Systems, 2004, 2004.; C. W. Cho, C. P. Hong, J. C. Piao, Y. K. Lim y S. D. Kim, «Performance optimization of 3D applications by OpenGL ES library hooking in mobile devices,» de 13th International Conference Computer and Information Science (ICIS), 2014 IEEE/ACIS , 2014.; J. C. Piao, C. W. Cho, C. G. Kim, B. Burgstaller y S. D. Kim, «An Adaptive LOD Setting Methodology with OpenGL ES Library on Mobile Devices,» de International Conference on Convergence and Security (ICITCS), 2014.; F. A. Manrique Suarez, L. C. Velásquez Rodríguez y G. M. Tarazona Bermúdez, «Estado del arte sobre aplicaciones móviles: caso de estudio enfocado a estudiantes universitarios en Bogotá, Colombia,» Visión Electrónica, vol. 11, nº 2, pp. 279-288, 2017.; R. Besas, R. O. Atienza, T. Tai y R. Cruz, «An implementation of a structured and highly engaging learning environment on educational games for elementary education,» de IT in Medicine and Education (ITME), 2011.; C. Carter, Q. Mehdi y T. Hartley, «Navigational techniques to improve usability and user experience in RPG games,» de 17th International Conference on Computer Games (CGAMES), 2012.; C. Le Marc, J. P. Mathieu, M. Pallot y S. Richir, «Serious gaming: From learning experience towards User Experience,» de International Technology Management Conference (ICE), 2010.; S. F. Hsiao, S. Y. Li y K. H. Tsao, «Low-power and high-performance design of OpenGL ES 2.0 graphics processing unit for mobile applications,» de International Conference on Digital Signal Processing (DSP) , 2015.; S. F. Hsiao, P. H. Wu, C. S. Wen y L. Y. Chen, «Design of a programmable vertex processor in OpenGL ES 2.0 mobile graphics processing units,» de International Symposium on VLSI Design, Automation, and Test (VLSI-DAT), 2013.; X. Zhao y X. Huang, «A general solution of script-based fragment animation,» de 6th IEEE International ConferenceSoftware Engineering and Service Science (ICSESS), 2015.; L. Wang, «Design and Implementation of Four Arithmetic Operations Learning Games in Primary Mathematics Based on cocos2d-js,» 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pp. 595-598, 2018.; M. P. A. Balayan, V. V. B. Conoza, J. M. M. Tolentino, R. C. Solamo y R. P. Feria, «On evaluating skillville: An educational mobile game on visual perception skills. In Information, Intelligence, Systems and Applications,» de The 5th International Conference IISA 2014,, 2014.; B. Cassidy, G. Stringer y M. H. Yap, «Mobile Framework for Cognitive Assessment: Trail Making Test and Reaction Time Test,» de Computer and Information Technology (CIT), 2014.; Y. Lu, W. Gao y F. Wu, «Efficient background video coding with static sprite generation and arbitrary-shape spatial prediction techniques,» Transactions on Circuits and Systems for Video Technology, vol. 13, nº 5, pp. 394-405, 2013.; Cocos2D-x, «ARCHITECTURE OVERVIEW,» [En línea]. Available: http://www.cocos2d-x.org/wiki/Engine_Architecture. [Último acceso: 14 02 2016].; Y. Lu, Y. Liu y S. Dey, «loud mobile 3D display gaming user experience modeling and optimization by asymmetric graphics rendering,» IEEE Journal of Selected Topics in Signal Processing, vol. 9, nº 3, pp. 517-532, 2015.; S. Arefin Riffat, F. Harun y T. Hassan, «An Interactive Tele-Medicine System via Android Application,» Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), pp. 148-152, 2020.; Y. Liu, H. Dar y R. Sharp, «Mobile Gamer Modelling and Game Performance Preference Measurement,» IEEE Conference on Games (CoG), pp. 632-635, 2020.; J. C. Piao, C. W. Cho, C. G. Kim, B. Burgstaller y S. D. Kim, «An adaptive LOD setting methodology with OpenGL ES library on mobile devices,» de IT Convergence and Security (ICITCS), 2014.; E. C. Chan y B. G. , «Appendix B: Introduction to Objective-C Programming in iPhone,» de Introduction to Wireless Localization: With iPhone SDK Examples, pp. 261-304.; Simulation Study on Duoplasmatron With Optimization of Ion Beam Extraction System S.Park and Y. Kim. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 45, NO. 6, JUNE 2017 955.; Aceleradores de partículas: Modelos para su diseño y la dinámica del haz MODELIZACIÓNAPLICADA A LA INGENIERÍA. R. Strangis. CYCLOTOPE, Houston, Texas, Estados Unidos. Junio 2011.; Presente y futuro de la implantación iónica: se describe la naturaleza, características,ventajas y desventajas de los tratamientos de superficie por implantación iónica; además el actual estado de desarrollo de esta tecnología, sus aplicaciones y las previsiones de su evolución en los próximos años. T. Rodríguez. 1998.; Modificación superficial de un acero AISI SAE 1045 mediante la implantación de iones denitrógeno y titanio. D. V. Salinas, D. Y. Peña y L. F. Chinchilla. Universidad Industrial de Santander UIS. Universidad Pontificia Bolivariana UPB. Julio 2011.; Microcavity engineering by plasma immersion ion implantation, Materials Chemistry andPhysics. P. K. Chu and N. W. Cheung. 57, 1998, 1-16.; A review of recent developments in ion implantation for metallurgical application. Se realizaeste trabajo o proyecto con el objetivo de identificar oportunidades para la aplicación industrial de la implantación iónica. R. Hutchings. 1994.; Experimental investigation on corrosion and hardness of ion implanted AISI 316L stainlesssteel. Materials & design technology. V. Muthukumaran. 2010.; Una mirada a los medios para diagnóstico por imágenes desde la educación médica. L.Esquivel Sosa, Y. Fleites García y Y. Jiménez González. EDUMECENTRO 2018;10(1): ISSN 2077-2874 RNPS 2234 Santa Clara ene.-mar.; La revolución científico-técnica y su impacto en las ciencias médicas. M. Hernández Pino.La Habana: Universidad Virtual de Salud Manuel Fajardo. 6 Sep 2016.; Imágenes Médicas: adquisición, análisis, procesamiento e interpretación. G. Passariello yF.Mora. Eds. Venezuela: Equinoccio, Ediciones de la Universidad Simón Bolívar;1995.; IMÁGENES DIAGNÓSTICAS: CONCEPTOS Y GENERALIDADES DIAGNOSTICIMAGES: CONCEPTS AND GENERALITIES I. R. Raudales Díaz. Rev. Fac. Cienc. Méd. Enero -Junio 2014.; Getting started in clinical radiology from image to diagnosis. G. W. Eastman, C. Wald andJ.Crossin. Germany: Thieme; 2005.; «Organización Mundial de la Salud,» 1 febrero 2018. [En línea]. Available:http://www.who.int/es/newsroom/fact-sheets/detail/cancer.; El Cáncer. J. G. de la Garza Salazar y P. Juárez Sánchez. Universidad Autónoma de NuevoLeón. Centro, Monterrey, Nuevo León, México, C.P. 64000 Primera edición, 2014.; Hadronterapia. J. L. Herranz, E. Herraiz, S. Vicente, J. España, J. L. Cal-Gonzalez y J. M.Udías. Primer Encuentro Complutense para la Divulgación en Física Nuclear y de Partículas [Internet]. gfn; 2008.; Proton Therapy: state of the art and clinical applications. I. López Moranchel and P. I.Maurelos Castell, 1). Centro de Formación Profesional San Juan de Dios, GENUD Toledo Research Group. (Universidad de Castilla-La Mancha). REVISTA OFICIAL DE LA SOCIEDAD ESPAÑOLA DE ENFERMERÍA ONCOLÓGICA. 2019.; Proton Therapy. A. R. Smith. Med Phys. 26 de enero de 2009 [citado 20 de abril de2019];36(2):556-68.; The risk of radiation-induced second cancers in the high to medium dose region: acomparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors. M. Moteabbed, T. I. Yock, H. Paganetti. Phys Medicina Biol [Internet]. 21 de junio de 2014 [citado 20 de abril de 2019];59(12):2883-99. D.; A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture TherapyApplication. K. N. Leung, Y. Lee, J. M. Verbeke, J. Vujic, M. D. Williams, L. K. Wu, N. Zahir. Lawrence Berkeley National Laboratory University of California Berkeley Berkeley USA Nuclear Engineering Department. La jolla, CA septiembre 1998.; Evaluación Preliminar de la Aceleración de D en un Generador de Neutrones D-DCompacto de Alto Flujo. J. A. Cifuentes Parada, Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Física Bogotá D.C., Colombia 2019.; Physics. D. Halliday and R. Resnick. Wiley; Part 2 edition, 1978.; Educational Applets: https://www.falstad.com/vector2de, https://www.falstad.com/vector3de.; M. Sereday, M. Damiano, and S. Lapertosa, “Amputaciones de Miembros Inferiores endiabéticos y no diabéti-cos en el ámbito hospitalario,” Alad(Asociación Larinoamericana de Diabetes), pp. 9–15, 2009, [Online]. Available: http://www.revistaalad.com.ar/pdfs/0905_Amp_de_Miem.pdf.; C. Quintero Quiroz, A. Jaramillo Zapata, M. T. De Ossa Jiménez, and P. A. Villegas Bolaños,“Estudio descriptivo de condiciones del muñón en personas usuarias de prótesis de miembros inferiores,” Rev. Colomb. Médicina Física y Rehabil., vol. 25, no. 2, pp. 94–103, 2018, doi:10.28957/rcmfr.v25n2a1.; L. H. Lugo and G. Desarrollador, “Guía de Práctica Clínica.”; O. Horgan and M. M. A. C. Lachlan, “Psychosocial adjustment to lower-limb amputation : Areview,” 2004, doi:10.1080/09638280410001708869.; B. L. Martín, M. Jesús, and P. Hernández-Rico, “Amputación.”; "Convocatoria para proyectos de Ciencia, Tecnología e Innovación y su contribución a losretos de país- 2018 %7C Convocatoria 808 %7C COLCIENCIAS.” https://www.colciencias.gov.co/convocatorias/investigacion/convocatoria-para-proyectos-ciencia-tecnologia-e-innovacion-y-su-0 (accessed Aug. 04, 2019).; W. L. Childers, R. S. Kistenberg, and R. J. Gregor, “The Biomechanics of Cycling with aTranstibial Amputation: Recommendations for Prosthetic Design and Direction for Future Research,” Prosthet. Orthot. Int., vol. 33, no. 3, pp. 256–271, Sep. 2009, doi:10.1080/03093640903067234.; I. Pinilla Giménez, “Juego serio para terapias de rehabilitación motora y cognitiva conrealidad virtual,” 2017, Accessed: Aug. 29, 2019. [Online]. Available: http://uvadoc.uva.es/handle/10324/23073.; G. Fiedler, J. Akins, R. Cooper, S. Munoz, and R. A. Cooper, “Rehabilitation of People withLower-Limb Amputations,” Curr. Phys. Med. Rehabil. Reports, vol. 2, no. 4, pp. 263–272, Dec. 2014, doi:10.1007/s40141-014-0068-8.; Prodalca, “Rodillo personal trainer con regulador de esfuerzo,” 2019. https://prodalca.com.co/producto/rodillo-personal-trainer-con-regulador-de-esfuerzo/.; C. Sun and Z. Qing, “Design and Construction of a Virtual Bicycle Simulator for EvaluatingSustainable Facilities Design,” Adv. Civ. Eng., vol. 2018, 2018, doi:10.1155/2018/5735820.; T. Instruments and I. Sloa, “Chapter 16 Active Filter Design Techniques Excerpted from OpAmps for Everyone Literature Number: SLOD006A.”; L. Xiong et al., “IMU-based automated vehicle slip angle and attitude estimation aided byvehicle dynamics,” Sensors (Switzerland), vol. 19, no. 8, 2019, doi:10.3390/s19081930.; Arduino Uno Rev3 %7C Arduino Official Store.” https://store.arduino.cc/usa/arduino-uno-rev3.; S. Sanghani, Stumps and Cranks: An Introduction to Amputee Cycling.; M. Ambrož, “Raspberry Pi as a low-cost data acquisition system for human poweredvehicles,” Meas. J. Int. Meas. Confed., vol. 100, pp. 7–18, 2017, doi:10.1016/j.measurement.2016.12.037.; F. Villarreal, “Introducción a los modelos de pronósticos,” Univ. Nac. del Sur, pp. 1–121,2016.; “pySerial 3.0 documentation.” https://pythonhosted.org/pyserial/.; “python-drawnow: MATLAB-like drawnow to easily update a figure.” https://github.com/stsievert/python-drawnow.; J. D. Rairan-Antolines and J. M. Fonseca-Gómez, “Algoritmo para la aproximación de lavelocidad de giro de un eje mediante un encoder incremental,” Ing. y Univ., vol. 17, no. 2, pp. 293–309, 2013.; MinSalud, “33 mil personas al año mueren de Cáncer en Colombia.” https://www.minsalud.gov.co/Paginas/33-mil-personas-al-año-mueren-de-Cáncer-en-Colombia.aspx.; D. Raúl Pefaur, “Imaginología actual del cáncer pulmonar,” Rev. Médica Clínica Las Condes, vol. 24, no. 1, pp. 44–53, 2013, doi: https://doi.org/10.1016/S0716-8640(13)70128-7.; C. R. José Miguel, “Estado actual del tratamiento del cáncer pulmonar,” Rev. Médica Clínica Las Condes, vol. 24, no. 4, pp. 611–625, 2013, doi: https://doi.org/10.1016/S0716-8640(13)70200-1.; Society American Cancer, “Cancer Statistics Center,” 2020. https://cancerstatisticscenter.cancer.org/?_ga=2.68534866.2102841857.1593652002-2027832360.1593652002#!/.; Diariopresente.mx, “Google desarrolla algoritmo que detecta el cáncer de pulmón,” 2018. [Online]. Available: https://www.diariopresente.mx/actualidad/google-desarrolla-algoritmo-que-detecta-el-cancer-de-pulmon/218050.; M. F. Abbod, J. W. F. Catto, D. A. Linkens, and F. C. Hamdy, “Application of ArtificialIntelligence to the Management of Urological Cancer,” J. Urol., vol. 178, no. 4, pp. 1150–1156, 2007, doi: https://doi.org/10.1016/j.juro.2007.05.122.; J. M. Purswani, A. P. Dicker, C. E. Champ, M. Cantor, and N. Ohri, “Big Data From SmallDevices: The Future of Smartphones in Oncology,” Semin. Radiat. Oncol., vol. 29, no. 4, pp. 338–347, 2019, doi: https://doi.org/10.1016/j.semradonc.2019.05.008.; K. Cieślak, “Professional psychological support and psychotherapy methods for oncologypatients. Basic concepts and issues,” Reports Pract. Oncol. Radiother., vol. 18, no. 3, pp. 121–126, 2013, doi: https://doi.org/10.1016/j.rpor.2012.08.002.; H. Contreras, “Teoria de la Computacion para Ingeniería de Sistemas: Un enfoque practico.”Caracas: Saber, Ula. V, 2012, [Online]. Available: https://d1wqtxts1xzle7.cloudfront.net/39872592/tema1.pdf?1447177931=&response-content-disposition=inline%3B+filename%3DTema1.pdf&Expires=1594305464&Signature=Fe86rqeud4Y7osvWzUUhOYTIZCaL-k~pJaar2XxVbujlot-4xV9wYpduKdxkZ5zHaSPhUOCcpH1v0k7Y5shbONvWqbXmdTzdO.; A. GALIPIENSO, M. ISABEL, M. A. CAZORLA QUEVEDO, O. Colomina Pardo, F.ESCOLANO RUIZ, and M. A. LOZANO ORTEGA, Inteligencia artificial: modelos, técnicas y áreas de aplicación. Editorial Paraninfo, 2003.; J. V. González, O. A. V. Arenas, and V. V. González, “Semiología de los signos vitales:Una mirada novedosa a un problema vigente,” Arch. Med., vol. 12, no. 2, pp. 221–240, 2012, [Online]. Available: https://www.redalyc.org/pdf/2738/273825390009.pdf.; Liip.care, “Liip Smart Monitor,” 2019. https://liip.care/es/.; Welchallyn.com, “Equipos de signos vitales,” 2018.; Welchallyn.com, “Equipos de signos vitales,” 2018. https://www.welchallyn.com/content/welchallyn/latam/es/products/categories/patient-monitoring/vital-signs-devices.html#.; Scikit-learn.org, “Scikit-learn machine learning in python,” 2019. https://scikit-learn.org/stable/index.html.; Cancer Treatment Centers of America, “Lung cancer stages,” 2020. https://www.cancercenter.com/cancer-types/lung-cancer/stages.; NIH (Instituto Nacional del Cáncer), “¿Qué es el cancer?,” 2015. https://www.cancer.gov/espanol/cancer/naturaleza/que-es%0A.; Roger S. Pressman. (2010). Ingeniería del Software Un enfoque práctico. Vol. 3, SéptimaEdición. pp. 70.; Castro, F.D. (2008). Metodologia de projeto centrada na casa da qualidade. Tesis deMaestría, universidade federal rio grande do sul, Porto Alegre, Brasil.; Pahl, G., & Beits, W. (2013). Engineering design: a systematic approach. Springer ScienceBusiness Media.; R. De Armas, A. Alfonso, y L. Rojas, “Tomografía local con bases daubechies", VisiónElectrónica, vol. 9, no. 2, pp. 300-311, 2015.; C. H. Caicedo y A. Smida, “Intensidad informacional para la longitudinalidad asistencial ensistemas de salud", Visión Electrónica, vol. 10, no. 1, pp. 83-95, 2016. https://doi.org/10.14483/22484728.11612.; J. R. Torres Castillo, J. S. Pérez Lomelí, E. Camargo Casallas, y M. Ángel PadillaCastañeda, “Dispositivo háptico vibrotáctil inalámbrico para asistencia de actividades motoras", Visión Electrónica, vol. 12, no. 1, pp. 58-64, 2018. https://doi.org/10.14483/22484728.13310.; N. W. S. US Department of Commerce, NOAA, “Your National Weather Service: Evolvingto Build a Weather-Ready Nation,” 2017. https://www.weather.gov/about/wrn (accessed Oct. 17, 2020).; NOAA,“AboutOur Agency %7C National Oceanic and AtmosphericAdministration.” https://www.noaa.gov/about-our-agency (accessed Oct. 17, 2020).; NOAA, “Marina y aviación %7C Administración Nacional Oceánica y Atmosférica,” 2020.https://www.noaa.gov/marine-aviation (accessed Oct. 25, 2020).; N. NESDIS, “About %7C NOAA National Environmental Satellite, Data, and Information Service(NESDIS),” 2019. https://www.nesdis.noaa.gov/content/about (accessed Oct. 25, 2020).; NOAA,“Gráficos %7C Administración Nacional Oceánica yAtmosférica,”2020. https://www.noaa.gov/charting (accessed Oct. 25, 2020).; NOAA,“Educación Administración Nacional Oceánica y Atmosférica,”2019. https://www.noaa.gov/education (accessed Oct. 25, 2020).; N. N. O. and A. A. US Department of Commerce, “National Oceanic and AtmosphericAdministration (NOAA) Staff Directory Page,” 2018.; N. O. and A. A. US Department of Commerce, “NOAA’s National Ocean Service,” 2019.; R. Weiher, “Assessing the Economic & Social Benefits of NOAA Data,” 2008. Accessed:Nov. 19, 2020. [Online]. Available: https://www.oecd.org/sti/ieconomy/40066192.pdf.; H. Kite-Powell, “Estimating Economic Benefits from NOAA PORTS ® Information: A CaseStudy of Houston,” 2007. Accessed: Nov. 19, 2020. [Online]. Available: https://tidesandcurrents.noaa.gov/publications/EstimatingEconomicBenefitsfromNOAAPORTSIn formation_Houston-Galveston.pdf.; NASA, “Órbitas de Satélites,” 2020. https://scool.larc.nasa.gov/Spanish/orbits-sp.html(accessed Oct. 17, 2020).; N. OSPO, “GOES Status - Office of Satellite and Product Operations,” Aug. 15, 2019.https://www.ospo.noaa.gov/Operations/GOES/status.html (accessed Oct. 17, 2020).; N.OSPO, “POES Operational Status- POESStatus- OSPO,”Mar. 22, 2019. https://www.ospo.noaa.gov/Operations/POES/status.html (accessed Oct. 19, 2020).; NOAA, “NOAA Readies GOES-15 and GOES-14 for Orbital Storage %7C NOAA NationalEnvironmental Satellite, Data, and Information Service (NESDIS),” Jan. 29, 2020. https://www.nesdis.noaa.gov/content/noaa-readies-goes-15-and-goes-14-orbital-storage (accessed Oct. 17, 2020).; N. OSPO, “Suomi-NPP Operational Status - Office of Satellite and Product Operations,”Apr. 14, 2016. https://www.ospo.noaa.gov/Operations/SNPP/status.html (accessed Oct. 19, 2020).; X. Zou and X. Tian, “COMPARISON OF ATMS STRIPING NOISE BETWEEN NOAA-20AND S- NPP Xiaolei Zou and Xiaoxu Tian Earth System Science Interdisciplinary Center , University of Maryland , College Park , MD 20740,” IEEE Int. Geosci. Remote Sens. Symp., pp. 3105–3108, 2018, doi:10.1109/IGARSS.2018.8517482.; X. Tian, X. Zou, and N. Sun, “COMPARISON OF RO-ESTIMATED ATMS BIASESBETWEEN NOAA-20 AND S-NPP Earth System Science Interdisciplinary Center , University of Maryland , College Park , MD 20740 Earth Resources Technology ( ERT ), Inc ., Laurel , MD20707 , USA,” IEEE Int. Geosci. Remote Sens. Symp., pp. 3101–3104, 2018, doi:10.1109/IGARSS.2018.8519416.; W. Wang, C. Cao, Y. Bai, S. Blonski, and M. A. Schull, “Assessment of the NOAA S-NPPVIIRS geolocation reprocessing improvements,” Remote Sens., vol. 9, no. 10, 2017, doi:10.3390/rs9100974.; N. NESDIS, “Imágenes del sector: América del Sur - Norte - NOAA / NESDIS / STAR,”2020. https://www.star.nesdis.noaa.gov/GOES/sector.php?sat=G16§or=nsa (accessed Oct. 17, 2020).; S. A. Buehler, V. O. John, A. Kottayil, M. Milz, and P. Eriksson, “Efficient radiative transfersimulations for a broadband infrared radiometer-Combining a weighted mean of representative frequencies approach with frequency selection by simulated annealing,” J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 4, pp. 602–615, 2010, doi:10.1016/j.jqsrt.2009.10.018.; U.S. DEPARTMENT OF COMERCE, National Oceanic and Atmospheric Adminitration,and and National Environmental Satellite, Data, “National Oceanic and Atmospheric Administration User’s Guide for Building and Operating Environmental Satellite Receiving Stations,” Feb. 2009. Accessed: Oct.17,2020. [Online]. Available: https://noaasis.noaa.gov/NOAASIS/pubs/Users_GuideBuilding_Receive_Stations_March_2009.pdf.; J. Mitola, “The Software Radio Architecture,” Softw. Radio Technol., vol. 33, no. May, pp.26–38, 2009, doi:10.1109/9780470546444.ch1.; V. Dascal, P. Dolea, O. Cristea, and P. Tudor, “Advanced Vhf Ground Station for NoaaWeather Satellite Apt Image Reception,” Acta Tech. Napocensis, vol. 53, no. 3, pp. 1–7, 2012.; C. Bosquez, A. Ramos, and L. Noboa, “System for receiving NOAA meteorological satelliteimages using software defined radio,” Proc. 2016 IEEE ANDESCON, ANDESCON 2016, pp. 0– 3, 2016, doi:10.1109/ANDESCON.2016.7836233.; C. Velasco and C. Tipantuna, “Meteorological picture reception system using softwaredefined radio (SDR),” 2017 IEEE 2nd Ecuador Tech. Chapters Meet. ETCM 2017, vol. 2017-Janua, pp. 1–6, 2017, doi:10.1109/ETCM.2017.8247551.; E. B. Mikkelsen, “The Design of a Low Cost Beacon Receiver System using SoftwareDefined Radio,” Inst. Elektron. og telekommunikasjo, no. July, pp. 1–83, 2009, [Online]. Available: https://hdl.handle.net/11250/2369478.; D. J. M. Peralta, D. S. Dos Santos, A. Tikami, W. A. Dos Santos, and E. W. R. Pereira,“Satellite telemetry and image reception with software defineradio applied to space outreach projects in brazil,” An. Acad. Bras. Cienc., vol. 90, no. 3, pp. 3175–3184, 2018, doi:10.1590/0001- 3765201820170955.; A. G. C. Guerra, A. S. Ferreira, M. Costa, D. Nodar-López, and F. Aguado Agelet,“Integrating small satellite communication in an autonomous vehicle network: A case for oceanography,” Acta Astronaut., vol. 145, no. November 2017, pp. 229–237, 2018, doi:10.1016/j.actaastro.2018.01.022.; J. Lee Min, “Decoding Signals From Weather Satellites Using Software Defined Radio,”Electron.Theses Diss., vol. 3, no. 2, pp. 1–70, 2018, doi:10.18041/2382-3240/saber.2010v5n1.2536.; Icom, “INSTRUCTON MANUAL iPCR1500 iPCR2500,” Screen. Icom, Osaka, pp. 45–49,2006, [Online]. Available: http://www.icomamerica.com/es/products/receivers/pc/pcr1500/default.aspx.; National Instruments, “SPECIFICATIONS USRP-2920,” Jul. 13, 2017. https://www.ni.com/pdf/manuals/375839c.pdf (accessed Oct. 19, 2020).; RTL-SDR, “RTL-SDR Blog V3 Datasheet,” Feb. 2018. Accessed: Oct. 19, 2020. [Online].Available: https://www.rtl-sdr.com/wp-content/uploads/2018/02/RTL-SDR-Blog-V3- Datasheet.pdf.; N. Crisan and L. Cremene, “NOAA Signal Decoding And Image Processing Using GNU-Radio,” Acta Tech. Napocensis, vol. 49, no. 4, pp. 1–5, 2012.; D. Aguirre and P. R. Yanyachi, “Design of a parabolic patch antenna in band L, with doublelayer and air substrate, for weather satellite reception,” 2017 6th Int. Conf. Futur. Gener. Commun. Technol. FGCT 2017, pp. 10–14, 2017, doi:10.1109/FGCT.2017.8103395.; Y. Rafsyam, Z. Indra, E. E. Khairas, Jonifan, and W. A. Karimah, “Design of Double CrossDipole Antenna as NOAA Satellite Signal Receiver for Monitor Cloud Conditions Application,” J.Phys. Conf. Ser., vol. 1364, no. 1, 2019, doi:10.1088/1742-6596/1364/1/012059.; M. Fathurahman, Zulhelman, A. Maulana, and M. Widyawati, “Design and Development ofDipole Antenna for NOAA Satellite Image Acquisition System and Processing,” J. Phys. Conf. Ser., vol. 1364, no. 1, 2019, doi:10.1088/1742-6596/1364/1/012025.; F. P. A. Escobedo, H. R. Alvarez, H. Salazar, C. G. R. Percing, and R. L. J. M. De Oca,“Low cost optimization method of a double cross antenna satellite reception system for the processing and improvement of meteorological satellite signals and images NOAA 15-18-19,” Proc. 2019 IEEE 1st Sustain. Cities Lat. Am. Conf. SCLA 2019, pp. 1–6, 2019, doi:10.1109/SCLA.2019.8905749.; A. E. Quiroz-Olivares, N. I. Vargas-Cuentas, G. W. Zarate Segura, and A. Roman-Gonzalez, “Low-cost and portable ground station for the reception of NOAA satellite images,”Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, pp. 450–454, 2019, doi:10.14569/ijacsa.2019.0100557.; M. L. Keefer et al., “Evaluating the NOAA Coastal and Marine Ecological ClassificationStandard in estuarine systems: A Columbia River Estuary case study,” Estuar. Coast. Shelf Sci., vol. 78, no. 1, pp. 89–106, 2008, doi:10.1016/j.ecss.2007.11.020.; A. K. Mitra, P. K. Kundu, A. K. Sharma, and S. K. Roy Bhowmik, “A neural networkapproach for temperature retrieval from AMSU-a measurements onboard NOAA-15 and NOAA-16 satellites and a case study during Gonu cyclone,” Atmosfera, vol. 23, no. 3, pp. 225–239, 2010.; D. J. Schneider and M. J. Pavolonis, “ADVANCES IN VOLCANO MONITORING : THEROLE OF JPSS INSTRUMENTS U . S . Geological Survey-Alaska Volcano Observatory , Anchorage , AK NOAA Cooperative Institute for Meteorological Satellite Studies , Madison , WI,” IEEE Int. Geosci. Remote Sens. Symp., pp. 2798–2801, 2017, doi:10.1109/IGARSS.2017.8127579.; C. Muñoz, P. Acevedo, S. Salvo, G. Fagalde, and F. Vargas, “Detección de incendiosforestales utilizando imágenes NOAA/16-LAC en la Región de la Araucanía, Chile,” Bosque, vol. 28, no. 2, pp. 119–128, 2007, doi:10.4067/s0717-92002007000200004.; L. Carro-Calvo, C. Casanova-Mateo, J. Sanz-Justo, J. L. Casanova-Roque, and S.Salcedo- Sanz, “Efficient prediction of total column ozone based on support vector regression algorithms, numerical models and Suomi-satellite data,” Atmosfera, vol. 30, no. 1, pp. 1–10, 2017, doi:10.20937/ATM.2017.30.01.01.; A. Antón, R. Martínez, M. A. Salas, and A. Torre, “Performance analysis andimplementation of spatial and blind beamforming algorithms for tracking leo satellites with adaptive antenna arrays,” in European Conference on Antennas and Propagation, EuCAP 2009, Proceedings, 2009, pp. 216–220.; S. Soisuvarn, Z. Jelenak, P. S. Chang, Q. Zhu, and G. Sindic-Rancic, “Validation of noaa’snear real-time ascat ocean vector winds,” Int. Geosci. Remote Sens. Symp., vol. 1, no. 1, pp. 118–121, 2008, doi:10.1109/IGARSS.2008.4778807.; A. Huang, L. Gumley, K. Strabala, S. Mindock, R. Garcia, and G. Martin, “COMMUNITYSATELLITE PROCESSING PACKAGE FROM DIRECT BROADCAST : PROVIDING REAL- TIME SATELLITE DATA TO EVERY CORNER OF THE WORLD Space Science and Engineering Center ( SSEC ) Cooperative Institute for Meteorological Studies ( CIMSS ) University of Wisconsin,” IEEE Int. Geosci. Remote Sens. Symp., pp. 5532–5535, 2016, doi:10.1109/IGARSS.2016.7730443.; K. R. Al-Rawi and J. L. Casanova, “APLICACIÓN DE LAS REDES NEURONALES PARAEL CONTROL Y SEGUIMIENTO EN TIEMPO REAL DE LOS INCENDIOS FORESTALES MEDIANTE IMÁGENES NOAA-AVHRR,” in TELEDETECCION. Avances y Aplicaciones.VIII Congreso Nacional de teledeteccion, 1999, no. January, pp. 244–247.; Organización Meteorología Mundial, “IDEAM se fortalece en monitoreo y seguimiento dehuracanes (IDEAM, Columbia) %7C Organización Meteorológica Mundial,” Feb. 07, 2013. https://public.wmo.int/es/media/news-from-members/ideam-se-fortalece-en-monitoreo-y- seguimiento-de-huracanes-ideam-columbia (accessed Oct. 26, 2020). [49] IDEAM, “VISOR DE IMÁGENES SATÉLITALES - IDEAM.” http://www.pronosticosyalertas.gov.co/imagsatelital-portlet/html/imagsatelital/view.jsp (accessed Oct. 26, 2020).; NOAA, “National Oceanic and Atmospheric Administration %7C U.S. Department ofCommerce.” https://www.noaa.gov/ (accessed Oct. 26, 2020). IDEAM, “IDEAM - IDEAM.” http://www.ideam.gov.co/ (accessed Oct. 26, 2020).; J. S. M. G, J. E. Ar, and M. L. Su, “Comparacion De Herramientas De Software Para LaCoordinacion Internacional Del Roe En La Orbita Geoestacionaria,” Visión Electrónica algo más que un estado sólido, vol. 9, no. 1, pp. 5–12, 2016, doi:10.14483/22484728.11009.; Google Cloud, “Weather, climate big data from NOAA now in cloud %7C Google Cloud Blog,”Dec.19, 2019. https://cloud.google.com/blog/products/data-analytics/weather-climate-big-data-from-noaa-now-in-cloud (accessed Oct. 26, 2020).; Amazon Web Services, “Registry of Open Data on AWS,” Dec. 19, 2019.https://registry.opendata.aws/collab/noaa/ (accessed Oct. 26, 2020).; NOAA, “Cloud platforms unleash full potential of NOAA’s environmental data %7C NationalOceanic and Atmospheric Administration,” Dec. 19, 2019. https://www.noaa.gov/media-release/cloud- platforms-unleash-full-potential-of-noaa-s-environmental-data (accessed Oct. 26, 2020).; J. A. Niño, L. Y. Martínez y F. H. Fernández “Mano robótica como alternativa para laenseñanza de conceptos de programación en Arduino”, Revista Colombiana de Tecnologías de Avanzada, vol. 2, no. 28, pp. 132 - 139, may 2016.; C. Flores-Vázquez, A. Rojas y K. Trejo, “Operación remota de un robot móvil usando unteléfono inteligente” INGENIUS, núm. 17, 2017.; A. Cerón, “Sistemas robóticos teleoperados” Ciencia e Ingeniería Neogranadiana, no. 15,pp. 62-72, 2005.; A. M. Rivera, L. A. O’Farril, C. Miguélez, P. Martínez y I. O. Benítez “Caracterización del ez-robot para su utilización en la robótica educativa”, Serie Científica de la Universidad de las Ciencias Informáticas, vol. 12, no. 11, pp. 73 - 80, nov 2019.; M. G. da Silva, C. S. González “PequeBot: Propuesta de un Sistema Ludificado de RobóticaEducativa para la Educación Infantil”, Actas del V Congreso Internacional de Videojuegos y Educación (CIVE'17), 2017.; A. Marroquín, A. Gómez y A. Paz “Design and implementation of Explorer Mobile Robotcontrolled remotely using IoT Technology”, 2017.; R. Batista, " Diseño e implementación de un sistema de iluminación inteligente de interiores”, tesis Eng., Universidad Tecnológica de La Habana “José A. Echeverría” CUJAE, La Habana, Cuba, 2019.; S. Companioni, "Procesamiento de imágenes, obtenidas por un vehículo autónomo, para elreconocimiento de daños en cultivos ”, tesis Eng, Universidad Tecnológica de La Habana “José A.Echeverría” CUJAE, La Habana, Cuba, 2020.; J. A. Licona, “Diseño y desarrollo de un robotmóvil a bajo costo para niños: EcateBot”, thesisEng, Universidad Autónoma del estado de México, México D.F, México, 2019.; R. A. Moreno, Desarrollo de aplicaciones para Android usando MIT App Inventor 2, 1eraed. Bogotá: Autoedición, 2016.; L. A. Velazco, "Diseño de un sistema de control basado en linealización por realimentaciónpara robot móvil tipo Ackerman con velocidad variable y movimiento en doble sentido describiendo trayectorias óptimas " thesis MSc, Pontificia Universidad Católica del Perú, Lima, Perú, 2019.; C. Vázquez, "Framework de comunicaciones para robótica educativa, distributiva ycolaborativa” thesis Eng, Universidad de Extremadura, Badajoz, España, 2019.; L. Rodríguez, "Diseño e implementación de una Estación Meteorológica para la agriculturabasada en Arduino", thesis Eng, Universidad Tecnológica de La Habana “José A. Echeverría” CUJAE, La Habana, Cuba, 2019.; D. Higuera, J. Guzmán, A. Rojas “Implementando las metodologías steam y abp en laenseñanza de la física mediante Arduino”, III Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil AmITIC, pp 133 – 137, 2019.; J.M. Nova, " Diseño y desarrollo de una aplicación para monitorear la concentración deCO y CH4 en dispositivos móviles Android". thesis Eng, Universidad Pontificia Bolivariana, Bucaramanga, Colombia, 2018.; ECDRUM. “Circuito – inversión de giro de un motor de CD con relés”, 2018, [Online]Available at http: //ecdrumdownload.blogspot.com. “Manual de la GoPro H9”, 2017, [Online] Available at http: //www.google.com.; R. a. markets, «Research and Markets,» 2020.[En línea]. Available: https://www.globenewswire.com/news-release/2020/03/18/2002434/0/en/IoT-in-the-Global-Retail-Market-2020-2025-Analyzed-by-Platform-Hardware-Service-Application-and-Region.html. [Último acceso: 4 7 2020].; H. T. a. S. Dustdar, «Principles for Engineering IoT Cloud Systems,» IEEE Cloud Computing, vol. II, nº 2, pp. 68-76, 2015.; A. Rahmani, N. K. Thanigaivelan, T. N. Gia, J. Granados, B. Negash, P. Liljeberg y H. Tenhunen, «Smart e-Health Gateway :,» Consumer Communications and Networking Conference (CCNC), 12th Annual IEEE, pp. 826-834, 2015.; P. Desai, A. Sheth y P. Anantharam, «Semantic Gateway as a Service Architecture for IoT Interoperability,» 2015 IEEE International Conference on Mobile Services, pp. 313-319, 2015.; A. A. Sánchez Martín, E. González Guerrero y L. E. Barreto Santamaría, «Prospective integration between Environmental Intelligence (AMI), Data Analytics (DA), and Internet of Things (IoT),» 2019 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI ), pp. 1-6, 2019.; I. A. M. M. J.-M. R. J.-C. T. M. Berrouyne, «A Model-Driven Approach to Unravel the Interoperability Problem of the Internet of Things,» de Barolli, L., Amato, F., Moscato, F., Enokido, T., & Takizawa, M. (Eds.). (2020). Advanced Information Networking and Applications. Advances in Intelligent Systems and Computing. doi:10.1007/978-3-030-44041-1 , Caserta, Italia, 2020.; D. Yacchirema y C. E. Palau Salvador, «Smart IoT Gateway for Heterogeneous Devices Interoperability,» IEEE Latin America Transactions, vol. 14, nº 8, pp. 3900-3906, 2016.; C. Dergarabedian, «La fuerte apuesta de Samsung a la Internet de las cosas para simplificar la vida cotidiana de los usuarios,» iProfesional, 10 Enero 2018.; OpenIoT Consortium, «Open Source cloud solution for the Internet of Things,» OpenIoT, 1 Septiembre 2019. [En línea]. Available: http://www.openiot.eu/. [Último acceso: 02Marzo 2020].; E. González Guerrero, L. E. Barreto Santamaría y A. A. Sánchez Martín, «Integrated Model AmI-IoT-DA for Care of Elderly People,» de Advances in Computing. CCC 2018, Bogotá, 2018.; N. Al-Oudat, A. Aljaafreh, M. Saleh y M. Alaqtash, «IoT-Based Home and Community Energy Management System in Jordan,» Tafila Technical University, vol. CLX, pp. 142-148, 2019.; F. Herrera Araújo, M. A. Ardila Lara, E. Gutiérrez Gil y D. Herrera Téllez, «ODS en Colombia: Los retos para 2030,» Programa de las Naciones Unidas para el Desarrollo -PNUD-, Bogotá, 2018.; M. Unis, A. Nettsträter, F. Iml, J. Stefa, C. S. D. Suni, A. Salinas y U. Sapienza, «Internet of Things-Architecture IoT-A Final architectural reference model for the IoT,» 2013.; F. Leiva, «La agricultura de precisión: una producción más sostenible y competitiva con visión futurista,» VIII Congreso de la Sociedad Colombiana de Fitomejoramiento y Producción de Cultivos, vol. 93, nº 997-1006, p. 7, 2003.; F. A. Urbano Molano, «Wireless Sensor Networks Applied to Optimization in Precision Agriculture for Coffee Crops in Colombia,» Journal de Ciencia e Ingenier´ıa, vol. 5, nº 1, pp. 46-52, 2013.; IERC, «IoT Semantic Interoperability:Research Challenges, Best,» 2011.; M. MARJANI, F. NASARUDDIN, A. GANI, A. KARIM, I. A. TARGIO HASHEM, A. SIDDIQA y . I. YAQOOB, «Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges,» IEEE Access, vol. V, nº 2, p. 15, 2017.; W. Ruíz Martínez , Y. Díaz Gutiérrez, R. Ferro Escobar y L. Pallares, «Application of the Internet of Things through a Network of Wireless Sensors ina Coffee Crop for Monitoring and Control its Environmental Variables,» TecnoLógicas, vol. 22, nº 46, pp. 2-17, 2019.; C. A. Barry, «Choosing Qualitative Data Analysis Software: Atlas/ti and Nudist Compared,» Sociological Research Online, vol. III, nº 3, p. 16–28, 1998.; J. Macias, H. Pinilla, W. Castellanos y J. D. Alvarado, «Sistema de monitoreo de variables ambientales usando IOT,» Tech Fest, 2019.; J. Macías, H. Pinilla, W. Castellanos, J. D. Alvarado y A. Sánchez, «DISEÑO E IMPLEMENTACIÓN DE UN GATEWAY IOT MULTIPROTOCOLO,» 14° CONGRESO INTERNACIONAL DE ELECTRÓNICA, CONTROL Y TELECOMUNICACIONES, vol. 13, pp. 179-198, 2019.; A. A. Sánchez Martín, L. E. Barreto Santamaría, J. J. Ochoa Ortiz y S. E. Villanueva Navarro, «EMULADOR PARA DESARROLLO DE PROYECTOS IOT Y ANALITICAS DE DATOS,» de XII Congreso Internacional de Electrónica, Control y Telecomunicaciones, Bogota, 2019.; allmeteo, «Agro IoT Weather Sensor: AN AFFORDABLE SOLUTION FOR DISTRIBUTED WEATHER MONITORING FOR AGRICULTURE, FARMING & WINE YARDS.,» BARANI DESIGN Technologies s.r.o., 2018. [En línea]. Available: https://www.allmeteo.com/agriculture-iot-weather-station. [Último acceso: 02 03 2020].; LEMKEN, «LEMKEN: The Agrovision Company,» LEMKEN , 2020. [En línea]. Available: https://smartfarming.lemken.com/en/. [Último acceso: 02 03 2020].; RIGADO, «Cascade IoT Gateway: Edge Bluetooth® connectivity & secure data processing,» RIGADO, 2016-2020. [En línea]. Available: https://www.rigado.com/cascade-iot-gateway/. [Último acceso: 02 03 2020].; NXP Semiconductors, «IoT Gateway Solution: Complete development platform that brings together the building blocks for secure, production-ready IoT systems,» NXP Semiconductors, 2006-2020. [En línea]. Available: https://www.nxp.com/design/designs/iot-gateway-solution:IOT-GATEWAY-SOLUTION.[Último acceso: 02 03 2020].; Google, Google Big Query Analytics, United States of America : John Wiley & Sons, Inc., 2014.; P. P. Ray, «A survey of IoT cloud platforms,» Future Computing and Informatics Journal, vol. 1, nº 1-2, pp. 35-46, 2016.; J. C. Najar-Pacheco, J. A. Bohada-Jaime y W. Y. Rojas-Moreno, «Vulnerabilidades en el internet de las cosas,» Visión Electrónica, vol. 13, nº 2, pp. 312-321, 2019.; K. Husenovic, I. Bedi, and S. Maddens, Sentando las bases para la 5G: Oportunidades ydesafíos. ITU, 2018 [Online]. Available: https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.5G_01-2018-PDF-S.pdf; GSMA, “Study on Socio-Economic Benefits of 5G Services Provided in mmWave Bands.”Reportes GSMA, 2018 [Online]. Available: https://www.gsma.com/spectrum/wp-content/uploads/2019/10/mmWave-5G-benefits.pdf.; 5G Américas, Identificación de habilitadores para redes 4G y 5G en América Latina. 2020[Online]. Available: https://brechacero.com/wp-content/uploads/2020/04/WP-Identificaci%C3%B3n-de-habilitadores-para-la-implementaci%C3%B3n-de-redes-4G-y-5G-en-Am%C3%A9rica-Latina.pdf.; GSMA, The Mobile Economy. GSM Association, 2020 [Online]. Available:https://www.gsma.com/mobileeconomy/wpcontent/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf.; N. Vyakaranam and S. Dilip Krishna, “5G: Network As A Service - How 5G enables thetelecom operators to lease out their network,” 22-Mar-2018. [Online]. Available: https://netmanias.com/en/?m=view&id=blog&no=13311. [Accessed: 20-Nov-2020].; J. C. Martínez, J de J. Rugeles y E. P. Estupiñán. “Análisis de ocupación espectral bandaGSM 850 en Bogotá”. Visión Electrónica, algo más que un estado sólido, Vol. 12, No. 1, 5-13, enero-junio 2018. https://doi.org/10.14483/22484728.14801.; Ericsson, “5G architecture next mobile technology %7C Whitepaper,” 01-Jan-2017. [Online].Available: https://www.ericsson.com/en/reports-and-papers/white-papers/5g-systems--enabling-the-transformation-of-industry-and-society. [Accessed: 18-Nov-2020].; H. Ekström, “Non-standalone and Standalone: two paths to 5G,” 2019. [Online]. Available:https://www.ericsson.com/en/blog/2019/7/standalone-and-non-standalone-5g-nr-two-5g tracks. [Accessed: 16-Oct-2020].; 3 GPP, “Release 15 Description,” 3rd Generation Partnership Project (3GPP), 2019 [Online]Available:https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3389.; L. Casaccia, “Propelling 5G forward: A closer look at 3GPP Release 16.” 07-Jul-2020[Online]. Available: https://www.qualcomm.com/news/onq/2020/07/07/propelling-5g-forward-closer-look-3gpp-release-16. [Accessed: 12-Oct-2020].; M. Clark, C. Vanoli, and A. Smith, Abrir sendas hacia 5G. ITU News Magazine, 2017[Online]. Available: https://www.itu.int/en/itunews/Documents/2017/2017-02/2017_ITUNews02-es.pdf.; GSMA, “Espectro 5G Postura de la GSMA sobre política pública,” GSMA, 2018 [Online].Available: https://www.gsma.com/latinamerica/wp-content/uploads/2019/03/5G-Spectrum-Positions-SPA.pdf. [Accessed: 05-Oct-2020].; 5G Américas, Análisis de las recomendaciones de espectro de la UIT en América Latina.White Papers 5G Américas, 2019, p. 6-21 [Online]. Available: https://brechacero.com/wp-content/uploads/2019/08/ES-Analisis-de-las-Recomendaciones-de-Espectro-de-la-UIT-en-America-Latina-2019-vf.pdf.; 5G Américas, Espectro para 5G: Banda 3,5 GHZ en América Latina. 2019 [Online].Available: https://brechacero.com/wp-content/uploads/2019/06/3.5-GHz-esp-ok.pdf.; Poder Legislativo, "Ley No. 14.235," Centro De Información Oficial, Ago 3, 1974.; Council of State, "ACT of 2004 No.151," Official Gazette of the Republic of Suriname, 2004.; QoSi, “Etude de la qualité d’expérience des opérateurs mobiles en Guyane Francaise,”Publicaciones QoSi, Francia, 2019 [Online]. Available: https://www.5gmark.com/news/2019/Barometre_4Gmark_Guyane_2019.pdf. [Accessed: 17-Jul-2020].; F. Staff. (Jul 8,). Claro, de Carlos Slim, iniciará la carrera del 5G en Brasil. Available:https://www.forbes.com.mx/tecnologia-claro-slim-5g-brasil/.; Telesur. (s.f.). 5G - Beyond Connectivity. Available: https://www.telesur.sr/5g/.; NOKIA. (Apr 10,). ANTEL and Nokia make the first 5G call on a commercial network inLatin America. Available: https://www.nokia.com/about-us/news/releases/2019/04/10/antel-and-nokia-make-the-first-5g-call-on-a-commercial-network-in-latin-america/.; ENACOM, "LEY ARGENTINA DIGITAL," Boletín Oficial De La Republica De Argentina,Dec 19, 2014.; Secretaría de Tecnologías de la Información, "Documento base sobre la identificación dedesafíos y necesidades de Espectro Radioeléctrico en Argentina," Boletin Oficial De La Republica De Argentina, pp. 1-36, 2019.; Asamblea Legislativa Plurinacional, "Ley General de Telecomunicaciones, Tecnologías dela Información y Comunicación" Gaceta Oficial De Bolivia, Ago 8, 2011.; Agencia Boliviana Espacial, "Satélite TUPAC KATARI," 2019.; Poder Legislativo, "Ley No. 13.879," Diario Oficial De La Unión, vol. 1, Oct 4, 2019.; ANATEL, “Anatel aprova consulta pública para implementar o 5G,” 06-Feb-2020. [Online].Available: https://www.anatel.gov.br/institucional/component/content/article/171-manchete/2491-anatel-aprova-consulta-publica-para-licitar-faixas-de-frequencias-para-o-5g. [Accessed: 20-May-2020].; SUBTEL, "CONSULTA PÚBLICA SOBRE PLAN NACIONAL 5G PARA CHILE," 2018.; SUBTEL. (Jan 14,). Consulta Pública 5G: Gobierno licitará cuatro bandas para generarmayor competencia y eficiencia espectral en el mercado móvil. Available: https://www.subtel.gob.cl/consulta-publica-5g-gobierno-licitara-cuatro-bandas-para-generar-mayor-competencia-y-eficiencia-espectral-en-el-mercado-movil/.; MINTIC, Plan 5G Colombia. Colombia: Planes Nacionales del MINTIC, 2019.; 5G Américas, “Temas en Regulación de Telecomunicaciones: Ecuador,” Publicaciones 5GAméricas, 2019 [Online]. Available: https://brechacero.com/white-papers/. [Accessed: 26-Jul-2020].; PUC, "ACT NO. 18- TELECOMMUNICATIONS ACT," The Official Gazette, Ago 5, 2016.; F. D'Almeida and D. Margot, La Evolución De Las Telecomunicaciones Móviles EnAmérica Latina Y El Caribe. (Publicaciones BID ed.) 20182.; Poder Legislativo, "LEY No. 642 DE TELECOMUNICACIONES," Gaceta Oficial De LaRepública Del Paraguay, 1995.; J. M. Perrotta, "Conatel pone fecha al 5G en Paraguay para después de 2024,"TeleSemana.Com, Jun 11, 2020. Available: http://www.telesemana.com/blog/2020/06/11/conatel-pone-fecha-al-5g-en-paraguay-para-despues-de-2024/.; OSIPTEL, "Reporte estadístico" Publicaciones OSIPTEL, Perú, Abril. 2020.; J. O. Prats Cabrera and P. Puig Gabarró, La gobernanza de las telecomunicaciones: Haciala economía digital. 2017, pp. 49–51 [Online]. Available: https://publications.iadb.org/es/node/14083.; LEY ORGÁNICA DE TELECOMUNICACIONES, "LEY ORGÁNICA DE TELECOMUNICACIONES," Gaceta Oficial De Venezuela, Feb 7, 2011.; N. Larocca, "Venezuela presenta una penetración 4G que la región alcanzó en 2016," Mar1, 2019. Available: http://www.telesemana.com/blog/2019/03/01/venezuela-presenta-una-penetracion-4g-que-la-region-alcanzo-en-2016/.; ARCEP, La régulation de l’Arcep au service des territoires connectés. 2020 [Online].Available: https://www.arcep.fr/collectivites/larcep-et-les-territoires.htm.; J. E. Garcia Orjuela, “Descripcion planta de tratamiento de agua - Icononzo, Tolima,” J.Chem. Inf. Model., 2014.; Gobernación del Tolima, “Estadísticas 2011-2014,” BMC Public Health, vol. 5, no. 1, pp.1–8, 2017.; J. E. Garcia Orjuela, “Propuesta de reducción de cargas contaminantes en el municipiode Icononzo, Tolima.” 2018.; Gobernación del Tolima, “Municipio de Icononzo,” 2019. [Online]. Available:https://www.tolima.gov.co/publicaciones/21123/municipio-de-icononzo/. [Accessed: 26-Apr-2020].; "Clima promedio en Icononzo, Colombia, durante todo el año - Weather Spark.” [Online].Available: https://es.weatherspark.com/y/23362/Clima-promedio-en-Icononzo-Colombia-durante-todo-el-año. [Accessed: 26-Apr-2020].; “Ósmosis Inversa %7C SEFILTRA %7C Expertos en purificación de fluidos.” [Online]. Available:https://www.sefiltra.com/productos/osmosis-inversa/. [Accessed: 21-Nov-2020].; S. L. Sanderson, E. Roberts, J. Lineburg, and H. Brooks, “Fish mouths as engineeringstructures for vortical cross-step filtration,” Nat. Commun., vol. 7, Mar. 2016.; “Las barbas de las ballenas.” [Online]. Available: https://universomarino.com/2011/02/04/las-barbas-de-las-ballenas/. [Accessed: 26-Apr-2020].; "PROCEDIMIENTO PARA LA OBTENCIÓN DE M ICROPIBRAS DE QUERATINA APARTIR DE RESIDUOS GANADEROS’ DESCRIPCIÓN Objeto de la Invención,” Jul. 2006.; R. D. E. Estudios and E. N. Psicolox, “Plumas: Implicancia ambiental y uso en la industriaagropecuaria,” vol. 21, no. 3, pp. 225–237, 2013.; I. E. Roca Girón, “Estudio de las propiedades y aplicaciones industriales del polietilenode alta densidad (PEAD),” J. Chem. Inf. Model., vol. 12 Suppl 1, no. 9, pp. 1–29, 2005.; 12]“Filtración (II): selección del equipo de filtrado %7C iAgua.” [Online]. Available:https://www.iagua.es/blogs/miguel-angel-monge-redondo/filtracion-ii-seleccion-equipo-filtrado. [Accessed: 26-Apr-2020].; ATDI, «5G: A revolution in evolution, even in 2017,» de RadioExpo, 2017.; MinTic, «Boletin trimestral de las Tic: Cifras Segundo Trimestre de 2019,» Ministerio de Tecnologías de la Información y las Comunicaciones , 2020.; CRC, «Reporte de industria sector TIC 2016,» Comisión de regulación de las comunicaciones, 2017.; Gupta , A., & Jha , R., «A Survey of 5G Network: Architecture and Emerging Technologies,» IEEE Access, pp. 1206-1032, 2015.; K. E. Requena, D. M. Rozo y J. E. Arévalo, «Radiopropagation simulations comparison in millimeter waves frequencies for fifth generation (5G) mobile networks,» Actas de Ingeniería, pp. 97-105, 2017.; A. Durán Barrado, «Estudio y caracterización del canal y de la propagación en ondas milimétricas, orientada a su utilización en redes de comunicaciones móviles 5g.,» ETSIT UPM, 2017.; K. E. REQUENA Barrera y D. M. Rozo Moreno, «Análisis de desempeño de la propagación de señales en redes móviles de quinta generación (5g) en bandas de frecuencias de ondas milimétricas (mmwaves) empleando la herramienta de simulación ics telecom,» FUAC, 2017.; J. E. Arévalo Peña & R. A. González Bustamante, «Radiopropagation Performance Analysis Simulations ofMassive MIMO Configurations in 28 GHz,» CEUR-WS, p. 4, 2018.; P. Missud, «Extrayendo Clutter de imagenes Multiespectrales de Landsat 8,» ATDI, 2013.; Google,«Google Maps,» Google, 01 07 2018. [En línea].Available: https://www.google.com/maps. [Último acceso: 21 10 2020].; ITU, «Recomendación UIT-R P.526,» ITU, 2018.; IDEAM, «ideam.gov.co,» 31 05 2002. [En línea]. Available:https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.526-14-201801-I!!PDF-S.pdf.; M. Montoya Rendon, P. Zapata Saldarriaga & M. Correa Ochoa, «Contaminación ambiental por PM10 dentro y fuera del domicilio y capacidad respiratoria en Puerto Nare, Colombia,» salud pública, pp. 113-115, 2013.; CRC, «Áreas de cobertura del servicio,» Comisión de Regulación de Comunicaciones, 20 03 2009. [En línea]. Available: https://www.crcom.gov.co/es/pagina/reas-de-cobertura- del-servicio. [Último acceso: 21 10 2020].; ITU, «Guidelines for evaluation of radio interface technologies for IMT-2020,» ITU, 2017.; ITU, «UIT-R M.1073-1,» ITU, 1997.; Camino L. García. (2016). Enseñar con TIC: Nuevas y renovadas metodologías para laenseñanza superior. © 2016, CINEP/IPC. pp 26-27.; Charles Kadushin. (diciembre 2013). Comprender las redes sociales. Teorías, conceptosy hallazgos. Primera Edición. Moltalbán, 8. 28014 Madrid. pp. 93-95.; Roger S. Pressman. (2010). Ingeniería del Software Un enfoque práctico. Vol. 3, SéptimaEdición. pp. 70 Sitios web.; ICFES. (2019) Resultados de las pruebas ICFES. http://www2.icfesinteractivo.gov.co/resultadossaber2016web/pages/publicacionResultados/agregados/saber11/agregadosSecretarias.jsf#Noback button.; Juan Carlos Mejía Llanos (21 de marzo, 2019) Estadísticas de redes sociales 2019:USUARIOS DE FACEBOOK, TWITTER, INSTAGRAM, YOUTUBE, LINKEDIN, WHATSAPP Y OTROS. https://www.juancmejia.com/marketing-digital/estadisticas-de-redessocialesusuarios-de-facebook-instagram-linkedin-twitter-whatsapp-y-otrosinfografia/#Informe_detallado_usuarios_redes_sociales_WeAreSocial_y_Hootsuite (5 de mayo de 2019).; Psicología-Onlie (20 de agosto 2018) Teorías del aprendizaje según Brunner.https://www.psicologia-online.com/teorias-del-aprendizaje-segun-bruner-2605.html.; Revista Médica Clínica Las Condes (enero-febrero, 2015) Impacto de las redes socialese internet en la adolescencia: aspectos positivos y negativos. https://www.sciencedirect.com/science/article/pii/S0716864015000048#bib0005.; TeleMedellin (28 de septiembre, 2018) Preocupación por déficit de ingenieros enColombia. https://telemedellin.tv/deficit-ingenieros-colombia/284852/.; UNESCO (21 de septiembre, 2017) SERVICIO DE PRENSA: 617 millones de niños yadolescentes no están recibiendo conocimientos mínimos en lectura y matemática. http://www.unesco.org/new/es/mediaservices/singleview/news/617_million_children_and_adolescents_not_getting_the_minimum/.; Walter, L., Gallegos, Arias, & Huerta, Adriana Oblitas. (2014). Aprendizaje pordescubrimiento vs. Aprendizaje significativo: Un experimento en el curso de historia de la psicología. Boletim - Academia Paulista de Psicologia, 34(87), 455-471. http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1415711X2014000200010&lng=pt&tlng=es.Artículos.; L. A. Luengas, G. Sánchez, y S. M. Cárdenas, “Nuevas herramientas pedagógicas:laboratorio virtual", Visión Electrónica, vol. 9, no. 2, pp. 277-284,2015. https://doi.org/10.14483/22484728.11034.; M. Vergel Ortega, O. L. Rincón Leal, y L. A. Jaimes Contreras, “Prototipos electrónicosen el desarrollo de pensamientos formales", Visión Electrónica, vol. 9, no. 2, pp. 182-193, 2015. https://doi.org/10.14483/22484728.11026.; J. F. Pastrán Beltrán y F. Pinzón Herrera, “Software libre: una estrategia para aprendera factorizar ", Visión Electrónica, vol. 9, no. 1, pp. 139-148,2015. https://doi.org/10.14483/22484728.11024.; R. López Gonzalez, “Genealogía de cambio conceptual en la enseñanza de la ciencia",Visión Electrónica, vol. 1, no. 1, pp. 88-92, 2008. https://doi.org/10.14483/22484728.255.; F. P. Rodriguez, A. R. Torres, y H. Vacca, “Estudio con análisis por elementos finitos desistemas análogos circuitales en física", Visión Electrónica, vol. 6, no. 1, pp. 98-103, 2012. https://doi.org/10.14483/22484728.3750.; R. Lopez, “La propedéutica y el discurso sobre las tecnologías", Visión Electrónica, vol.7, no. 1, pp. 178-187, 2013. https://doi.org/10.14483/22484728.4399.; Arquitectura, L., Negocios, A. De, & Salimbeni, S. (2017). La Arquitectura Empresarial y elAnálisis de Negocios.; Basyarudin. (2018). Диф нарушениямиNo Title. Высшей Нервной Деятельности, 2, 227–249.; Clavijo, S., & Vera, A. (2013). Inversion en infraestructura.7–14.; CoronApp, la aplicación para que conocer la evolución del coronavirus - Rumble. (n.d.).Retrieved May 8, 2020, from https://rumble.com/embed/ubedx.v6h0k3/?rel=0.; Dashboard Coronavirus COVID-19 (Mobile). (n.d.). Retrieved May 8, 2020, from https://www.arcgis.com/apps/opsdashboard/index.html#/85320e2ea5424dfaaa75ae62e5c06e61.; Dussan, H., & Garzon, K. (2017). DIAGNÓSTICO PARA LA CREACIÓN DE UN MODELO BAJO LA ARQUITECTURA ORGANIZACIONAL TOGAF APLICADO EN LAS DEPENDENCIAS TIC DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS. 1–126.; Gasto en investigación y desarrollo (% del PIB) %7C Data. (n.d.). etrieved May 8, 2020, from https://datos.bancomundial.org/indicador/GB.XPD.RSDV.GD.ZS?name_desc=false&view=map.; Gobernanza Territorial, Identificación De Fortalezas, Áreas De. (2013).; González Campo, C. H., & Lozano Oviedo, J. (2020). Propuesta para la definición de la arquitectura empresarial. Dimensión Empresarial, 18((1)). https://doi.org/10.15665/dem.v18i(1).2109 Palacios-Urgilés, F. G., & Campoverde-Molina, M. A. (2019).; Análisis de la arquitectura empresarial como oportunidad de mejora en las microempresas de la ciudad de Cuenca. Dominio de Las Ciencias, 5(3), 487. https://doi.org/10.23857/dc.v5i3.949.; Ministerio de Tecnologías de la Información y las Comunicaciones. (2016). G . GEN . 03 . Guía General de un Proceso de Arquitectura Empresarial. 1–41. Retrieved from http://www.mintic.gov.co/arquitecturati/630/articles- 9435_Guia_Proceso.pdf.; PIB-real segundo trimestre de 2019 y revisión de pronósticos. (n.d.). Retrieved May 8, 2020,from https://www.larepublica.co/analisis/sergio-clavijo- 500041/pib-real-segundo-trimestre-de-2019-y-revision- de-pronosticos-2900103 PND. (2018). Bases del Plan Nacional de Desarrollo.; Presupuesto y estados financieros. (n.d.). Retrieved May 10, 2020, fromhttps://www.dane.gov.co/index.php/servicios-al-ciudadano/tramites/transparencia-y-acceso-a-la- informacion-publica/presupuesto-general- asignado#presupuesto-general.; Saboya, N., Loaiza, O., & Lévano, D. (2018). Diseño de un modelo de arquitecturaempresarial para publicaciones científicas basado en adm - Togaf 9.0. Retrieved May 10, 2020, from https://www.redalyc.org/jatsRepo/4676/467655911004/ html/index.html.; Carlo Batini y Monica Scannapieco, DATA AND INFORMATION QUALITY, I.Switzerland: Springer International Publishing, 2016.; C. Sammut y G. I. Webb, Eds., Encyclopedia of Machine Learning and Data Mining.Boston, MA: Springer US, 2017.; «Who we are - Eurostat». https://ec.europa.eu/eurostat/about/who-we-are (accedidoago. 23, 2020).; B. G. Grow y 2020 January 24, «Data Quality Predictions for 2020», Transforming Datawith Intelligence. https://tdwi.org/articles/2020/01/24/diq-all-data-quality-predictions-for- 2020.aspx (accedido ago. 21, 2020).; T. C. Redman, «Bad Data Costs the U.S. $3 Trillion Per Year», Harvard BusinessReview, sep. 22, 2016.; B. G. Grow y 2018 July 6, «Reducing the Impact of Bad Data on Your Business»,Transforming Data with Intelligence. https://tdwi.org/articles/2018/07/06/diq-all-reducing-the-impact-of-bad- data.aspx (accedido ago. 21, 2020).; B. G. Grow y 2019 May 3, «Data Quality Best Practices for Today’s Data- DrivenOrganization», Transforming Data with Intelligence. https://tdwi.org/articles/2019/05/03/diq-all-data-quality-best-practices-for- data-driven-organizations.aspx (accedido ago. 23, 2020).; C. W. Fisher y B. R. Kingma, «Criticality of data quality as exemplified in two disasters»,Inf. Manage., vol. 39, n.o 2, pp. 109-116, dic. 2001, doi:10.1016/S0378-7206(01)00083-0.; crodwflower, «2016 DATA SCIENCE REPORT», 2016.; S. Lohr, «For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights», The NewYork Times, ago. 17, 2014.; «ISO 9000:2015(en), Quality management systems — Fundamentals and vocabulary».https://www.iso.org/obp/ui/#iso:std:45481:en (accedido ago. 23, 2020).; C. Batini y M. Scannapieco, «Data Quality Dimensions», en Data and Information Quality,Springer, Cham, 2016, pp. 21-51.; «NORMAS ISO 25000». https://iso25000.com/index.php/normas-iso-25000 (accedidomar. 23, 2019).; C. Batini y M. Scannapieco, «Activities for Information Quality», en Data and InformationQuality, Springer, Cham, 2016, pp. 155-175.; C. Batini y M. Scannapieco, «Object Identification», en Data and Information Quality,Springer, Cham, 2016, pp. 177-215.; Tejada S, Knoblock C, Minton S, Learning object identification rules for informationintegration. 2001.; 2014 January 21, «New Techniques Detect Anomalies in Big Data», Transforming Datawith Intelligence. https://tdwi.org/articles/2014/01/21/detecting-big-data-anomalies.aspx (accedido ago. 26, 2020).; J. Taylor, «Clean your data with unsupervised machine learning», Towards Data Science,dic. 01, 2018. https://towardsdatascience.com/clean-your- data-with-unsupervised-machine-learning-8491af733595 (accedido mar. 17, 2019).; I. Taleb, H. T. E. Kassabi, M. A. Serhani, R. Dssouli, y C. Bouhaddioui.; I. Taleb, H. T. E. Kassabi, M. A. Serhani, R. Dssouli, y C. Bouhaddioui, «Big Data Quality: A Quality Dimensions Evaluation», en 2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), jul. 2016, pp. 759-765, doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0122.; H. Liu, T. K. A. Kumar, y J. P. Thomas, «Cleaning Framework for Big Data -Object Identification and Linkage», en 2015 IEEE International Congress on Big Data, jun.2015, pp. 215-221, doi:10.1109/BigDataCongress.2015.38.; «LEILA - Librería de calidad de datos — documentación de LEILA - 0.1». https://ucd-dnp.github.io/leila/ (accedido ago. 27, 2020).; H. Müller y J.-C. Freytag, «Problems, Methods, and Challenges in Comprehensive DataCleansing», p. 23.; «Google Colaboratory». https://colab.research.google.com/notebooks/welcome.ipynb?hl=es-419 (accedido jun. 29, 2020).; hrasheed-msft, «¿Qué es Azure HDInsight?» https://docs.microsoft.com/es- es/azure/hdinsight/hdinsight-overview (accedido abr. 27, 2020).; S. F. Fernández, J. M. C. Sánchez, A. Córdoba, y A. C. Largo, Estadística Descriptiva.ESIC Editorial, 2002.; F. Sidi, P. H. Shariat Panahy, L. S. Affendey, M. A. Jabar, H. Ibrahim, y A. Mustapha, «Dataquality: A survey of data quality dimensions», en 2012 International Conference on Information Retrieval Knowledge Management, mar. 2012, pp. 300-304,doi:10.1109/InfRKM.2012.6204995.; J. Wang, C. Zhang, X. Wu, H. Qi and J. Wang, «SVM-OD: A New SVM Algorithm forOutlier Detection - Google Académico», presentado en Proc. ICDM’03 Workshop Foundations and New Directions of Data Mining, 2003, Accedido: ago. 24, 2020. [En línea]. Disponible en: https://scholar.google.com/scholar?hl=es&as_sdt=0,5&q=SVM- OD%3A+A+New+SVM+Algorithm+for+Outlier+Detection&btnG=.; «Factores que afectan el peso y la salud %7C NIDDK», National Institute of Diabetes andDigestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/informacion-de-la- salud/control-de-peso/informacion-sobre-sobrepeso-obesidad- adultos/factores-afectan (accedido may 16, 2020).; Lean Yu, Shouyang Wang, y K. K. Lai, «An integrated data preparation scheme for neuralnetwork data analysis», IEEE Trans. Knowl. Data Eng., vol. 18, n.o 2, pp. 217-230, feb. 2006, doi:10.1109/TKDE.2006.22.; Sumithra V.S,Subu Surendran, «A Review of Various Linear and Non LinearDimensionality Reduction Techniques», Int. J. Comput. Sci. Inf. Technol., vol. 6.; D. Chicco y G. Jurman, «The advantages of the Matthews correlation coefficient (MCC)over F1 score and accuracy in binary classification evaluation», BMC Genomics, vol. 21, n.o 1, p.6, ene. 2020, doi:10.1186/s12864-019-6413-7.; Katrakazas, E. Michelaraki, M. Sekadakis, and G. Yannis, “A descriptive analysis of the effect of the COVID-19 pandemic on driving behavior and road safety,” Transp. Res. Interdiscip. Perspect., vol. 7, 2020, doi:10.1016/j.trip.2020.100186.; P. Pereira and J. Pais, “Main flexible pavement and mix design methods in Europe andchallenges for the development of an European method,” J. Traffic Transp. Eng. (English Ed., vol. 4, no. 4, pp. 316–346, 2017, doi:10.1016/j.jtte.2017.06.001.; A. P. Singh, A. Sharma, R. Mishra, M. Wagle, and A. K. Sarkar, “Pavement conditionassessment using soft computing techniques,” Int. J. Pavement Res. Technol., 2018.; Z. Zhang, Q. Liu, Q. Wu, H. Xu, P. Liu, and M. Oeser, “Damage evolution of asphalt mixtureunder freeze-thaw cyclic loading from a mechanical perspective,” Int. J. Fatigue, vol. 142, no. June 2020, pp. 1–9, 2021, doi:10.1016/j.ijfatigue.2020.105923.; K. B. Bai Kamara, E. Ganjian, and M. Khorami, “The effect of quarry waste dust andreclaimed asphalt filler in hydraulically bound mixtures containing plasterboard gypsum and GGBS,” J. Clean. Prod., vol. 279, 2021, doi:10.1016/j.jclepro.2020.123584.; D. M. Kusumawardani and Y. D. Wong, “The influence of aggregate shape properties onaggregate packing in porous asphalt mixture (PAM),” Constr. Build. Mater., vol. 255, 2020, doi:10.1016/j.conbuildmat.2020.119379.; T. M. Al Rousan, “Characterization of aggregate shape properties using a computerautomated system,” Texas A&M University, 2004.; C. García-González, J. Yepes, and M. A. Franesqui, “Geomechanical characterization ofvolcanic aggregates for paving construction applications and correlation with the rock properties,” Transp. Geotech., vol. 24, no. January, 2020, doi:10.1016/j.trgeo.2020.100383.; J. Hu and P. Stroeven, “Shape characterization of concrete aggregate,” Image Anal. Stereol.,vol. 25, no. 1, pp. 43–53, 2006, doi:10.5566/ias.v25.p43-53.; T. Roussillon, H. Piégay, I. Sivignon, L. Tougne, and F. Lavigne, “Automatic computationof pebble roundness using digital imagery and discrete geometry,” Comput. Geosci., vol. 35, no. 10, pp. 1992–2000, 2009, doi:10.1016/j.cageo.2009.01.013.; J. Zhang, X. Yang, W. Li, S. Zhang, and Y. Jia, “Automatic detection of moisture damagesin asphalt pavements from GPR data with deep CNN and IRS method,” Autom. Constr., vol. 113, no. September 2019, 2020, doi:10.1016/j.autcon.2020.103119.; L. Pei et al., “Pavement aggregate shape classification based on extreme gradientboosting,” Constr. Build. Mater., vol. 256, 2020, doi:10.1016/j.conbuildmat.2020.119356.; K. A. Ghuzlan, M. T. Obaidat, and M. M. Alawneh, “Cellular-phone-based computer visionsystem to extract shape properties of coarse aggregate for asphalt mixtures,” Eng. Sci. Technol. an Int. J., vol. 22, no. 3, pp. 767–776, 2019, doi:10.1016/j.jestch.2019.02.003.; J. Kim, B. S. Park, S. I. Woo, and Y. T. Choi, “Evaluation of ballasted-track condition basedon aggregate-shape characterization,” Constr. Build. Mater., vol. 232, 2020, doi:10.1016/j.conbuildmat.2019.117082.; O. J. Reyes-ortiz, M. Mejía, and J. S. Useche-Castelblanco, “Aggregate segmentation ofasphaltic mixes using digital image,” Bull. Polish Acad. Sci. Tech. Sci., vol. 67, no. 2, pp. 279–287, 2019.; S. M. E. Harb, N. Ashidi, M. Isa, and S. A. Salamah, “Improved image magnificationalgorithm based on Otsu,” Comput. Electr. Eng. J., vol. 46, pp. 338–355, 2015.; J. V. C. I. R, C. Sha, J. Hou, and H. Cui, “A robust 2D Otsu ’ s thresholding method in imagesegmentation q,” J. Vis. Commun. Image R. J., vol. 41, pp. 339–351, 2016.; O. J. Reyes-Ortiz, M. Mejia, and J. S. Useche-Castelblanco, “Digital image analysis appliedin asphalt mixtures for sieve size curve reconstruction and aggregate distribution homogeneity,” Int. J. Pavement Res. Technol., 2020, doi:10.1007/s42947-020-0315-6.; S. Yu, S. Jia, and C. Xu, “Convolutional neural networks for hyperspectral imageclassification,” Neurocomputing, vol. 219, pp. 88–98, 2017.; V. C. Janoo, “Quantification of shape, angularity, and surface texture of base coursematerials,” 1998.; E. Masad, T. M. Al Rousan, J. Button, and D. Little, Test Methods for CharacterizingAggregate Shape, Texture, and Angularity. United States of America, 2007.; E. dos S. Silva et al., “Evaluation of macro and micronutrient elements content from softdrinks using principal component analysis and Kohonen self-organizing maps,” Food Chem., vol. 273, no. May 2018, pp. 9–14, 2019, doi:10.1016/j.foodchem.2018.06.021.; B. Yang, S. Yang, J. Zhang, and D. Li, “Optimizing random searches on three-dimensionallattices,” Phys. A Stat. Mech. its Appl., vol. 501, pp. 120–125, Jul. 2018, doi:10.1016/J.PHYSA.2018.02.100.; Diego Heras, “Clasificador de imágenes de frutas basado en inteligencia artificial”, KillkanaTécnica, Vol. 1, no. 2, pp. 21-30, 2017.; SicTransCore Latinoamérica, Sic TransCore Sistemas de Identificación y control vehicular,2019. [Online]. Disponible en: https://www.sictranscore.com/.; V. M. Arévalo, J. González, G. Ambrosio, La Librería De Visión Artificial Opencv AplicaciónA La Docencia E Investigación, Dep.Sis. y Aut. Universidad de Málaga, España. [Online]. Disponible en: http://mapir.isa.uma.es/varevalo/drafts/arevalo2004lva1.pdf.; Bastián Nicolás Carvajal Ahumada, Reconocimiento Fotográfico De Patentes, Facultad deIngeniería, Pontificia Universidad Católica De Valparaíso, Valparaíso, Ciudad de Chile, 2018.; Guerra Monterroza, E. J. (2008). Reconocimiento de primitivas 3D, usando autocorrelación yANFIS. Visión electrónica, 1(1), 56-61. https://doi.org/10.14483/22484728.251.; Giraldo Ramos, F. N., Gonzalez, F., & Camargo Casallas, E. (2011). “Algoritmos deprocesamiento de imágenes satelitales con transformada Hough. Visión electrónica, 5(2), 26-41. https://doi.org/10.14483/22484728.3568.; Jiménez Moreno, R., Martínez Baquero, J. E., & Rodríguez Umaña, L. A. (2018). Sistemaautomático de clasificación de peces. Visión electrónica, 12(2), 258-264.https://doi.org/10.14483/22484728.14265.; A. Daneels and W. Salter, “WHAT IS SCADA?,” in International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, pp. 339–343, Accessed: Sep. 20, 2019. [Online]. Available: http://cds.cern.ch/record/532624/files/mc1i01.pdf.; Wikipedia, “Distributed control system,” 2019. https://en.wikipedia.org/wiki/Distributed_control_system (accessed Sep. 29, 2019).; R. Hunzinger, Scada fundamentals and applications in the IoT, 1st ed. Wiley Telecom, 2017.; S. Ray, Y. Jin, and A. Raychowdhury, “The Changing Computing Paradigm with Internet of Things: A Tutorial Introduction,” IEEE Des. Test, vol. 33, no. 2, pp. 76–96, 2016, doi:10.1109/MDAT.2016.2526612.; A. Bhatia, Z. Yusuf, D. Ritter, and N. Hunke, “Who Will Win the IoT Platform Wars?,” BCG Perspect., p. 6, 2017, [Online]. Available: https://image-src.bcg.com/Images/BCG-Who-Will-Win-the-IoT-Platform-Wars-June-2017_2_tcm58-162424.pdf.; L. Doron and Netafim, “The core results of the FIGARO project: the Platform,” in InternationalFIGARO Conference, 19 September 2016, Brussels, Belgium, 2016, [Online]. Available: http://www.figaro-irrigation.net/fileadmin/user_upload/figaro/docs/Lior_2_NET_FIGARO_project_summary.pdf.; A. (Eastern P. Chalimov, “IoT in Agriculture: 5 Technology Use Cases for Smart Farming(and 4 Challenges to Consider),” 2018. https://easternpeak.com/blog/iot-in-agriculture-5-technology-use-cases-for-smart-farming-and-4-challenges-to-consider/ (accessed Mar. 21, 2020).; L. Xiamen Ursalink Technology Co., “IoT-based Smart Irrigation,” 2019.https://www.ursalink.com/en/solution/agriculture/smart-irrigation (accessed May 30, 2020).; O. Pandithurai, S. Aishwarya, B. Aparna, and K. Kavitha, “Agro-tech: A digital model formonitoring soil and crops using internet of things (IOT),” ICONSTEM 2017 - Proc. 3rd IEEE Int. Conf. Sci. Technol. Eng. Manag., vol. 2018-Janua, pp. 342–346, 2018, doi:10.1109/ICONSTEM.2017.8261306.; A. N. Nassar A.S., Montasser A.H., “Smart Aquaponics System for Industrial Internet ofThings (IIoT),” Proc. Int. Conf. Adv. Intell. Syst. Informatics, vol. 639, no. 1, pp. 855–864, 2018, doi:10.1007/978-3-319-64861-3.; R. Nageswara Rao and B. Sridhar, “IoT based smart crop-field monitoring and automationirrigation system,” Proc. 2nd Int. Conf. Inven. Syst. Control. ICISC 2018, no. Icisc, pp. 478–483, 2018, doi:10.1109/ICISC.2018.8399118.; S. Bakalis et al., “Perspectives from CO+RE: How COVID-19 changed our food systemsand food security paradigms,” Curr. Res. Food Sci., vol. 3, pp. 166–172, 2020, doi:10.1016/j.crfs.2020.05.003.; J. M. Talavera et al., “Review of IoT applications in agro-industrial and environmental fields,”Comput. Electron. Agric., vol. 142, no. 118, pp. 283–297, 2017, doi:10.1016/j.compag.2017.09.015.; Wikipedia, “Druckschalter,” Wikipedia, 2013. https://de.wikipedia.org/wiki/Druckschalter#/media/Datei:Druckschalter_PSD_30.jpg (accessed Jun. 30, 2020).; P. IoT, “PARTICLE IoT-BORON,” 2019. https://docs.particle.io/datasheets/cellular/boron-datasheet/ (accessed Oct. 19, 2019).; The ThingsBoard Authors, “Smart farming and smart agriculture solutions,” ThingsBoard.io,2020. https://thingsboard.io/smart-farming/ (accessed Jun. 20, 2020).; A. Joseph Fernando, “How Africa Is Promoting Agricultural Innovations and Technologiesamidst the COVID-19 Pandemic,” Mol. Plant, vol. 13, no. 10, pp. 1345–1346, 2020, doi:10.1016/j.molp.2020.08.003.; E. Vargas, A. Guillermo Correa, P. C. souza, N. Rodrigues de Baptestini, F. Machado Zaidan y I. Ramos, "Avaliação da homogeneidade da expansão dos grãos de café torrados" de VIII Simpósio de Pesquisa dos Cafés do Brasil, novembro 2013.; Giraldo Cerón, A. F. "Tan cerca y tan lejos de la agricultura 4.0 en Colombia". Revista Universidad EAFIT, 55(175), 78-85.2020.; O. L. Ocampo López y L. M. Álvarez Herrera, «Tendencia de la producción y el consumo del café en Colombia,» Apuntes del CENES, vol. 36, nº 64, pp. 139-165, julio -diciembre 2017.; G. I. Puerta Quintero, Investigador Científico III y Centro Nacional deInvestigaciones, «COMPOSICIÓN QUÍMICA DE UNA TAZA DE CAFÉ,» Ciencia, tecnología e innovación para la caficultura colombiana, MANIZALES , 2011.; Samodro, Bayu, et al. "Maintaining the Quality and Aroma of Coffee with Fuzzy Logic Coffee Roasting Machine." IOP Conference Series: Earth and Environmental Science. Vol. 426. No. 1. IOP Publishing, 2020.; Fadri, R. A., et al. "Review of coffee roasting process and formation of acrylamide related to health." Journal of Applied Agricultural Science and Technology 3.1 (2019): 129-145.; Botero Lopez, Santiago, and Muhammad Salman Chaudhry. "Designing an Efficient Supply Chain for Specialty Coffee from Caldas-Colombia." (2020).; Suarez-Peña, Javier Andrés, et al. "Machine Learning for Cup Coffee Quality Prediction from Green and Roasted Coffee Beans Features." Workshop on Engineering Applications. Springer, Cham, 2020.; Putra, Satya Andika, Umi Hanifah, and Mirwan Ardiansyah Karim. "Theoretical study of fluidization and heat transfer on fluidized bed coffee roaster." AIP Conference Proceedings. Vol. 2097. No. 1. AIP Publishing LLC, 2019.; Benitez O, Campo-Ceballos D, «Evaluación de la calidad el café tostado utilizando herramientas de procesamiento digital de imágenes», ACCB, vol. 1, n.º 30, pp. 32-43, dic. 2018.; Meana, Vanessa Rose L., Nazer Sarapeo P. Kimkiman, and Alvin C. Dulay. "Design, Fabrication, and Performance Evaluation of a Batch-Type Fluidized Bed Coffee Roaster for Small-Scale Coffee Growers." Mountain Journal of Science and Interdisciplinary Research (formerly Benguet State University Research Journal) 79.2 (2019): 90-97.; Buesaquillo Imbaquingo, Luis Darío. Sistema de control para mejorar el desempeño de una máquina tostadora de café. BS thesis. 2019.; Abdul. Ghani, Nur Hamizah, et al. "Development of a novel 2D single coffee bean model and comparison with a 3D model under varying heating profiles." Journal ofFood Process Engineering 42.4 (2019).; Campo Ceballos D, et al. "Herramientas de cv para evaluar el color y matiz del café tostado: el color del café tostado y su relación con las propiedades organolépticas".EAE. 68 páginas. 2018.; N. Reddy, N. Maheshwari, D. K. Sahu, y G. K. Ananthasuresh, «Miniature CompliantGrippers With Vision-Based Force Sensing», IEEE Transactions on Robotics, vol. 26, no. 5, pp. 867–877, Oct. 2010.; Barraza, A., Rúa, J., Sosa, J., Yime, E., & Roldan, J. (2015). Modelado dinámico delmanipulador serial Mitsubishi Movemaster RV-M1 usando SolidWorks. Revista de la facultad de Ingenierías Físicas Mecánicas, 49-62.; Benbelkacem, Y., & Mohd-Mokhtar, R. (26-29 de Noviembre de 2012). Explicit kinematicmodel of the Mitsubishi RV-M1 robot arm. IEEE, 404-409. Obtenido de http://ieeexplore.ieee.org/document/6466627/.; Carrasco, B., & Alberto, J. (2015). Integración de un UAV (vehículo aéreo no tripulado)en la plataforma robótica ARGOS.; DARMOUL Saber. Reality for Manufacturing: A Robotic Cell Case Study. Department ofIndustrial Engineering. King Saud University. Saudi Arabia. 7pag. 2015.; Research on Assembly Modeling Process Based on Virtual Manufacturing InteractiveApplication Technology. School of Mechanical and Electronic Engineering. Wuhan University of Technology. Wuhan, China. 5 pág. 2017.; Forero, J., Hurtado, L., & Ruiz, V. (Febrero de 2015). Visión electrónica, Más que unestado sólido. Arquitectura paralela robótica: modelado y simulación con siemens NX. Recuperado el 10 de agosto de 2015, de http://revistas.udistrital.edu.co/ojs/index.php/visele/article/view/11018.; Marcu, C., Lazea, G., Herle, S., Robotin, R., & Tamas, L. (2010 de junio de 25). IEEEexplore Digital Library, 3D graphical simulation of an articulated serial manipulator based on kinematic models. Recuperado el 10 de Agosto de 2017, de http://ieeexplore.ieee.org/abstract/document/5524593/.; Luengas, L. A., Sánchez, G., & Cárdenas, S. M. (2015). Nuevas herramientaspedagógicas: laboratorio virtual. Visión electrónica, 9(2), 277-284.https://revistas.udistrital.edu.co/index.php/visele/article/view/11034.; Luengas, L. A., Rincón López, D. A., & Galeano, K. J. (2010). Realidad virtual noinmersiva: instrumentos electrónicos de aplicación educativa. Visión electrónica, 4(1), 94-105.https://revistas.udistrital.edu.co/index.php/visele/article/view/275.; K. Cacua, O. Amell y L. Olmos, "Estudio comparativo entre las propiedades decombustión de la mezcla biogás-aire normal y biogás-aire enriquecido con oxígeno", Revista Ingeniería e Investigación, vol. 1, pp. 233-241, 2011.; R. Liriano, Aplicación de biofertilizantes como alternativa nutricional, ambiental y económica en la agricultura urbana, España: Universidad de Girona, 2005.; A. Padilla y J. Rivero, "Producción de Biogás y compost a partir de Residuos Orgánicos recolectados del complejo arqueológico Huaca de la Luna", Ciencia y Tecnología, vol. 1, pp. 29-43, 2016.; L. O. González Salcedo y Y. Olaya Arboleda, Fundamentos para el diseño de Biodigestores, Departamento de Ingeniería, 2009.; M. T. Madigan, J. M. Martinko y J. Parker, Biología de los microorganismos, 10 ed, 2004.; A. Pulido y J. Espitia, Diseño e implementación de un sistema de supervisión, monitoreo y control de temperatura, presión y tiempo de proceso en un sistema de digestión anaerobia de biomasa (contenido ruminal bovino) a escala de laboratorio, Bogotá: Universidad Distrital Francisco José de Caldas, 2016.; G. Bastin, "On-line estimation and adaptive control of bioreactors", Elsevier, vol. 1, 2013.; S. Hassam, E. Ficara, A. Leva y J. Harmand, "A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1)", Biochemical Engineering Journal, pp. 99, 193-203, 2015.; E. Ficara, S. Hassam, A. Allegrini, A. Leva, F. Malpei y G. Ferretti, "Anaerobic digestion models: a comparative study. IFAC Proceedings.", vol. 45(2), pp. 1052- 1057, 2012.; J. A. Jiménez, G. Pomboza y J. A. Holgado, «El gesto aplicado al control de dispositivosen,» Jornadas SARTECO, Ecuador, 2017.; O. F. Olivera, J. A. Cuervo, y F. N. Giraldo Ramos, “Sistema de control de posición angularaplicado a dispositivos RF", Visión Electrónica, vol. 5, no. 2, pp. 42-58, 2011.; T. G. Zimmerman, J. Lanier, C. Blanchard, S. Bryson, and Y. Harvill, “A hand gestureinterface device,” ACM SIGCHI Bull., vol. 17, no. SI, pp. 189 192, 1986.; Omega engineering, «Omega ENGINEERING,» es.omega.com, [En línea]. Available:https://es.omega.com/prodinfo/acelerometro.html. [Último acceso: 11 08 2019].; tdk, «Datasheet MPU60XX,» [En línea]. Available: https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf. [Último acceso: 11 08 2020].; Naylamp Mechatronics, «Naylamp Mechatronics,» Naylamp Mechatronics, [En línea].Available:https://naylampmechatronics.com/blog/45_Tutorial-MPU6050-Acelerómetro-y-Giros copio.html. [Último acceso: 11 08 2019].; Arduino, «arduino.cl,» arduino.cl, [En línea]. Available: http://arduino.cl/arduino-nano/.[Último acceso: 15 08 2019].; J. J. M. Fuentes, Fundamentos de radiación y radiocomunicación, Sevilla: Departamentode Teoría de la Señal y Comunicaciones, 2012.; J. Vargas, G. Poveda y V. Martinez, «Dispositivo inalámbrico para el control de,»ESPACIOS, vol. 39, nº 45, p. 9, 2018.; M. A. Arenas, J. M. Palomares, L. Girard, J. Olivares y J. M., «Diseño y Construcciónde un Guante de Datos mediante Sensores de Flexibilidad y acelerómetro,» researchgate, España, 2011.; K. K. Abgaryan and I. S. Kolbin, “Calculation of Heat Transfer in NanosizedHeterostructures,” Russ. Microelectron., vol. 48, no. 8, pp. 559–563, 2019, doi:10.1134/S1063739719080031.; A. R. Shabaan, S. M. El-Metwally, M. M. A. Farghaly, and A. A. Sharawi, “PID and fuzzylogic optimized control for temperature in infant incubators,” 2013 Proc. Int. Conf. Model. Identif. Control. ICMIC 2013, no. Icmic, pp. 53–59, 2013.; D. M. Ovalle M and L. F. Cómbita A., “Teaching basic control concepts with a home-madethermal system,” IEEE Glob. Eng. Educ. Conf. EDUCON, no. April, pp. 739–744, 2014, doi:10.1109/EDUCON.2014.6826176.; S. A. Adnan, A. Muhammad, and Z. Shareef, “Development of a low cost thermalfeedback system for basic control education,” Proc. 14th IEEE Int. Multitopic Conf. 2011, INMIC 2011, pp. 228–232, 2011, doi:10.1109/INMIC.2011.6151478.; R. Urbieta Parrazales, “Diseño, Simulación y Construcci?n de un Control PID Aplicado aun Sistema Térmico,” Polibits, vol. 15, pp. 11–19, 1995, doi:10.17562/pb-15-2.; C. Close, Modeling and Analysis of Dynamic Systems. 2002.; F. Navas, “DISEÑO Y CONSTRUCCION DE CAJA DE TRANSFERENCIA DE CALOR (GUARDED HOT BOX ),” 2007.; J. Bravo, G. López, R. Rodríguez, and F. J. Sabina, “Acerca de la homogeneización ypropiedades efectivas de la ecuación del calor On homogenization and effective properties of the heat equation Resumen,” pp. 149–159, 2013.; E. Significativas, Electrónica : teoría de circuitos y dispositivos electrónicos.; P. E. Allen, Operational amplifiers and linear integrated circuits, vol. 71, no. 9. 2008.; N. Ruangpayoongsak, J. Sumroengrit, & M. Leanglum, “A floating waste scooperrobot on water surface”, In 2017 17th International Conference on Control, Automation and Systems (ICCAS), pp. 1543-1548, IEEE, October 2017.; I Baturone, Robótica: manipuladores y robots móviles. Marcombo, 2005.; P. Jorge-Sanz, "Robots industriales colaborativos: una nueva forma de trabajo",Seguridad y Salud en el trabajo 95, pp. 6-10, 2018.; H. Thomas, S. Bensch. "Understandable robots-what, why, and how." Paladyn,Journal of Behavioral Robotics 9,pp. 110-123. no. 1, 2018.; B. Andrew, E. F. Buffie, and L.F. Zanna. "Robots, growth, and inequality." Finance &Development 53, pp. 10-13, no. 3, 2016.; S. Martínez, A. Carvajal, D. Loza, A. Ibarra, and L. Segura. "Collaborative two-armrobotic torso for the development of an assembly process." In 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 1-6. IEEE, 2017.; T.I., Getting Started MSP430G2553 Value Line LaunchPad Workshop Series, [Enlínea]. Disponible en: https://training.ti.com/getting-started-msp430g2553-launchpad-part-1.; D. Anderson, G. Constante, and T. Arrigoni. "Arquitetura FPGAs CPLDs da Xilinx."; Creus-Solé, “Instrumentación industrial”, 8va. ed. México: Alfaomega Grupo Editor, 2011.; M. A. Pérez-García, et al., “Instrumentación electrónica”, Madrid: Thomson, 2004.; Manuel, et al., “Instrumentación virtual adquisición, procesado y análisis de señales”,1era ed. Barcelona: UPC, 2001.; O. F. Corredor, et al. “Diseño e implementación de filtros digitales”. Visión electrónica,vol. 3, no. 1, pp. 55-56,2009. https://doi.org/10.14483/22484728.691.; Silicon Labs, “Using microcontrollers in digital signal processing applications”. AN219, Rev. 0.2 8/08. https://www.silabs.com/documents/public/application-notes/an219.pdf.; Hernández y E. Jacinto, “Una nueva metodología en el diseño de filtros digitales FIR sobre FPGA”. Visión electrónica, vol. 3, no. 2, pp. 40-47, 2009. https://doi.org/10.14483/22484728.2834.; V. M. Gómez, et al. “Diagnóstico de rodamientos con vibraciones mecánicas einstrumentos virtuales”. Visión electrónica, vol. 8, no. 2, pp. 107-113, 2014. https://doi.org/10.14483/22484728.9881.; National Instruments, “Strain gauge measurement - A tutorial”, Aplication Note 078, 2018.; J. Horn y G. Gleason, “Weigh Scale Applications for the MCP3551”, AN1030 Microchip, 2006.; F. Quiles-Latorre, et al., “Diseño del interfaz de una balanza electrónica basada en una celda de carga,” en Libro de catas SAAAEI2018, Córdoba, pp. 272-277, 2018.; J. Hernández-Jiménez y M. Fabela-Gallegos, “Diseño y construcción de un prototipo para determinar el peso de vehículos ligeros en movimiento”, 2004.; Rice Lake Weighing Systems, “Load cell and weigh module handbook”, 2017.; OIML, “Metrological regulation of load cells”, OIML R 60-1, 2017.; National Instruments, “User guide and specifications NI USB-6008/6009”, 2007. C. E. Pardo-Beainy, “Instrumentación Virtual, Control y Adquisición de Datos para Unidades de Cuidados Intensivos”, 2007.; G. Tem, “Concurso en Ingeniería de Control 2020,” 2020.; G. G. Slabaugh, “Computing Euler angles from a rotation matrix,” denoted as TRTAImplement. from httpwww starfireresearch comservicesjava3dsamplecodeFlorinE ulers html, vol. 6, no. 2000, pp. 1–6, 1999.; L. Euler, “Formvlae generales pro translatione qvacvnqvve corporvm rigidor,” NoviCommentarii academiae scientiarum Petropolitanae, vol. 20. pp. 189–207, 1776.; D. Entwurf, “Der Entwurf linearer Regelungssysteme im Zustandsraum,” vol. 1, no. 8,1972.; D. D. E. I. Eléctrica and J. P. S. V, “Desarrollo de software para inspección técnica deuna aplicación CPM,” 2017.; S. C. C. Navarrete, “Control avanzado de un sistema de refrigeración,” 2019.; "Measures of controlled system performance.” [Online]. Available: http://www.online-courses.vissim.us/Strathclyde/measures_of_controlled_system_pe.htm. [Accessed: 20-Nov-2020].; Á. Valera Fernández, Modelado y control en el espacio de estados. 2016.; O. A. Esquivel Flores, “Análisis de observabilidad y controlabilidad para sistemasdiferenciaslmente planos. Aplicación a un sistema de oscilaciones de calcio,” p. 107, 2007.; J. Ángel and S. Blanco, “Diseño en el Espacio de Estados,” pp. 1–9, 2017.; https://hdl.handle.net/11349/31383; Universidad Distrital Francisco José de Caldas.
Dostupnosť: https://hdl.handle.net/11349/31383
-
3
Prispievatelia: The Pennsylvania State University CiteSeerX Archives
Popis súboru: application/pdf
-
4
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: ftp://www.cos.ufrj.br/pub/tech_reps/es47798.ps.gz
Predmety: DSM architectures, performance evaluation, logic programming
Popis súboru: application/postscript
-
5
Autori:
Prispievatelia:
Predmety: Cyber-Physical Systems, parallel computing systems, a set of interrelated works, multilevel stochastic modeling, Markov process, distribution function of a random variable
Geografické téma: Львів
Popis súboru: 26-32; application/pdf; image/png
Relation: Advances in Cyber-Physical Systems, 1 (3), 2018; 1. Tsvetkov V. Ya., Alpatov A. N. Problems of distributed systems // Prospects of science and education – 2014. – No. 6. – P. 31–36.; 2. Khaitan et al., “Design Techniques and Applications of Cyber Physical Systems: A Survey”, IEEE Systems Journal, 2014.; 3. Rad, Ciprian-Radu; Hancu, Olimpiu; Takacs, Ioana-Alexandra; Olteanu, Gheorghe (2015). “Smart Monitoring of Potato Crop: A Cyber-Physical System Architecture Model in the Field of Precision Agriculture”. Conference Agriculture for Life, Life for Agriculture. 6: 73–79.; 4. Bocharov P. L., Ignatushchenko V. V. Mathematical models and methods for evaluating the effectiveness of parallel computing systems on complexes of interrelated jobs // Tez. report international conf, “High-Performance Computing Systems in Management and Scientific Research,” Alma-Ata, 1991, p. 6.; 5. Ignatushchenko V. V., Klushin Y. S. Prediction of the implementation of complex software systems on parallel computers: direct stochastic modeling // Automation and Remote Control. 1994. No. 12, p. 142–157.; 6. Khritankov A. S. Mathematical model of performance characteristics of distributed computing systems. Computer science, management, economics. JOBS OF MIPT. – 2010. – Vol. 2, No. 1 (5), p. 110–115.; 7. Ivutin A. N., Larkin E. V. Prediction of the execution time of the algorithm. Magazine. News of TSU. Technical science. Issue number 3/2013 C 301–315.; 8. Ivanov N. N. Mathematical prediction of reliable execution of sets of tasks with symmetric runtime distributions. Journal of Open Education, Issue No. 2–2 / 2011, p. 52–55.; 9. Kulagin V. P., Problems of parallel computing systems Perspectives of Science & Education. 2016. 1 (19) International Scientific Electronic Journal ISSN 2307–2334 (Online); 11. Salibekyan S. M., Panfilov P. B. Questions of automaton-network modeling of computer systems with data flow control // Information technologies and computer systems. 2015. No. 1. P. 3–9.; 12. Kulikov, I., Chernykh, I., Glinsky, B., Weins, D., Shmelev, A. Astrophysics simulation on RSC massively parallel architecture // Proc. 2015 IEEE/ACM 15th Int. Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015. IEEE Press, 2015.1131–1134.; 13. Boccara N. Modeling Complex Systems. NY: Springer, 2004. 397 p.; 14. Lublinsky B. Defining SOA as an architectural style. 9 January 2007. [Electronic resource]: .; 15. Ivanov S.V., Identification of Parametrically Connected Models of Complex Systems, Nauch.-tekhnich. we know SPSU ITMO. Highperformance computing and computer modeling technologies. 2008. Vol. 54. pp. 100–107.; 16. Ivanov N. N., Ignatushchenko V. V., Mikhailov A. Y., Static prediction of the execution time of complexes of interrelated jobs in multiprocessor computing systems, Avtomat. and Telemekh., 2005, issue 6, 89–103.; 17. Ignatushchenko V. V., Klushin Y. S. Prediction of the implementation of complex software systems on parallel computers: direct stochastic modeling // Automation and Remote Control. 1994. N12, p. 142–157.; 18. Klushin, Y. S. Improving the accuracy of estimating the execution time of folding software systems in multiprocessor computer systems for belt stochastic modeling. Bulletin of NU “Lviv; 19. Klushin Y. S. reducing the number of states of the Markov process when executing complex software systems on parallel computers. Scientific Bulletin of Chernivtsi University. Computer systems and components. 2016. T. 7. Vol. 2, pp. 53–62.; 20. Reibman A. L., Trivedi K. S. Numerical transient analysis of Markov models // Computers and Operations Research. 1988. Vol. 15. No. 1. P. 19–36.; 21. Preidunov Y. V. Development of mathematical models and methods for predicting the implementation of complex software systems on parallel computing systems. PhD thesis. M.: Inst. Of Problems of Management RAS, 1992.; 1. Tsvetkov V. Ya., Alpatov A. N. Problems of distributed systems, Prospects of science and education – 2014, No. 6, P. 31–36.; 2. Khaitan et al., "Design Techniques and Applications of Cyber Physical Systems: A Survey", IEEE Systems Journal, 2014.; 3. Rad, Ciprian-Radu; Hancu, Olimpiu; Takacs, Ioana-Alexandra; Olteanu, Gheorghe (2015). "Smart Monitoring of Potato Crop: A Cyber-Physical System Architecture Model in the Field of Precision Agriculture". Conference Agriculture for Life, Life for Agriculture. 6: 73–79.; 4. Bocharov P. L., Ignatushchenko V. V. Mathematical models and methods for evaluating the effectiveness of parallel computing systems on complexes of interrelated jobs, Tez. report international conf, "High-Performance Computing Systems in Management and Scientific Research," Alma-Ata, 1991, p. 6.; 5. Ignatushchenko V. V., Klushin Y. S. Prediction of the implementation of complex software systems on parallel computers: direct stochastic modeling, Automation and Remote Control. 1994. No. 12, p. 142–157.; 6. Khritankov A. S. Mathematical model of performance characteristics of distributed computing systems. Computer science, management, economics. JOBS OF MIPT, 2010, Vol. 2, No. 1 (5), p. 110–115.; 7. Ivutin A. N., Larkin E. V. Prediction of the execution time of the algorithm. Magazine. News of TSU. Technical science. Issue number 3/2013 P. 301–315.; 8. Ivanov N. N. Mathematical prediction of reliable execution of sets of tasks with symmetric runtime distributions. Journal of Open Education, Issue No. 2–2, 2011, p. 52–55.; 11. Salibekyan S. M., Panfilov P. B. Questions of automaton-network modeling of computer systems with data flow control, Information technologies and computer systems. 2015. No. 1. P. 3–9.; 12. Kulikov, I., Chernykh, I., Glinsky, B., Weins, D., Shmelev, A. Astrophysics simulation on RSC massively parallel architecture, Proc. 2015 IEEE/ACM 15th Int. Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015. IEEE Press, 2015.1131–1134.; 17. Ignatushchenko V. V., Klushin Y. S. Prediction of the implementation of complex software systems on parallel computers: direct stochastic modeling, Automation and Remote Control. 1994. N12, p. 142–157.; 18. Klushin, Y. S. Improving the accuracy of estimating the execution time of folding software systems in multiprocessor computer systems for belt stochastic modeling. Bulletin of NU "Lviv; 20. Reibman A. L., Trivedi K. S. Numerical transient analysis of Markov models, Computers and Operations Research. 1988. Vol. 15. No. 1. P. 19–36.; 21. Preidunov Y. V. Development of mathematical models and methods for predicting the implementation of complex software systems on parallel computing systems. PhD thesis. M., Inst. Of Problems of Management RAS, 1992.; Klushyn Y. High-performance software for designing complex Cyber-Physical Systems on the parallel computers / Yuriy Klushyn // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 3. — No 1. — P. 26–32.; https://ena.lpnu.ua/handle/ntb/45679; Klushyn Y. High-performance software for designing complex Cyber-Physical Systems on the parallel computers / Yuriy Klushyn // Advances in Cyber-Physical Systems. — Lviv Politechnic Publishing House, 2018. — Vol 3. — No 1. — P. 26–32.
Dostupnosť: https://ena.lpnu.ua/handle/ntb/45679
-
6
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: RAPIDO '15 Proceedings of the 2015 Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools ; https://cea.hal.science/cea-01818887 ; RAPIDO '15 Proceedings of the 2015 Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools, Jan 2015, Amsterdam, Netherlands. ⟨10.1145/2693433.2693440⟩
Predmety: ACM: I.: Computing Methodologies/I.6: SIMULATION AND MODELING/I.6.7: Simulation Support Systems, ACM: I.: Computing Methodologies/I.6: SIMULATION AND MODELING/I.6.7: Simulation Support Systems/I.6.7.0: Environments, ACM: C.: Computer Systems Organization/C.1: PROCESSOR ARCHITECTURES/C.1.1: Single Data Stream Architectures, [INFO]Computer Science [cs]
Geografické téma: Amsterdam, Netherlands
-
7
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: 合成演算法, 晶片網路, 計算機結構, synthesis, architectural, NoC, Network-on-Chip
Popis súboru: 5270259 bytes; application/pdf
Relation: Bibliography [1] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D. Lindqvist, “Network on a chip: An architecture for billion transistor era,” Proc. of the IEEE NorChip Conference, November 2000. [2] Luca Benini and Giovanni De Micheli, “Network on chips: A new soc paradigm,” IEEE Computers, pp. 70-78, January 2002. [3] Wayne H. Wolf, “Hardware-software codesign of embedded systems,” Proc. IEEE, July 1994. [4] Jingcao Hu and Radu Marculescu, “Energy-aware communication and task scheduling for network-on-chip architecture under real-time constraints,” IEEE Design, Automation and Test in Europe Conference and Exhibition (DATE), 2004. [5] Jingcao Hu and Radu Marculescu,”Energy-aware mapping for tile-based noc architectures under performance constraints,” IEEE ASP-DAC, 2003. [6] Wayne H. Wolf, “An architectural co-synthesis algorithm for distributed, embedded computing systems,” IEEE Transaction on Very Large Scale Integration (VLSI) Systems, vol. 5, June 1997. [7] William J. Dally and Brian Towles, “Route packets, not wires: On-chip interconnection networks,” Proc. Design Automation Conference (DAC), pp. 684-689, June 2001. [8] Shashi Kumar et. al., “A network on chip architecture and design methodology,” IEEE Computer Society Annual Symposium on VLSI, pp. 117-124, April 2002. [9] Terry Tao Ye, Luca Benini, and Giovanni De Micheli, “Analysis of power consumption on switch fabrics in network routers,” Proc. Design Automation Conference (DAC), June 2002. [10] Terry Tao Ye, Luca Benini, and Giovanni De Micheli, “Packetized on-chip interconnect communication analysis for mpsoc,” Proceedings of Design Automation and Test in Europe (DATE), pp. 344-349, March 2003. [11] Vincent Nollet, Thµeodore Marescaux, and Diederik Verkest, “Operating-system controlled network-on-chip,” Proceedings of the 41st Annual Conference on Design Automation (DAC), pp. 256-259, June 2004. [12] Srinivasan Murali and Giovanni De Micheli, “Bandwidth-constrained mapping of cores onto noc architectures,” Proceedings of the Design, Automation and Test in Europe Conference (DATE), vol. 2, February 2004. [13] Dongkun Shin and Jihong Kim, “Power-aware communication optimization for network-on-chips with voltage scalable links,” ACM CODES+ISSS, 2004. [14] Gilbert C. Sih and Edward A. Lee, “A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures,” IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 2, pp. 175-187, February 1993. [15] Bita Gorjiara, Nader Bagherzadeh, and Pai Chou, “An efficient voltage scaling algorithm for complex socs with few number of voltage modes,” Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED), pp. 381-386, August 2004. [16] Ireneusz Karkowski and Henk Corporaal, “Design space exploration algorithm for heterogeneous multi-processor embedded system design,” Proceedings of the 35st Annual Conference on Design Automation (DAC), June 1998. [17] Marco DiNatale and John A. Stankovic, “Applicability of simulated annealing methods to real-time scheduling and jitter control,” IEEE Real-Time Systems Symposium (RTSS), pp. 190-199, 1995. [18] Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen, “Low-power cmos digital design,” IEEE Journal of Solid-State Circuit, vol. 27, no. 4, April 1992. [19] Graham R. L., “Bounds for certain multiprocessing anomalies,” Bell Syst. Tech. J., pp. 1563-1581, November 1966. [20] Manacher G. K., “Production and stabilization of real-time task schedulers,” J. ACM, pp. 439-465, July 1967. [21] T. Adam, K. Chandy, and J. Dickson., “A comparison of list schedules for parallel processing systems,” Commun. ACM, vol. 17, no. 12, pp. 685-690, December 1974. [22] Martin Grajcar, “Strengths and weaknesses of genetic list scheduling for heterogeneous systems,” Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD), pp. 123-132, June 2001. [23] T. C. Hu, “Parallel sequencing and assembly line problem,” Oper. Res, vol. 9, no. 6, pp. 841-848, November 1961. [24] Christopher J. Glass and Lionel M. Ni, “The turn model for adaptive routing,” Proceedings., The 19th Annual International Symposium on Computer Architecture (ISCA), pp. 278-287, May 1992. [25] S. Kirkpatrick, C. D. Gelatt, Jr., and M.P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680, May 1983. [26] Emile Aarts and Jan Korst, Simulated Annealing and Boltzmann Machines, Wiley and Sons, 1989. [27] Robert P. Dick, David L. Rhodes, and Wayne H. Wolf, “Tgff: Task graphs for free," Proc. Intl. Workshop on Hardware/Software Codesign, March 1998.
-
8
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: https://inria.hal.science/tel-01956255 ; Hardware Architecture [cs.AR]. Université de Rennes 1 [UR1], 2018. English. ⟨NNT : ⟩.
Predmety: Network on chip NoC, Réseau sur puce NoC, ACM: C.: Computer Systems Organization/C.2: COMPUTER-COMMUNICATION NETWORKS/C.2.1: Network Architecture and Design, ACM: D.: Software/D.4: OPERATING SYSTEMS, [INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR], [INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET]
-
9
Autori: a ďalší
Zdroj: 2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), 1-6 October, 2023, Västerås, Sweden ; 979-83-503-2498-3
Relation: info:eu-repo/semantics/altIdentifier/isi/001137051500068
-
10
Autori: a ďalší
Predmety: Computer Science - Hardware Architecture, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Performance, archi, info
Relation: http://arxiv.org/abs/2301.00414
Dostupnosť: http://arxiv.org/abs/2301.00414
-
11
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (IEEE/ACM CCGrid)
https://hal.inria.fr/hal-01901988
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (IEEE/ACM CCGrid), May 2018, Washington DC, United StatesGeografické téma: Washington DC, United States
Time: Washington DC, United States
Relation: hal-01901988; https://hal.inria.fr/hal-01901988; https://hal.inria.fr/hal-01901988/document; https://hal.inria.fr/hal-01901988/file/article.pdf
-
12
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Voice processing systems, Automatic voice recognition, Systems engineering, Telematics, Investigations, New technologies, Internet of things, Speech recognition, Ubiquitous computing, Sistemas de procesamiento de voz, Reconocimiento automático de la voz, Ingeniería de sistemas, Telemática, Investigaciones, Nuevas tecnologías, Internet de las cosas, Middleware, Reconocimiento del habla, Computación ubicua
Geografické téma: Bucaramanga (Colombia), UNAB Campus Bucaramanga
Popis súboru: application/pdf; application/octet-stream
Relation: Manrique Hernández, Johana Andrea (2018). Switch: un Middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; Abdmeziem, M. R., Tandjaoui, D., & Romdhani, I. (2016). Architecting the internet of things: state of the art. In Robots and Sensor Clouds (pp. 55–75). Springer.; Abreu, D. P., Velasquez, K., Curado, M., & Monteiro, E. (2017). A resilient Internet of Things architecture for smart cities. Annals of Telecommunications, 72(1–2), 19–30.; Adams, K. (2015). Non-functional Requirements in Systems Analysis and Design. Springer.; Addo, I. D., Ahamed, S. I., Yau, S. S., & Buduru, A. (2014). A reference architecture for improving security and privacy in Internet of Things applications. In Mobile Services (MS), 2014 IEEE International Conference on (pp. 108–115).; Afonso, S., Laranjo, I., Braga, J., Alves, V., & Neves, J. (2015). Multilingual Voice Control for Endoscopic Procedures. In Internet of Things. User-Centric IoT (pp. 229–235). Springer.; Akash, S. A., Menon, A., Gupta, A., Wakeel, M. W., Praveen, M. N., & Meena, P. (2014). A novel strategy for controlling the movement of a smart wheelchair using internet of things. In Global Humanitarian Technology Conference-South Asia Satellite (GHTC-SAS), 2014 IEEE (pp. 154–158).; Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.; Al-Jaroodi, J., Aziz, J., & Mohamed, N. (2009). Middleware for RFID systems: An overview. In Computer Software and Applications Conference, 2009. COMPSAC’09. 33rd Annual IEEE International (Vol. 2, pp. 154–159).; Aldosari, H. M. (2015). A Proposed Security Layer for the Internet of Things Communication Reference Model. Procedia Computer Science, 65, 95–98.; Alhamedi, A. H., Snasel, V., Aldosari, H. M., & Abraham, A. (2014). Internet of things communication reference model. In Computational Aspects of Social Networks (CASoN), 2014 6th International Conference on (pp. 61–66).; Association for computing machinery ACM. (2012). CCS 2012.; Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805. http://doi.org/doi.org/10.1016/j.comnet.2010.05.010; Baccaglini, E., Gavelli, M., Morello, M., & Vergori, P. (2015). A multimodal user interface using the webinos platform to connect a smart input device to the Web of Things. In Pervasive and Embedded Computing and Communication Systems (PECCS), 2015 International Conference on (pp. 1–5).; Bai, J. G., Wei, J. G., Chen, L., He, Y. Q., Wang, J. R., & Dang, J. W. (2013). Design and Implementation of a Housekeeper System. In Applied Mechanics and Materials (Vol. 437, pp. 394–398).; Banda, G., Chaitanya, K., & Mohan, H. (2015). An IoT protocol and framework for OEMs to make IoT-enabled devices forward compatible. In Signal-Image Technology & Internet-Based Systems (SITIS), 2015 11th International Conference on (pp. 824–832).; Bandyopadhyay, S., Sengupta, M., Maiti, S., & Dutta, S. (2011). A Survey of Middleware for Internet of Things. In A. Özcan, J. Zizka, & D. Nagamalai (Eds.), Recent Trends in Wireless and Mobile Networks: Third International Conferences, WiMo 2011 and CoNeCo 2011, Ankara, Turkey, June 26-28, 2011. Proceedings (pp. 288–296). Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-21937-5_27; Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., & Meissner, S. (Eds.). (2013). Enabling Things to Talk. Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-40403-0; Bell, A. G. (1881). The production of sound by radiant energy. Science, 2(48), 242– 253.; Bernabe, J. B., Hernández, J. L., Moreno, M. V., & Gomez, A. F. S. (2014). Privacypreserving security framework for a social-aware internet of things. In International conference on ubiquitous computing and ambient intelligence (pp. 408–415).; Berners-Lee, T., Cailliau, R., Groff, J.-R., & Pollermann, B. (1992). World-Wide Web: The Information Universe. Electronic Networking: Research, Applications and Policy, 2(1), 52–58.; Besacier, L., Barnard, E., Karpov, A., & Schultz, T. (2014). Automatic speech recognition for under-resourced languages: A survey. Speech Communication, 56, 85–100.; Blackstock, M., & Lea, R. (2016). FRED: A Hosted Data Flow Platform for the IoT. In Proceedings of the 1st International Workshop on Mashups of Things and APIs (p. 2:1--2:5). New York, NY, USA: ACM. http://doi.org/10.1145/3007203.3007214; Bochmann, G. V. (1990). Protocol specification for OSI. Computer Networks and ISDN Systems, 18(3), 167–184.; Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. Computer Communications, 54, 1–31.; Bouraoui, H., Jerad, C., Chattopadhyay, A., & Hadj-Alouane, N. Ben. (2017). Hardware Architectures for Embedded Speaker Recognition Applications: A Survey. ACM Transactions on Embedded Computing Systems (TECS), 16(3), 78.; Boussard, M., Meissner, S., Nettsträter, A., Olivereau, A., Segura, A. S., Thoma, M.,& Walewski, J. W. (2013). A Process for Generating Concrete Architectures. In Enabling Things to Talk (pp. 45–111). Springer.; Brown, A. (2016). The role of voice in IoT applications. Retrieved from https://www.strategyanalytics.com/strategy-analytics/blogs/iot/2016/02/19/therole- of-voice-in-the-internet-of-things#.WD3wMPkrLcc; Buyya, R., & Dastjerdi, A. V. (2016). Internet of Things: Principles and paradigms. Elsevier.; Cavalcante, E., Alves, M. P., Batista, T., Delicato, F. C., & Pires, P. F. (2015). An analysis of reference architectures for the internet of things. In Proceedings of the 1st International Workshop on Exploring Component-based Techniques for Constructing Reference Architectures (pp. 13–16). Ccori, P. C., De Biase, L. C. C., Zuffo, M. K., & da Silva, F. S. C. (2016). Device discovery strategies for the IoT. In Consumer Electronics (ISCE), 2016 IEEE International Symposium on (pp. 97–98).; Chaqfeh, M. A., & Mohamed, N. (2012). Challenges in middleware solutions for the internet of things. In Collaboration Technologies and Systems (CTS), 2012 International Conference on (pp. 21–26).; Chelloug, S. A., & El-Zawawy, M. A. (2017). Middleware for Internet of Things: Survey and Challenges. Intelligent Automation & Soft Computing, 0(0), 1–9. http://doi.org/10.1080/10798587.2017.1290328; CISCO. (2014). The Internet of Things Reference Model. San José, California. Retrieved from http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_ 4_2014.pdf; CISCO. (2016). Internet of Things at a Glance. Retrieved from https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/ata- glance-c45-731471.pdf; Colciencias. (2016). Tipología de proyectos calificados como de carácter cientifíco, tecnológico e innovación (Vol. 4).; Costa, N., Pereira, A., & Serodio, C. (2007). Virtual Machines Applied to WSN’s: The state-of-the-art and classification. In Systems and Networks Communications, 2007. ICSNC 2007. Second International Conference on (p. 50).; Coulouris, G. F., Dollimore, J., & Kindberg, T. (2005). Distributed systems: concepts and design (Fifth edit). Pearson education.; Davis, K. H., Biddulph, R., & Balashek, S. (1952). Automatic recognition of spoken digits. The Journal of the Acoustical Society of America, 24(6), 637–642.; De, S., Carrez, F., Reetz, E., Tönjes, R., & Wang, W. (2013). Test-enabled architecture for IoT service creation and provisioning. In The Future Internet Assembly (pp. 233–245).; Delicato, F. C., Pires, P. F., & Batista, T. (2017). The Resource Management Challenge in IoT. In Resource Management for Internet of Things (pp. 7–18). Springer.; Dino, J. (2008). Ames Technology Capabilities and Facilities. Retrieved January 5, 2017, from https://www.nasa.gov/centers/ames/research/technologyonepagers/ hc-computing.html; Eisenhauer, M., Rosengren, P., & Antolin, P. (2010). HYDRA: A Development Platform for Integrating Wireless Devices and Sensors into Ambient Intelligence Systems. In D. Giusto, A. Iera, G. Morabito, & L. Atzori (Eds.), The Internet of Things: 20th Tyrrhenian Workshop on Digital Communications (pp. 367–373). New York, NY: Springer New York. http://doi.org/10.1007/978-1-4419-1674- 7_36; European Lighthouse Integrated Project. (2016). Internet of things Architecture IoTA. Retrieved November 1, 2016, from http://www.iota. eu/public/requirements/copy_of_requirements; Evans, D. (2011). The Internet of Things: How the next evolution of the internet is changing everything. Retrieved from http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FIN AL.pdf; EY. (2016). Internet of Things: Human machine interactions that unlock possibilities. United Kingdom. Retrieved from http://www.ey.com/Publication/vwLUAssets/ey-m-e-internet-ofthings/$ FILE/ey-m-e-internet-of-things.pdf; Fernandes, J., Nati, M., Loumis, N. S., Nikoletseas, S., Raptis, T. P., Krco, S., … Ziegler, S. (2015). IoT Lab: Towards co-design and IoT solution testing using the crowd. In Recent Advances in Internet of Things (RIoT), 2015 International Conference on (pp. 1–6).; Ferreira, H. G. C., Canedo, E. D., & de Sousa, R. T. (2013). IoT architecture to enable intercommunication through REST API and UPnP using IP, ZigBee and arduino. In 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 53–60). http://doi.org/10.1109/WiMOB.2013.6673340; Ferreira, H. G., & Sousa Junior, R. T. (2017). Security Analysis of a Proposed Internet of Things Middleware. Cluster Computing, 20(1), 651–660. http://doi.org/10.1007/s10586-017-0729-3; Formisano, C., Pavia, D., Gurgen, L., Yonezawa, T., Galache, J. A., Doguchi, K., & Matranga, I. (2015). The advantages of IoT and cloud applied to smart cities. In Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on (pp. 325–332).; Fremantle, P. (2015). A reference architecture for Internet of Things. Sri Lanka. Retrieved from https://wso2.com/whitepapers/a-reference-architecture-for-theinternet- of-things/; Gartner Inc. (2014). IT Glossary. Retrieved January 4, 2017, from http://www.gartner.com/it-glossary/telematics/; Gartner Inc. (2016). Hype Cycle for Emerging Technologies, 2016.; Gartnet Inc. (2017). Hype Cycle for Emerging Technologies, 2017. USA.; Gilchrist, A. (2016). IIoT Reference Architecture. In Industry 4.0 (pp. 65–86). Springer.; Gluhak, A., Hauswirth, M., Krco, S., Stojanovic, N., Bauer, M., Nielsen, R. H., … Corcho, O. (2011). An Architectural Blueprint for a Real-World Internet. In Future Internet Assembly (pp. 67–80).; Gluhak, A., Munoz, L., Sotres, P., Sanchez, L., Roux, P., Sanchez, B., … Hernandez, A. L. (2013). Third Cycle Architecture Specification.; Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. http://doi.org/10.1016/j.future.2013.01.010; Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531–1539.; Hadim, S., & Mohamed, N. (2006). Middleware: Middleware challenges and approaches for wireless sensor networks. IEEE Distributed Systems Online, 7(3), 1.; Han, X., & Rashid, M. A. (2016). Gesture and voice control of Internet of Things. In Industrial Electronics and Applications (ICIEA), 2016 IEEE 11th Conference on (pp. 1791–1795).; Haridas, A. V., Marimuthu, R., & Sivakumar, V. G. (2018). A critical review and analysis on techniques of speech recognition: The road ahead. International Journal of Knowledge-Based and Intelligent Engineering Systems, 22(1), 39– 57.; Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2010). Metodología de la investigación. McGraw-Hill (Quinta Edi). México DF.; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014a). Architecture Reference Model. In From Machine-To-Machine to the Internet of Things (pp. 167–197). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00007-3; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014b). IoT Architecture – State of the Art. In From Machine-To-Machine to the Internet of Things (pp. 145–165). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00006-1; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014c). IoT Reference Architecture. In From Machine-To-Machine to the Internet of Things (pp. 199–223). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00008-5; Hollosi, D., Nagy, G., Rodigast, R., Goetze, S., & Cousin, P. (2013). Enhancing wireless sensor networks with acoustic sensing technology: use cases, applications & experiments. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 335–342).; Huang, Z., Lin, K. J., & Shih, C. S. (2016). Supporting Edge Intelligence in Service- Oriented Smart IoT Applications. In 2016 IEEE International Conference on Computer and Information Technology (CIT) (pp. 492–499). Nadi, Fiji: IEEE. http://doi.org/10.1109/CIT.2016.40; Huang, Z., Tsai, B. L., Chou, J. J., Chen, C. Y., Chen, C. H., Chuang, C. C., … Shih, C. S. (2015). Context and user behavior aware intelligent home control using WuKong middleware. In 2015 IEEE International Conference on Consumer Electronics - Taiwan (pp. 302–303). Taipei, Taiwan: IEEE. http://doi.org/10.1109/ICCE-TW.2015.7216911; Hui, G. (2014). How the Internet of Things changes Business Models. Retrieved from https://hbr.org/2014/07/how-the-internet-of-things-changes-business-models; IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology.; IEEE Computer Society. (2014). Guide to the Software Engineering - Body of Knowledge. (P. Bourque & R. E. Fairley, Eds.)IEEE Computer Society (V3 ed.). http://doi.org/10.1234/12345678; Igure, V. M., Laughter, S. A., & Williams, R. D. (2006). Security issues in SCADA networks. Computers & Security, 25(7), 498–506.; International Organization for Standardization - ISO. Software product quality, 1 ISO/IEC 25010 34 (2011).; International Telecommunication Union - ITU. (2012). Recommendation ITU-T Y.2060: Overview of the Internet of things. Series Y: Global information infrastructure, internet protocol aspects and next-generation networks - Frameworks and functional architecture models. Retrieved from https://www.itu.int/rec/T-REC-Y.2060-201206-I; International Telecomunication Union - ITU. (2005). The Internet of Things. ITU Internet Reports.; Internet Society. (2015). The Internet of Things (IoT): An Overview. Geneva, Switzerland. Retrieved from https://www.internetsociety.org/doc/iot-overview; IoT-A Project. (2016). Requirements — IOT-A: Internet of Things Architecture.; IoT Analytics. (2016). IoT Platforms: Market Report 2015-2021. Hamburg, Germany. Retrieved from https://iot-analytics.com/product/iot-platforms-market-report- 2015-2021-3/; ISO/IEC/IEEE. (2010). ISO/IEC/IEEE 24765:2010 Systems and software engineering - Vocabulary.; ISO/IEC JTC 1. (2009). Study on Sensor Networks (Version 3).; ISO, & IEEE. Systems and software engineering - Vocabulary, ISO/IEC/IEEE 24765:2010(E) 1–418 (2010). http://doi.org/10.1109/IEEESTD.2010.5733835; Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M., … Hamida, A. Ben. (2011). Service-oriented middleware for the Future Internet: state of the art and research directions. Journal of Internet Services and Applications, 2(1), 23–45. http://doi.org/10.1007/s13174-011-0021-3; Itakura, F. (1975). Minimum prediction residual principle applied to speech recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(1), 67–72.; Jelinek, F., Bahl, L., & Mercer, R. (1975). Design of a linguistic statistical decoder for the recognition of continuous speech. IEEE Transactions on Information Theory, 21(3), 250–256.; Juang, B.-H., Hou, W., & Lee, C.-H. (1997). Minimum classification error rate methods for speech recognition. IEEE Transactions on Speech and Audio Processing, 5(3), 257–265.; Juang, B.-H., & Rabiner, L. R. (2005). Automatic speech recognition-a brief history of the technology development. Elsevier Encyclopedia of Language and Linguistics, 1, 24.; Kaneko, M., Arima, K., Usami, M., Sugimura, H., Isshiki, M., & Koh, K. (2015). Development of information living integrated by home appliances and web services. In Consumer Electronics (GCCE), 2015 IEEE 4th Global Conference on (pp. 311–312).; Keh, H.-C., Shih, C.-C., Chou, K.-Y., Cheng, Y.-C., Ho, H.-K., Yu, P.-Y., & Huang, N.-C. (2014). Integrating unified communications and internet of m-health things with micro wireless physiological sensors, 17(3), 319–328.; Khurana, T. (2017). IPv6 Enables Global Mobile IoT Innovation and Proliferation. Retrieved February 26, 2017, from https://goo.gl/B1E1eF; Kim, J., Lee, J., Kim, J., & Yun, J. (2014). M2M service platforms: survey, issues, and enabling technologies. IEEE Communications Surveys & Tutorials, 16(1), 61–76.; Kostelnik, P., Sarnovsk, M., & Furdik, K. (2011). The semantic middleware for networked embedded systems applied in the internet of things and services domain. Scalable Computing: Practice and Experience, 12(3), 307–316.; Krco, S., Pokric, B., & Carrez, F. (2014). Designing IoT architecture (s): A European perspective. In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp. 79–84).; Kubitza, T. (2016). Using Speech for End User Programming of Smart Environments in the Internet of Thing. Germany.; Kubitza, T., & Schmidt, A. (2016). Rapid Interweaving of Smart Things with the meSchup IoT Platform. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (pp. 313–316). New York, NY, USA: ACM. http://doi.org/10.1145/2968219.2971379; Kubitza, T., & Schmidt, A. (2017). meSchup: A Platform for Programming Interconnected Smart Things. Computer, 50(11), 38–49.; Kumar, A., Mishra, A., Makula, P., Karan, K., & Mittal, V. K. (2015). Smart Robotic Assistant. In Region 10 Symposium (TENSYMP), 2015 IEEE (pp. 25–28).; Lee, G. M., Crespi, N., Choi, J. K., & Boussard, M. (2013). Internet of things. In Evolution of Telecommunication Services (pp. 257–282). Springer.; Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440.; Lin, K. J., Reijers, N., Wang, Y. C., Shih, C. S., & Hsu, J. Y. (2013). Building Smart M2M Applications Using the WuKong Profile Framework. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 1175–1180). Beijing, China: IEEE. http://doi.org/10.1109/GreenCom-iThings- CPSCom.2013.204; Loucopoulus, P., & Karakostas, V. (1995). System Requirements Engineering. McGraw-Hill, Inc.; Ma, M., Wang, P., & Chu, C.-H. (2013). Data management for internet of things: challenges, approaches and opportunities. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 1144–1151).; MacGillivray, C. (2016). Worldwide Internet of Things Forecast Update, 2015-2019.; Mamei, M., & Zambonelli, F. (2006). Field-based coordination for pervasive multiagent systems. Springer Science & Business Media.; Manrique, J. ., Rueda-Rueda, J., & Portocarrero, J. . (2016). Contrasting Internet of Things and Wireless Sensor Network from a conceptual overview. In 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (p. 6). IEEE Computer Society. http://doi.org/978-1-5090-5880-8/16; Marulli, F., Pareschi, R., & Baldacci, D. (2016). The internet of speaking things and its applications to Cultural Heritage. In Proceedings of IoTBD2016 Conference, SCITEPRESS.; McCulloch, W. S., & Pitts, W. (1990). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 52(1), 99–115.; Meier, R., & Cahill, V. (2002). Steam: Event-based middleware for wireless ad hoc networks. In Distributed Computing Systems Workshops, 2002. Proceedings. 22nd International Conference on (pp. 639–644).; Mineraud, J., Mazhelis, O., Su, X., & Tarkoma, S. (2016). A gap analysis of Internetof-Things platforms. Computer Communications, 89, 5–16.; Miranda, J., Mäkitalo, N., Garcia-Alonso, J., Berrocal, J., Mikkonen, T., Canal, C., & Murillo, J. M. (2015). From the Internet of Things to the Internet of People. IEEE Internet Computing, 19(2), 40–47.; Mittal, Y., Toshniwal, P., Sharma, S., Singhal, D., Gupta, R., & Mittal, V. K. (2015). A voice-controlled multi-functional Smart Home Automation System. In India Conference (INDICON), 2015 Annual IEEE (pp. 1–6).; Monteiro, C., Oliveira, M., Bastos, J., Ramrekha, T., & Rodriguez, J. (2014). Social Networks and Internet of Things, an Overview of the SITAC Project. In International Wireless Internet Conference (pp. 191–196).; Mottola, L., Murphy, A. L., & Picco, G. Pietro. (2006). Pervasive games in a moteenabled virtual world using tuple space middleware. In Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games (p. 29).; Nagata, K., Kato, Y., & Chiba, S. (1964). Spoken digit recognizer for Japanese language. In Audio Engineering Society Convention 16.; Nakagawa, E. Y., Oquendo, F., & Becker, M. (2012). Ramodel: A reference model for reference architectures. In Software Architecture (WICSA) and European Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on (pp. 297–301).; Ngu, A. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, Q. Z. (2017). IoT middleware: A survey on issues and enabling technologies. IEEE Internet of Things Journal, 4(1), 1–20.; Nia, A. M., & Jha, N. K. (2016). A comprehensive study of security of internet-ofthings. IEEE Transactions on Emerging Topics in Computing.; Nitti, M., Pilloni, V., Colistra, G., & Atzori, L. (2016). The virtual object as a major element of the internet of things: a survey. IEEE Communications Surveys & Tutorials, 18(2), 1228–1240.; Nuance Communications. (2016). Majority of Consumers Want Intelligent, Personalized Dialogue with Customer Service. Retrieved February 27, 2017, from https://www.nuance.com/about-us/newsroom/press-releases/opusintelligent- assistants-and-authentication-conference-2016.html; Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service- Oriented Computing: State of the Art and Research Challenges. Computer, 40(11), 38–45. http://doi.org/10.1109/MC.2007.400; Park, K.-J., Zheng, R., & Liu, X. (2012). Cyber-physical systems: Milestones and research challenges. Computer Communications, 36(1), 1–7.; Patel, P., & Cassou, D. (2015). Enabling high-level application development for the Internet of Things. Journal of Systems and Software, 103, 62–84.; Payne, G. (2014). The Internet of Things brings a new era of connectivity… and a talking fridge. Retrieved February 27, 2017, from http://whatsnext.nuance.com/connected-living/the-internet-of-thingsconnectivity/; Petrolo, R., Mitton, N., Soldatos, J., Hauswirth, M., & Schiele, G. (2014). Integrating wireless sensor networks within a city cloud. In 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking Workshops (SECON Workshops) (pp. 24–27). http://doi.org/10.1109/SECONW.2014.6979700; Pressman, R. (2010). Ingeniería del software: un enfoque práctico (Séptima Ed). México DF: McGraw-Hill Interamericana.; Rabiner, L., Levinson, S., Rosenberg, A., & Wilpon, J. (1979). Speaker-independent recognition of isolated words using clustering techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(4), 336–349.; Rabiner, L. R., & Juang, B. H. (2004). Statistical methods for the recognition and understanding of speech. Encyclopedia of language and linguistics.; Ratkowski, A. (2016). Architecture for Internet of Things Analytical Ecosystem. In Dependability Engineering and Complex Systems (pp. 385–393). Springer.; Raveendran, V., Sanjeev, M. R., Paul, N., & Jijina, K. P. (2016). Speech only interface approach for personal computing environment. In Engineering and Technology (ICETECH), 2016 IEEE International Conference on (pp. 372–377).; Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Clarke, S. (2016). Middleware for internet of things: a survey. IEEE Internet of Things Journal, 3(1), 70–95.; Richards, M. (2015). Software architecture patterns. O’Reilly Media, Incorporated.; Robles, T., Alcarria, R., de Andrés, D. M., Navarro, M., Calero, R., Iglesias, S., & López, M. (2015). An IoT based reference architecture for smart water management processes. JoWUA, 6(1), 4–23.; Sakai, T., & Doshita, S. (1962). The Phonetic Typewriter. In IFIP Congress (Vol. 445, p. 449).; Sanchez, L., Muñoz, L., Galache, J. A., Sotres, P., Santana, J. R., Gutierrez, V., … others. (2014). SmartSantander: IoT experimentation over a smart city testbed. Computer Networks, 61, 217–238.; Sanchez, S., Angel Sicilia, M., & Rodriguez, D. (2012). Ingeniería del Sofware. Un enfoque desde la guía SWEBOK. Alfaomega.; Santos, J. F. M., Guessi, M., Galster, M., Feitosa, D., & Nakagawa, E. Y. (2013). A Checklist for Evaluation of Reference Architectures of Embedded Systems. In SEKE (Vol. 13, pp. 1–4).; Sarma, S., Brock, D., & Engels, D. (2001). Radio Frequency Identification and the Electronic Product Code. IEEE Micro, 21(6), 50–54. http://doi.org/10.1109/40.977758; Schauer, P., & Debita, G. (2015). Internet of Things Service Systems Architecture.; Seo, S., Kim, J., Yun, S., Huh, J., & Maeng, S. (2015). HePA: Hexagonal Platform Architecture for Smart Home Things. In Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st International Conference on (pp. 181–189).; Shen, S., & Carugi, M. (2014). Standardizing the Internet of Things in an evolutionary way. In ITU Kaleidoscope Academic Conference: Living in a converged world- Impossible without standards?, Proceedings of the 2014 (pp. 249–254).; Shih, C. S., Lin, K. J., Chou, J. J., & Chuang, C. C. (2014). Autonomous Service Management for Location and Context Aware Service. In 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications (pp. 246–251). Matsue, Japan: IEEE. http://doi.org/10.1109/SOCA.2014.10; Shin, D.-G., & Jun, M.-S. (2015). Home IoT device certification through speaker recognition. In Advanced Communication Technology (ICACT), 2015 17th International Conference on (pp. 600–603).; Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In Industrial Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on (pp. 697–701).; Singh, S., & Singh, N. (2015). Internet of Things (IoT): Security challenges, business opportunities & reference architecture for E-commerce. In Green Computing and Internet of Things (ICGCIoT), 2015 International Conference on (pp. 1577– 1581).; Sinha, S., Agrawal, S. S., & Jain, A. (2013). Continuous density Hidden Markov Model for context dependent Hindi speech recognition. In Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on (pp. 1953–1958).; Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J.-P., Riahi, M., … Herzog, R. (2015). OpenIoT: Open Source Internet-of-Things in the Cloud. In I. Podnar Žarko, K. Pripužić, & M. Serrano (Eds.), Interoperability and Open- Source Solutions for the Internet of Things: International Workshop, FP7 OpenIoT Project, Held in Conjunction with SoftCOM 2014, Split, Croatia,September 18, 2014, Invited Papers (pp. 13–25). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-16546-2_3; Sommerville, I. (2011). Ingeniería del Software. PEARSON.; Souza, R., & Cardozo, E. (2016). A Resource-Oriented Architecture for the Internet of Things (IoT). In Connectivity Frameworks for Smart Devices (pp. 99–116). Springer.; Stravoskoufos, K., Sotiriadis, S., & Petrakis, E. (2016). IoT-A and FIWARE: bridging the barriers between the cloud and IoT systems design and implementation. In Proc. 6th Int’l Conf. Cloud Computing and Services Science (pp. 146–153).; Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and challenges for realising the Internet of Things. (Cluster of European research projects on the Internet of Things, Ed.)European Commision.; Suzuki, J., & Nakata, K. (1961). Recognition of Japanese vowels - Preliminary to the recognition of speech. Journal of the Radio Research Laboratory, 8(37), 193– 212.; Talavera Portocarrero, J. M. (2016). RAMSES: Reference Architectue of Self- Adaptative Middleware for Wireless Sensor Networks. Universidade Federal fo Rio de Janeiro.; Techopedia. (2017). What is Modeling Language?; The Institute of Electrical and Electronics Engineers. (2014). 2014 IEEE Thesaurus. Retrieved from http://www.ieee.org/documents/ieee_thesaurus_2013.pdf; Turck, M. (2018). Growing Pains: The 2018 Internet of Things Landscape. Retrieved April 2, 2018, from http://mattturck.com/iot2018/; United Nations Educational Scientific and Cultural Organization. (2016). UNESCO Thesaurus. Retrieved August 29, 2016, from http://vocabularies.unesco.org/; United Nations Educational Scientific and Cultural Organization (UNESCO). (2016). UNESCO Thesaurus. Retrieved April 11, 2016, from http://vocabularies.unesco.org/browser/thesaurus/en/; Unnibhavi, A. H., & Jangamshetti, D. S. (2016). A survey of speech recognition on south Indian Languages. In Signal Processing, Communication, Power and Embedded System (SCOPES), 2016 International Conference on (pp. 1122– 1126).; Usländer, T., & Epple, U. (2015). Reference model of industrie 4.0 service architectures. At-Automatisierungstechnik, 63(10), 858–866.; Verdouw, C. N., Robbemond, R. M., Verwaart, T., Wolfert, J., & Beulens, A. J. M. (2015). A reference architecture for IoT-based logistic information systems in agri-food supply chains. Enterprise Information Systems, 1–25.; Wang, M.-M., Cao, J.-N., Li, J., & Dasi, S. K. (2008). Middleware for wireless sensor networks: A survey. Journal of Computer Science and Technology, 23(3), 305– 326.; Weiser, M. (1991). The computer for the 21st century. Scientific American, 265(3), 94–104.; Weyrich, M., & Ebert, C. (2016). Reference architectures for the internet of things. IEEE Software, 33(1), 112–116.; Whittaker, E. W. D. (2000). Statistical language modelling for automatic speech recognition of Russian and English. University of Cambridge.; Wiener, N. (1961). Cybernetics or Control and Communication in the Animal and the Machine (Vol. 25). MIT press.; Wortmann, F., Flüchter, K., & others. (2015). Internet of things. Business & Information Systems Engineering, 57(3), 221–224. http://doi.org/10.1007/s12599-015-0383-3; Xu, B., Zhang, D., & Yang, W. (2012). Research on architecture of the Internet of Things for grain monitoring in storage. In Internet of Things (pp. 431–438). Springer.; Zhong, N., Ma, J., Huang, R., Liu, J., Yao, Y., Zhang, Y., & Chen, J. (2016). Research challenges and perspectives on Wisdom Web of Things (W2T). In Wisdom Web of Things (pp. 3–26). Springer.; Zhou, S., Liu, G., & Lin, C. (2012). An Embedded Voice Inquiry Experimental Platform for Temperature and Humidity Measurement on the Internet of Things. In Emerging Computation and Information teChnologies for Education (pp. 533– 539). Springer.; http://hdl.handle.net/20.500.12749/3547; reponame:Repositorio Institucional UNAB
Dostupnosť: https://hdl.handle.net/20.500.12749/3547
-
13
Autori:
Prispievatelia:
Predmety: 670 - Manufactura, 620 - Ingeniería y operaciones afines, 680 - Manufactura para usos específicos, 600 - Tecnología (Ciencias aplicadas), Diseño industrial, Automatización, Productos nuevos, Diseños de productos, Desarrollo de nuevos productos, Design, industrial, Automation, New products, New product development, Diseño generativo realimentado, Diseño generativo, Optimización multiobjetivo, Diseño paramétrico, Grafos direccionales, Frentes de Pareto, Programación paralela, Feedback-based generative design, Feedback generative design, Generative design, Multi-objective optimization, Parametric design, Directed graphs, Pareto fronts, parallel programming
Popis súboru: xxiii, 206 páginas; application/pdf
Relation: [1] J. S. Restrepo Mendoza and E. Cordoba Nieto, “DISEÑO PARAMÉTRICO PARA CLASIFICACIÓN DE FAMILIAS DE PRODUCTOS EN MANUFACTURA DISCRETA EN EL LABFABEXUN,” in CONGRESO INTERNACIONAL DE INGENIERÍA MECÁNICA, MECATRÓNICA Y AUTOMATIZACIÓN - Memorias 2021, pp. 21–21, 2021.; Martin Hankel, “RAMI4.0 – Reference Architecture Model Industry 4.0.,” 11 2016.; TheOPCFoundation, “RAMI4.0 by Martin Hankel (Bosch-Rexroth) at OPC Day Europe 2016,” 2 2017.; Gonz´alez, “Measurement of Areas on a Sphere Using Fibonacci and Latitude-Longitude Lattices,” Mathematical Geosciences, vol. 42, pp. 49–64, 1 2010.; Departamento Nacional de Planeaci´on (DNP), Superintendencia de Industria y Comercio (SIC), Direcci´on Nacional de Derecho de Autor (DNDA), Instituto Colombiano Agropecuario (ICA), Organizaci´on Mundial de la Propiedad Intelectual (OMPI), and Misi´on permanente de Colombia ante las naciones Unidas, “Reporte sobre la informaci ´on en materia de Propiedad Intelectual en Colombia,” tech. rep., 2017.; J. Mountstephens and J. Teo, “Progress and challenges in generative product design: A review of systems,” 12 2020.; Z. Jiang, H. Wen, F. Han, Y. Tang, and Y. Xiong, “Data-driven generative design for mass customization: A case study,” Advanced Engineering Informatics, vol. 54, 10 2022.; P. Wolniak, B. Sauthoff, D. Kloock-Schreiber, and R. Lachmayer, “AUTOMATED PRODUCT FUNCTIONALITY and DESIGN OPTIMIZATION INSTANCING A PRODUCT-SERVICE SYSTEM,” in Proceedings of the Design Society: DESIGN Conference, vol. 1, pp. 1405–1414, Cambridge University Press, 2020.; M. A. S. Al-Shamsi, “Review of Korean Imitation and Innovation in the Last 60 Years,” 3 2022.; B. Bartikowski, F. Fastoso, and H. Gierl, “Luxury cars Made-in-China: Consequences for brand positioning,” Journal of Business Research, vol. 102, pp. 288–297, 9 2019; K. D. Thoben, S. A. Wiesner, and T. Wuest, “Industrie 4.0 and smart manufacturing-a review of research issues and application examples,” 2017.; D. G. Ullman, The Mechanical Design Process, vol. 1. 2010.; A. M. Farid and N. P. Suh, Axiomatic Design in Large Systems. 2016.; R. L. Norton, Dise˜no de m´aquinas. Un enfoque integrado. Pearson Educaci´on, cuarta edi ed., 2011.; S. BuHamdan, A. Alwisy, and A. Bouferguene, “Generative systems in the architecture, engineering and construction industry: A systematic review and analysis,” International Journal of Architectural Computing, 2020.; D. Nagaraj and D. Werth, “Towards a Generalized System for Generative Engineering,” in ACM International Conference Proceeding Series, Association for Computing Machinery, 1 2020.; S. Fox, “A preliminary methodology for generative production systems,” Journal of Manufacturing Technology Management, vol. 22, no. 3, pp. 348–364, 2011.; A. N. Pilagatti, G. Vecchi, E. Atzeni, L. Iuliano, and A. Salmi, “Generative Design and new designers’ role in the manufacturing industry,” in Procedia CIRP, vol. 112, pp. 364–369, Elsevier B.V., 2022.; C. Hyunjin, “A Study on Application of Generative Design System in Manufacturing Process,” in IOP Conference Series: Materials Science and Engineering, vol. 727, Institute of Physics Publishing, 1 2020.; J.Wu, M. Li, Z. Chen, W. Chen, X.Wu, and Y. Xi, “Generative Design of the Roller Seat of the Wind Turbine Blade Turnover Machine Based on Cloud Computing,” ICMAE 2020 - 2020 11th International Conference on Mechanical and Aerospace Engineering, pp. 212–217, 2020.; H. Li and R. Lachmayer, “Automated exploration of design solution space applying the generative design approach,” in Proceedings of the International Conference on Engineering Design, ICED, vol. 2019-August, pp. 1085–1094, Cambridge University Press, 2019.; S. Khan and M. J. Awan, “A generative design technique for exploring shape variations,” Advanced Engineering Informatics, vol. 38, no. October, pp. 712–724, 2018.; S. Khan, E. Gunpinar, and B. Sener, “GenYacht: An interactive generative design system for computer-aided yacht hull design,” Ocean Engineering, vol. 191, no. August, p. 106462, 2019.; E. Gunpinar and S. Gunpinar, “A shape sampling technique via particle tracing for CAD models,” Graphical Models, vol. 96, no. January, pp. 11–29, 2018; S. Oh, Y. Jung, S. Kim, I. Lee, and N. Kang, “Deep generative design: Integration of topology optimization and generative models,” Journal of Mechanical Design, Transactions of the ASME, vol. 141, 11 2019; P. Ghannad and Y. C. Lee, “Automated modular housing design using a module configuration algorithm and a coupled generative adversarial network (CoGAN),” Automation in Construction, vol. 139, 7 2022; N. A. Kallioras and N. D. Lagaros, “DzAI: Deep learning based generative design,” Procedia Manufacturing, vol. 44, pp. 591–598, 2020; N. A. Kallioras and N. D. Lagaros, “Mlgen: Generative design framework based on machine learning and topology optimization,” Applied Sciences (Switzerland), vol. 11, 12 2021; J. C. Garc´ıa Carrero, Planeaci´on de trayectorias en vuelo de un manipulador industrial para el Laboratorio F´abrica Experimental UN. PhD thesis, Universidad Nacional de Colombia, Bogot´a D.C, 2017; C. Sarmiento Fautoque, Desarrollo Te´orico- Experimental en la Geometr´ıa de Maquinado M´ulti-ejes aplicando Ingenier´ıa Inversa Mixta. PhD thesis, Universidad Nacional de Colombia, Bogot´a D.C., 2014; V. Granadeiro, L. Pina, J. P. Duarte, J. R. Correia, and V. M. Leal, “A general indirect representation for optimization of generative design systems by genetic algorithms: Application to a shape grammar-based design system,” Automation in Construction, vol. 35, pp. 374–382, 2013; H. Li and R. Lachmayer, “Generative Design Approach for Modeling Creative Designs,” IOP Conference Series: Materials Science and Engineering, vol. 408, no. 1, 2018; S. S. Pibal, K. Khoss, and I. Kovacic, “Framework of an algorithm-aided BIM approach for modular residential building information models,” International Journal of Architectural Computing, vol. 20, pp. 777–800, 12 2022; M. Younus, C. Peiyong, L. Hu, and F. Yuqing, “MES development and significant applications in manufacturing -A review,” in ICETC 2010 - 2010 2nd International Conference on Education Technology and Computer, vol. 5, 2010; T. A. Jauhar, M. Safdar, I. Kim, and S. Han, “Web-based Product Data Visualization and Feedback between PLM and MES,” in Proceedings - Web3D 2020: 25th ACM Conference on 3D Web Technology, Association for Computing Machinery, Inc, 11 2020; G. Bruno, A. Faveto, and E. Traini, “An open source framework for the storage and reuse of industrial knowledge through the integration of plm and mes,” Management and Production Engineering Review, vol. 11, pp. 62–73, 6 2020; E. Traini, G. Bruno, A. Awouda, P. Chiabert, and F. Lombardi, “Integration Between PLM and MES for One-of-a-Kind Production,” in IFIP Advances in Information and Communication Technology, vol. 565 IFIP, pp. 356–365, Springer, 2019; M. I. Mahmoud, H. H. Ammar, M. M. Hamdy, and M. H. Eissa, “Production operation management using Manufacturing Execution Systems (MES),” in 2015 11th International Computer Engineering Conference: Today Information Society What’s Next?, ICENCO 2015, pp. 111–116, Institute of Electrical and Electronics Engineers Inc., 2 2016; W. Qifeng and W. Zhangjian, “Web services-based system integration approach for manufacturing execution system,” in Proceedings - 2011 International Conference on Internet Computing and Information Services, ICICIS 2011, pp. 469–472, 2011; S.-H. Jing, Q.-J. Meng, and W.-Q. Cao, “Cement Enterprise MES Key Technology Research and Application,” in 2007 International Conference on Machine Learning and Cybernetics, pp. 277–282, IEEE, 8 2007; W. Qu, W. Cao, and Y. C. Su, “Design and implementation of smart manufacturing execution system in solar industry,” Journal of Ambient Intelligence and Humanized Computing, 2020; Y. Yue-Xina and R. Gong-Chang, “Design of Real Time Data Acquisition System Framework for Production Workshop Based on OPC Technology,” in MATEC Web of Conferences, vol. 128, EDP Sciences, 10 2017; X. Zeng, “Design and implementation of production management system in aviation machining workshop based on MES,” in Proceedings - International Conference on Control Science and Electric Power Systems, CSEPS 2021, pp. 385–388, Institute of Electrical and Electronics Engineers Inc., 5 2021; S. Mantravadi, C. Møller, C. LI, and R. Schnyder, “Design choices for next-generation IIoT-connected MES/MOM: An empirical study on smart factories,” Robotics and Computer-Integrated Manufacturing, vol. 73, 2 2022; J. Barata, P. R. da Cunha, A. S. Gonnagar, and M. Mendes, “Product traceability in ceramic industry 4.0: A design approach and cloud-based MES prototype,” in Lecture Notes in Information Systems and Organisation, vol. 26, pp. 187–204, Springer Heidelberg, 2018; M. Ko, C. Lee, and Y. Cho, “Design and Implementation of Cloud-Based Collaborative Manufacturing Execution System in the Korean Fashion Industry,” Applied Sciences (Switzerland), vol. 12, 9 2022; X. Han, M. Li, and X. Zhang, “Design and key technology of MES for spacecraft assembly,” in Proceedings - 2016 6th International Conference on Instrumentation and Measurement, Computer, Communication and Control, IMCCC 2016, pp. 844–847, Institute of Electrical and Electronics Engineers Inc., 12 2016; D. F. Tosse, S. Araujo, and E. C´ordoba, “Plataforma para integraci´on de m´aquinas en laboratorio f´abrica experimental con enfoque de Industria 4.0,” in Innovar para educar (Corporaci´on Cimted© 2020, ed.), vol. 1, pp. 125–146, Medell´ın, Antioquia – Colombia: Corporaci´on Centro Internacional de Marketing Territorial para la Educaci´on y el Desarrollo, primera ed., 2020; R. Y. Zhong, G. Q. Huang, Q. Y. Dai, K. Zhou, T. Qu, and G. J. Hu, “RFID-enabled real-time manufacturing execution system for discrete manufacturing: Software design and implementation,” in 2011 International Conference on Networking, Sensing and Control, ICNSC 2011, pp. 311–316, 2011; Y. Wang, M. Wang, J. Wang, and Y. Zhou, “Design and implementation of device integration framework based on agent technology in MES,” in Procedia CIRP, vol. 83, pp. 485–489, Elsevier B.V., 2019; G. D’Antonio, F. Segonds, J. S. Bedolla, P. Chiabert, and N. Anwer, “A proposal of manufacturing execution system integration in design for additive manufacturing,” in IFIP Advances in Information and Communication Technology, vol. 467, pp. 761–770, Springer New York LLC, 2016; M. Naedele, H. M. Chen, R. Kazman, Y. Cai, L. Xiao, and C. V. Silva, “Manufacturing execution systems: A vision for managing software development,” Journal of Systems and Software, vol. 101, pp. 59–68, 3 2015; T. Masood and R. H. Weston, “Modelling framework to support decision-making in manufacturing enterprises,” Advances in Decision Sciences, vol. 2013, 2013; H. Habib, R. Menhas, and O. McDermott, “Managing Engineering Change within the Paradigm of Product Lifecycle Management,” Processes, vol. 10, 9 2022; M. Hayat and H. Winkler, “Exploring the Basic Features and Challenges of Traditional Product Lifecycle Management Systems,” in IEEE International Conference on Industrial Engineering and Engineering Management, vol. 2022-December, pp. 762–766, IEEE Computer Society, 2022; S. R¨adler and E. Rigger, “A Survey on the Challenges Hindering the Application of Data Science, Digital Twins and Design Automation in Engineering Practice,” in Proceedings of the Design Society, vol. 2, pp. 1699–1708, Cambridge University Press, 5 2022; S. Nzetchou, A. Durupt, S. Remy, and B. Eynard, “Semantic enrichment approach for low-level CAD models managed in PLM context: Literature review and research prospect,” Computers in Industry, vol. 135, 2 2022; M. Lennartsson, S. Andr´e, and F. Elgh, “PLM support for design platforms in industrialized house-building,” Construction Innovation, 2 2021; V. Kopei, O. Onysko, C. Barz, P. Daˇsi´c, and V. Panchuk, “Designing a Multi-Agent PLM System for Threaded Connections Using the Principle of Isomorphism of Regularities of Complex Systems,” Machines, vol. 11, 2 2023; Y. Liao, F. Deschamps, E. d. F. R. Loures, and L. F. P. Ramos, “Past, present and future of Industry 4.0 - a systematic literature review and research agenda proposal,” International Journal of Production Research, vol. 55, no. 12, pp. 3609–3629, 2017; J. W. Veile, D. Kiel, J. M. M¨uller, and K. I. Voigt, “Lessons learned from Industry 4.0 implementation in the German manufacturing industry,” Journal of Manufacturing Technology Management, 2019; “Status Report Reference Architecture Model Industrie 4.0 (RAMI4.0),” tech. rep., 2015; A. F. Cifuentes G´omez, Implementaci´on de sistemas de gesti´on de informaci´on del ciclo de vida de producto basado en el desarrollo de un molde de inyecci´on. PhD thesis, Universidad Nacional de Colombia, Bogot´a, Colombia, 2021; P. Andr´es and C. Parra, “Modelo e-Manufacturing bajo la arquitectura Cloud Manufacturing para el Laboratorio F´abrica Experimental UN,” tech. rep., 2015; M. K. Mohanty, P. Gahan, and S. Choudhury, “Why most of the supplier development programs fail in discrete manufacturing – findings from selected Indian discrete manufacturing industries,” 2014; T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and K. H. Johansson, “A survey of distributed optimization,” Annual Reviews in Control, vol. 47, pp. 278–305, 2019; A. K. Sethi and S. P. Sethi, “Flexibility in manufacturing: A survey,” International Journal of Flexible Manufacturing Systems, vol. 2, no. 4, pp. 289–328, 1990.; S. K. Saren and V. Tiberiu, “Review of Flexible Manufacturing System Based on Modeling and Simulation,” ANNALS OF THE ORADEA UNIVERSITY. Fascicle of Management and Technological Engineering., vol. Volume XXV, no. 1, 2016.; G. Kim, Y. Kwon, E. S. Suh, and J. Ahn, “Analysis of Architectural Complexity for Product Family and Platform,” Journal of Mechanical Design, Transactions of the ASME, vol. 138, no. 7, pp. 1–11, 2016; O. Asikoglu and T. W. Simpson, “A new method for evaluating design dependencies in product architectures,” 12th AIAA Aviation Technology, Integration and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, no. September, pp. 1–11, 2012; M. Lafou, L. Mathieu, S. Pois, and M. Alochet, “Manufacturing System Flexibility: Product Flexibility Assessment,” Procedia CIRP, vol. 41, pp. 99–104, 2016.; F. M. Kasie, G. Bright, and A. Walker, “Decision support systems in manufacturing: a survey and future trends,” Journal of Modelling in Management, vol. 12, no. 3, pp. 432– 454, 2017.; J. Igba, K. Alemzadeh, P. M. Gibbons, and K. Henningsen, “A framework for optimising product performance through feedback and reuse of in-service experience,” Robotics and Computer-Integrated Manufacturing, vol. 36, pp. 2–12, 2015; M. von Stietencron, K. A. Hribernik, C. C. Røstad, B. Henriksen, and K. D. Thoben, “Applying closed-loop product lifecycle management to enable fact based design of boats,” in IFIP Advances in Information and Communication Technology, vol. 517, pp. 522–531, Springer New York LLC, 2017; C. a. Coello Coello and G. B. Lamont, Applications Of Multi-Objective Evolutionary Algorithms. 2004; H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-objective optimization: A short review,” in 2008 IEEE Congress on Evolutionary Computation, CEC 2008, 2008.; G. Chiandussi, M. Codegone, S. Ferrero, and F. E. Varesio, “Comparison of multiobjective optimization methodologies for engineering applications,” Computers and Mathematics with Applications, vol. 63, no. 5, pp. 912–942, 2012.; G. Ortega, E. Filatovas, E. M. Garz´on, and L. G. Casado, “Non-dominated sorting procedure for Pareto dominance ranking on multicore CPU and/or GPU,” Journal of Global Optimization, vol. 69, pp. 607–627, 11 2017; L. B. De Oliveira, C. G. Marcelino, A. Milanes, P. E. Almeida, and L. M. Carvalho, “A successful parallel implementation of NSGA-II on GPU for the energy dispatch problem on hydroelectric power plants,” in 2016 IEEE Congress on Evolutionary Computation, CEC 2016, pp. 4305–4312, Institute of Electrical and Electronics Engineers Inc., 11 2016.; K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.; E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm,” Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100, 2001; P. K. Tripathi, S. Bandyopadhyay, and S. K. Pal, “Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients,” Information Sciences, vol. 177, pp. 5033–5049, 11 2007.; X. Li, “A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization,” Genetic and Evolutionary Computation — GECCO 2003, vol. 2723, pp. 37–48, 6 2003; R. Sedgewick and K. Wayne, “Algorithms,” tech. rep; J. J. Craig, P. Prentice, and P. P. Hall, “Introduction to Robotics Mechanics and Control Third Edition,” tech. rep., 2005.; I. Viana, J.-J. Orteu, N. Cornille, and F. Bugarin, “Inspection of aeronautical mechanical parts with a pan-tilt-zoom camera: an approach guided by the computer-aided design model,” Journal of Electronic Imaging, vol. 24, no. 6, p. 061118, 2015; H. Huang, J. Liu, S. Liu, T. Wu, and P. Jin, “A method for classifying tube structures based on shape descriptors and a random forest classifier,” Measurement: Journal of the International Measurement Confederation, vol. 158, p. 107705, 2020; F. Hui, P. Payeur, and A. M. Cretu, “Visual tracking of deformation and classification of non-rigid objects with robot hand probing,” Robotics, vol. 6, no. 1, 2017.; J. K. Oh, S. Lee, and C. H. Lee, “Stereo vision based automation for a bin-picking solution,” International Journal of Control, Automation and Systems, vol. 10, no. 2, pp. 362–373, 2012; E. Gunpinar and S. Khan, A multi-criteria based selection method using non-dominated sorting for genetic algorithm based design. No. 65, Springer US, 2019; https://repositorio.unal.edu.co/handle/unal/85019; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
14
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: https://inria.hal.science/inria-00105010 ; [Research Report] PI 1818, 2006, pp.22.
Predmety: Wcet, hard real-time system, compilation, software, hardware, memory, cache, ACM: C.: Computer Systems Organization/C.3: SPECIAL-PURPOSE AND APPLICATION-BASED SYSTEMS, ACM: D.: Software/D.4: OPERATING SYSTEMS, [INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR]
Relation: Report N°: PI 1818
-
15
Autori:
Zdroj: Wouda, S, Joosten, S J C & Schmaltz, J 2015, Process algebra semantics & reachability analysis for micro-architectural models of communication fabrics. in 2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign, MEMOCODE 2015., 7340487, Institute of Electrical and Electronics Engineers, pp. 198-207, ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE 2015), Austin, United States, 21/09/15. https://doi.org/10.1109/MEMCOD.2015.7340487
Predmety: Algebra, Computational modeling, Fabrics, Ports (Computers), Reachability analysis, Semantics, System recovery
Relation: info:eu-repo/semantics/altIdentifier/isbn/9781509002375; urn:ISBN:9781509002375
-
16
Autori: a ďalší
Prispievatelia: a ďalší
Zdroj: LCTES - ACM International Conference on Languages, Compilers, and Tools for Embedded Systems ; https://inria.hal.science/hal-00750870 ; LCTES - ACM International Conference on Languages, Compilers, and Tools for Embedded Systems, Jun 2008, Tucson, United States. pp.101-110, ⟨10.1145/1375657.1375672⟩
Predmety: synchronous programming, distribution, type systems, functional programming, ACM: D.: Software/D.1: PROGRAMMING TECHNIQUES/D.1.3: Concurrent Programming/D.1.3.0: Distributed programming, ACM: D.: Software/D.3: PROGRAMMING LANGUAGES/D.3.2: Language Classifications/D.3.2.1: Concurrent, distributed, and parallel languages, [INFO.INFO-PL]Computer Science [cs]/Programming Languages [cs.PL]
Geografické téma: Tucson, United States
Relation: info:eu-repo/semantics/altIdentifier/arxiv/1211.2776; ARXIV: 1211.2776
-
17
Autori:
Zdroj: ACM SIGARCH Computer Architecture News ; volume 25, issue 2, page 50-61 ; ISSN 0163-5964
Dostupnosť: https://doi.org/10.1145/384286.264129
https://dl.acm.org/doi/10.1145/384286.264129
https://dl.acm.org/doi/pdf/10.1145/384286.264129 -
18
Autori: Graham, Peter C. J.
Zdroj: ACM SIGARCH Computer Architecture News ; volume 12, issue 5, page 12-18 ; ISSN 0163-5964
Dostupnosť: https://doi.org/10.1145/859576.859578
https://dl.acm.org/doi/10.1145/859576.859578
https://dl.acm.org/doi/pdf/10.1145/859576.859578 -
19
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: 000 - Ciencias de la computación, información y obras generales::003 - Sistemas, 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería, Radiation, Radiación, Métodos orientados a objetos (computadores), Object-oriented methods (computer), Diagnosis computer assisted, Diagnóstico por computación, Fault Tolerance, Approximate Computing, Reliability, Soft Errors, Tolerancia a fallos, Computación aproximada, Confiabilidad
Popis súboru: xviii, 135 páginas; application/pdf
Relation: Aamodt, T. M. and Chow, P. (2008). Compile-time and instruction-set methods for improving floating-to fixed-point conversion accuracy. ACM Transactions on Embedded Computing Systems, 7(3):1–27.; AEC (2014). FAILURE MECHANISM BASED STRESS TEST QUALIFICATION FOR INTEGRATED CIRCUITS Automotive Electronics Council Rev-H.; Agarwal, A., Rinard, M., Sidiroglou, S., Misailovic, S., and Hoffmann, H. (2009). Using Code Perforation to Improve Performance, Reduce Energy Consumption, and Respond to Failures. Technical report, MIT.; Alaghi, A. and Hayes, J. P. (2015). STRAUSS: Spectral Transform Use in Stochastic Circuit Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(11):1770–1783.; Aponte-Moreno, A., Isaza-Gonzalez, J., Serrano-Cases, A., Martinez-Alvarez, A., Cuenca-Asensi, S., and Restrepo-Calle, F. (2020). An experimental comparison of fault injection tools for microprocessor-based systems. In 21st IEEE Latin-American Test Symposium, LATS 2020.; Aponte-Moreno, A., Isaza-González, J., Serrano-Cases, A., Martínez-Álvarez, A., Cuenca-Asensi, S., and Restrepo-Calle, F. (2023). Evaluation of fault injection tools for reliability estimation of microprocessor-based embedded systems. Microprocessors and Microsystems, 96:104723.; Aponte-Moreno, A., Moncada, A., Restrepo-Calle, F., and Pedraza, C. (2018). A review of approximate computing techniques towards fault mitigation in HW/SW systems. In 2018 IEEE 19th Latin- American Test Symposium (LATS), pages 1–6. IEEE.; Aponte-Moreno, A., Pedraza, C., and Restrepo-Calle, F. (2019a). Reducing overheads in software-based fault tolerant systems using approximate computing. In LATS 2019 - 20th IEEE Latin American Test Symposium.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2019b). A Low-Overhead Radiation Hardening Approach using Approximate Computing and Selective Fault Tolerance Techniques at the Software Level. In 2019 19th European Conference on Radiation and Its Effects on Components and Systems (RADECS), pages 1–4. IEEE.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2019c). MiFIT: A fault injection tool to validate the reliability of microprocessors. In LATS 2019 - 20th IEEE Latin American Test Symposium.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2019d). Using approximate computing and selective hardening for the reduction of overheads in the design of radiation-induced fault-tolerant systems. Electronics (Switzerland), 8.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2021a). A Low-cost Fault Tolerance Method for ARM and RISC-V Microprocessor-based Systems using Temporal Redundancy and Approximate Computing through Simplified Iterations. Journal of Integrated Circuits and Systems, 16(3):1–14.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2021b). Reliability Evaluation of RISC-V and ARM Microprocessors Through a New Fault Injection Tool. In 2021 IEEE 22nd Latin American Test Symposium (LATS), pages 1–6. IEEE.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. A. (2021c). FTxAC: Leveraging the Approximate Computing Paradigm in the Design of Fault-Tolerant Embedded Systems to Reduce Overheads. IEEE Transactions on Emerging Topics in Computing, 9(2):797–810.; Arifeen, T., Hassan, A. S., Moradian, H., and Lee, J. A. (2016). Probing Approximate TMR in Error Resilient Applications for Better Design Tradeoffs. In Proceedings - 19th Euromicro Conference on Digital System Design, DSD 2016, pages 637–640.; ARM (2023). Arm ref. manual.; Augustin, M., Gossel, M., and Kraemer, R. (2011). Implementation of Selective Fault Tolerance with conventional synthesis tools. In 14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems, pages 213–218. IEEE.; Avizienis, A. (1985). The N-Version Approach to Fault-Tolerant Software. IEEE Transactions on Software Engineering, SE-11(12):1491–1501.; Azambuja, J. R., Lapolli, Â., Rosa, L., and Kastensmidt, F. L. (2011a). Detecting SEEs in microprocessors through a non-intrusive hybrid technique. IEEE Transactions on Nuclear Science, 58(3 PART 2):993–1000.; Azambuja, J. R., Pagliarini, S., Rosa, L., and Kastensmidt, F. L. (2011b). Exploring the Limitations of Software-based Techniques in SEE Fault Coverage. Journal of Electronic Testing, 27(4):541–550.; Baek, W. and Chilimbi, T. M. (2010). Green: A Framework for Supporting Energy-Conscious Programming using Controlled Approximation. ACM SIGPLAN Notices, 45(6):198–209.; Baharvand, F. and Miremadi, S. G. (2020). Lexact: Low energy n-modular redundancy using approximate computing for real-time multicore processors. IEEE Transactions on Emerging Topics in Computing, 8(2):431–441.; Barr, M. and Massa, A. (2006). Programming embedded systems: with C and GNU development tools. O’Reilly Media, 2 edition.; Bellard, F. (2005). QEMU, a Fast and Portable Dynamic Translator. In USENIX Annual Technical Conf, pages 41–46.; Benso, A., Di Carlo, S., Di Natale, G., Prinetto, P., and Tagliaferri, L. (2001). Control-flow checking via regular expressions. In Proceedings 10th Asian Test Symposium, pages 299–303. IEEE.; Bernardi, P., Bolzani Poehls, L., Grosso, M., and Sonza Reorda, M. (2010). A Hybrid Approach for Detection and Correction of Transient Faults in SoCs. IEEE Transactions on Dependable and Secure Computing, 7(4):439–445.; Bohman, M., James, B., Wirthlin, M. J., Quinn, H., and Goeders, J. (2019). Microcontroller compiler-assisted software fault tolerance. IEEE Transactions on Nuclear Science, 66(1):223–232.; Boston, B., Sampson, A., Grossman, D., and Ceze, L. (2015). Probability type inference for flexible approximate programming. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, pages 470–487, New York, NY, USA. ACM.; Carbin, M., Misailovic, S., and Rinard, M. C. (2013). Verifying quantitative reliability for programs that execute on unreliable hardware. In Proceedings of the 2013 ACM SIGPLAN international conference on Object oriented programming systems languages & applications, pages 33–52, New York, NY, USA. ACM.; Chang, I. J., Mohapatra, D., and Roy, K. (2011). A Priority-Based 6T/8T Hybrid SRAM Architecture for Aggressive Voltage Scaling in Video Applications. IEEE Transactions on Circuits and Systems for Video Technology, 21(2):101–112.; Chang, J., Reis, G., and August, D. (2006). Automatic instruction-level software-only recovery. In International Conference on Dependable Systems and Networks (DSN’06), pages 83–92. IEEE.; Chen, K., Han, J., and Lombardi, F. (2017). Two approximate voting schemes for reliable computing. IEEE Transactions on Computers, 66(7):1227–1239.; Chielle, E., Azambuja, J. R., Barth, R. S., Almeida, F., and Kastensmidt, F. L. (2013). Evaluating selective redundancy in data-flow software-based techniques. IEEE Transactions on Nuclear Science, 60(4):2768–2775.; Chippa, V. K., Mohapatra, D., Roy, K., Chakradhar, S. T., and Raghunathan, A. (2014). Scalable Effort Hardware Design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(9):2004–2016.; Chippa, V. K., Roy, K., Chakradhar, S. T., and Raghunathan, A. (2013a). Managing the Quality vs. Efficiency Trade-off Using Dynamic Effort Scaling. ACM Transactions on Embedded Computing Systems, 12(2s):1–23.; Chippa, V. K., Venkataramani, S., Chakradhar, S. T., Roy, K., and Raghunathan, A. (2013b). Approximate computing: An integrated hardware approach. In 2013 Asilomar Conference on Signals, Systems and Computers, pages 111–117. IEEE.; Cho, H., Leem, L., and Mitra, S. (2012). ERSA: Error Resilient System Architecture for Probabilistic Applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 31(4):546–558.; Choudhury, M. R. and Mohanram, K. (2008). Approximate logic circuits for low overhead, non-intrusive concurrent error detection. In 2008 Design, Automation and Test in Europe, pages 903–908. IEEE.; Clark, L. T., Patterson, D. W., Hindman, N. D., Holbert, K. E., Maurya, S., and Guertin, S. M. (2011). A Dual Mode Redundant Approach for Microprocessor Soft Error Hardness. IEEE Transactions on Nuclear Science, 58(6):3018–3025.; Creswell, J. W. (2014). Research design : qualitative, quantitative, and mixed methods approaches. SAGE Publications, 4 edition.; Deveautour, B., Traiola, M., Virazel, A., and Girard, P. (2020). Qamr: An approximation-based fully reliable tmr alternative for area overhead reduction. Proceedings of the European Test Workshop, 2020-May.; Deveautour, B., Traiola, M., Virazel, A., and Girard, P. (2021). Reducing Overprovision of Triple Modular Reduncancy Owing to Approximate Computing. In 2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS), pages 1–7. IEEE.; Di Mascio, S., Menicucci, A., Furano, G., Monteleone, C., and Ottavi, M. (2019). The case for risc-v in space. In Saponara, S. and De Gloria, A., editors, Applications in Electronics Pervading Industry, Environment and Society, pages 319–325, Cham. Springer International Publishing.; Doochul Shin and Gupta, S. K. (2011). A new circuit simplification method for error tolerant applications. In 2011 Design, Automation & Test in Europe, pages 1–6. IEEE.; Dubrova, E. (2013). Fault-Tolerant Design. Springer New York, New York, NY.; ECSS (2016). Techniques for radiation effects mitigation in ASICs and FPGAs handbook (1 September 2016) %7C European Cooperation for Space Standardization. ESA Requirements and Standards Division.; Esmaeilzadeh, H., Sampson, A., Ceze, L., and Burger, D. (2012a). Architecture support for disciplined approximate programming. In Proceedings of the 17th international conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS ’12, page 301, New York, New York, USA. ACM Press.; Esmaeilzadeh, H., Sampson, A., Ceze, L., and Burger, D. (2012b). Neural Acceleration for General-Purpose Approximate Programs. In Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM International Symposium. IEEE.; Fulton, R. and Vandermolen, R. (2014). Airborne electronic hardware design assurance : a practitioner’s guide to RTCA/DO-254. CRC Press.; Gala, N., Venkataramani, S., Raghunathan, A., and Kamakoti, V. (2017). Approximate Error Detection With Stochastic Checkers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(8):2258–2270.; Gao, M. and Qu, G. (2017). A novel approximate computing based security primitive for the Internet of Things. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–4. IEEE.; Garcia-Astudillo, L. A., Entrena, L., Lindoso, A., and Martin, H. (2022). Reduced resolution redundancy: A novel approximate error mitigation technique. IEEE Access, 10:20643–20651.; Goloubeva, O., Rebaudengo, M., Sonza Reorda, M., and Violante, M. (2003). Soft-error detection using control flow assertions. In Proceedings. 16th IEEE Symposium on Computer Arithmetic, pages 581–588. IEEE Comput. Soc.; Gomes, I. A. C. and Kastensmidt, F. G. L. (2013). Reducing TMR overhead by combining approximate circuit, transistor topology and input permutation approaches. Chip in Curitiba 2013 - SBCCI 2013: 26th Symposium on Integrated Circuits and Systems Design.; Gomes, I. A. C., Martins, M., Reis, A., and Kastensmidt, F. L. (2015). Using only redundant modules with approximate logic to reduce drastically area overhead in TMR. In 2015 16th Latin-American Test Symposium (LATS), pages 1–6. IEEE.; Gupta, V., Mohapatra, D., Raghunathan, A., and Roy, K. (2013). Low-Power Digital Signal Processing Using Approximate Adders. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(1):124–137.; Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T., and Brown, R. B. (2001). MiBench: A free, commercially representative embedded benchmark suite. Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop, pages 3–14.; Han, J. and Orshansky, M. (2013). Approximate computing: An emerging paradigm for energy-efficient design. Proceedings - 2013 18th IEEE European Test Symposium, ETS 2013.; He, X., Yan, G., Han, Y., and Li, X. (2016). ACR: Enabling computation reuse for approximate computing. Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC, 25-28-Janu:643–648.; Hegde, R. and Shanbhag, N. (2001). Soft digital signal processing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(6):813–823.; Herrera-Alzu, I. and Lopez-Vallejo, M. (2013). Design Techniques for Xilinx Virtex FPGA Configuration Memory Scrubbers. IEEE Transactions on Nuclear Science, 60(1):376–385.; Ho, N.-M., Manogaran, E., Wong, W.-F., and Anoosheh, A. (2017). Efficient floating point precision tuning for approximate computing. In 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), pages 63–68. IEEE.; Huang, Q. and Jiang, J. (2019). An overview of radiation effects on electronic devices under severe accident conditions in NPPs, rad-hardened design techniques and simulation tools. Progress in Nuclear Energy, 114(November 2018):105–120.; IEC (2012). INTERNATIONAL STANDARD Process management for avionics – Atmospheric radiation effects – Part 1: Accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment.; ISO (2018). ISO 26262 Functional Safety Sandards for Road Vehicles.; James, B., Quinn, H., Wirthlin, M., and Goeders, J. (2020). Applying Compiler-Automated Software Fault Tolerance to Multiple Processor Platforms. IEEE Transactions on Nuclear Science, 67(1):321–327.; Karnik, T., Hazucha, P., and Patel, J. (2004). Characterization of soft errors caused by single event upsets in CMOS processes. IEEE Transactions on Dependable and Secure Computing, 1(2):128–143.; Keramidas, G., Kokkala, C., and Stamoulis, I. (2015). Clumsy Value Cache: An Approximate Memoization Technique for Mobile GPU Fragment Shaders. In Workshop on Approximate Computing (WAPCO’15).; Kooli, M. and Di Natale, G. (2014). A survey on simulation-based fault injection tools for complex systems. 9th IEEE Int Conf on Design and Technology of Integrated Systems in Nanoscale Era, DTIS 2014, pages 1–6.; Leveugle, R., Calvez, A., Maistri, P., and Vanhauwaert, P. (2009). Statistical fault injection: Quantified error and confidence. In Design, Automation & Test in Europe Conf, pages 502–506. IEEE.; Liu, K., Li, Y., and Ouyang, L. (2021). Fast recoverable heterogeneous quad-core lockstep architecture. 2021 International Conference on Advanced Computing and Endogenous Security, ICACES 2021.; LLVM (2023). The llvm compiler infrastructure.; Lotfi, A., Rahimi, A., Yazdanbakhsh, A., Esmaeilzadeh, H., and Gupta, R. K. (2016). GRATER: An Approximation Workflow for Exploiting Data-Level Parallelism in FPGA Acceleration. Design, Automation and Test in Europe (DATE). Design, Automation & Test in Europe (DATE), March 14-18, Dresden, Germany, pages 1393–1398.; Mahdiani, H. R., Ahmadi, A., Fakhraie, S. M., and Lucas, C. (2010). Bio-Inspired Imprecise Computational Blocks for Efficient VLSI Implementation of Soft-Computing Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(4):850–862.; Mahmood, A. and McCluskey, E. (1988). Concurrent error detection using watchdog processors-a survey. IEEE Transactions on Computers, 37(2):160–174.; Martínez-Álvarez, A., Cuenca-Asensi, S., and Restrepo-Calle, F. (2016). Soft Error Mitigation in Soft-Core Processors. In Kastensmidt, F. and Rech, P., editors, FPGAs and Parallel Architectures for Aerospace Applications, chapter 16, pages 239–258. Springer International Publishing, Cham.; Martinez-Alvarez, A., Cuenca-Asensi, S., Restrepo-Calle, F., Pinto, F. R. P., Guzman-Miranda, H., and Aguirre, M. A. (2012). Compiler-Directed Soft Error Mitigation for Embedded Systems. IEEE Transactions on Dependable and Secure Computing, 9(2):159–172.; Martinez-Alvarez, A., Restrepo-Calle, F., Cuenca-Asensi, S., Reyneri, L. M., Lindoso, A., and Entrena, L. (2016). A Hardware-Software Approach for On-Line Soft Error Mitigation in Interrupt-Driven Applications. IEEE Transactions on Dependable and Secure Computing, 13(4):502–508.; McAfee, L. and Olukotun, K. (2015). EMEURO: A framework for generating multi-purpose accelerators via deep learning. In 2015 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), pages 125–135. IEEE.; Menard, D., Chillet, D., and Sentieys, O. (2006). Floating-to-Fixed-Point Conversion for Digital Signal Processors. EURASIP Journal on Advances in Signal Processing, 2006(1):096421.; Miao, J., Gerstlauer, A., and Orshansky, M. (2013). Approximate logic synthesis under general error magnitude and frequency constraints. In 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 779–786. IEEE.; Misailovic, S., Carbin, M., Achour, S., Qi, Z., and Rinard, M. C. (2014). Chisel: reliability- and accuracy-aware optimization of approximate computational kernels. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications - OOPSLA ’14, pages 309–328, New York, New York, USA. ACM Press.; Misailovic, S., Sidiroglou, S., Hoffmann, H., and Rinard, M. (2010). Quality of service profiling. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - ICSE ’10, volume 1, page 25, New York, New York, USA. ACM Press.; Mishra, A. K., Barik, R., and Paul, S. (2014). iACT: A Software-Hardware Framework for Understanding the Scope of Approximate Computing. In Wacas.; Mittal, S. (2016). A Survey of Techniques for Approximate Computing. ACM Computing Surveys, 48(4):1–33.; Mohanram, K. and Touba, N. (2003). Partial error masking to reduce soft error failure rate in logic circuits. In Proceedings 18th IEEE Symposium on Defect and Fault Tolerance in VLSI Systems, pages 433–440. IEEE Comput. Soc.; Mohapatra, D., Chippa, V. K., Raghunathan, A., and Roy, K. (2011). Design of voltage-scalable meta-functions for approximate computing. In 2011 Design, Automation & Test in Europe, pages 1–6. IEEE.; Mukherjee, S., Kontz, M., and Reinhardt, S. (2002). Detailed design and evaluation of redundant multi-threading alternatives. In Proceedings 29th Annual International Symposium on Computer Architecture, pages 99–110. IEEE Comput. Soc.; Mukherjee, S., Weaver, C., Emer, J., Reinhardt, S., and Austin, T. (2003). A systematic methodology to compute the architectural vulnerability factors for a high-performance microprocessor. In 22nd Digital Avionics Systems Conference. Proceedings (Cat. No.03CH37449), pages 29–40. IEEE Comput. Soc.; Nicolaidis, M. (2005). Design for soft error mitigation. IEEE Transactions on Device and Materials Reliability, 5(3):405–418.; Nicolaidis, M., editor (2011). Soft Errors in Modern Electronic Systems, volume 41 of Frontiers in Electronic Testing. Springer US, Boston, MA.; Oh, N. and McCluskey, E. J. (2002). Error detection by selective procedure call duplication for low energy consumption. IEEE Transactions on Reliability, 51(4):392–402.; Omar, H., Shi, Q., Ahmad, M., Dogan, H., and Khan, O. (2018). Declarative Resilience. ACM Transactions on Embedded Computing Systems, 17(4):1–27.; Parr, T. (2013). The Definite ANTLR 4 Reference. The Pragmatic Bookshelf, Dallas.; Patterson, D. and Waterman, A. (2017). The RISC-V Reader: An Open Architecture Atlas. Strawberry Canyon.; Qian Zhang, Yuan, F., Ye, R., and Xu, Q. (2014). ApproxIt: An approximate computing framework for iterative methods. In 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6. IEEE.; Quinn, H., Black, D., Robinson, W., and Buchner, S. (2013). Fault simulation and emulation tools to augment radiation-hardness assurance testing. IEEE Trans Nuclear Science, 60(3):2119–2142.; Ragel, R. G. and Parameswaran, S. (2011). A hybrid hardware–software technique to improve reliability in embedded processors. ACM Transactions on Embedded Computing Systems, 10(3):1–16.; Rajesh Venkatasubramanian, Hayes, J., and Murray, B. (2003). Low-cost on-line fault detection using control flow assertions. In 9th IEEE On-Line Testing Symposium, 2003. IOLTS 2003., pages 137–143. IEEE Comput. Soc.; Ranjan, A., Raha, A., Venkataramani, S., Roy, K., and Raghunathan, A. (2014). ASLAN: Synthesis of approximate sequential circuits. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014, pages 1–6, New Jersey. IEEE Conference Publications.; Reddy, V. K., Rotenberg, E., and Parthasarathy, S. (2006). Understanding prediction-based partial redundant threading for low-overhead, high- coverage fault tolerance. ACM SIGARCH Computer Architecture News, 34(5):83.; Reis, G., Chang, J., Vachharajani, N., Rangan, R., August, D., and Mukherjee, S. (2005). Design and Evaluation of Hybrid Fault-Detection Systems. In 32nd International Symposium on Computer Architecture (ISCA’05), pages 148–159. IEEE.; Renganarayana, L., Srinivasan, V., Nair, R., and Prener, D. (2012). Programming with relaxed synchronization. In Proceedings of the 2012 ACM workshop on Relaxing synchronization for multicore and manycore scalability - RACES ’12, page 41, New York, New York, USA. ACM Press.; Restrepo-Calle, F., Martínez-Álvarez, A., Cuenca-Asensi, S., and Jimeno-Morenilla, A. (2013). Selective SWIFT-R. A Flexible Software-Based Technique for Soft Error Mitigation in Low-Cost Embedded Systems. Journal of Electronic Testing, 29(6):825–838.; Rodrigues, C., Marques, I., Pinto, S., Gomes, T., and Tavares, A. (2019). Towards a heterogeneous fault-tolerance architecture based on arm and risc-v processors. IECON Proceedings (Industrial Electronics Conference), 2019-October:3112–3117.; Rodrigues, G. S., Barros de Oliveira, A., Bosio, A., Kastensmidt, F. L., and Pignaton de Freitas, E. (2018). ARFT: An Approximative Redundant Technique for Fault Tolerance. In 2018 Conference on Design of Circuits and Integrated Systems (DCIS), pages 1–6. IEEE.; Roy, D. B., Fritzmann, T., and Sigl, G. (2020). Efficient hardware/software co-design for post-quantum crypto algorithm sike on arm and risc-v based microcontrollers. In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pages 1–9.; Rubio-González, C., Nguyen, C., Nguyen, H. D., Demmel, J., Kahan, W., Sen, K., Bailey, D. H., Iancu, C., and Hough, D. (2013). Precimonious. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on - SC ’13, pages 1–12, New York, New York, USA. ACM Press.; Salehi, M., Tavana, M. K., Rehman, S., Kriebel, F., Shafique, M., Ejlali, A., and Henkel, J. (2015). DRVS: Power-efficient reliability management through Dynamic Redundancy and Voltage Scaling under variations. In 2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pages 225–230. IEEE.; Samadi, M., Lee, J., Jamshidi, D. A., Hormati, A., and Mahlke, S. (2013). SAGE: Self-tuning approximation for graphics engines. MICRO 2013 - Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, pages 13–24.; Sampson, A. (2015). Hardware and Software for Approximate Computing. PhD thesis, University of Washington.; Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., and Grossman, D. (2011). EnerJ: approximate data types for safe and general low-power computation. In Proceedings of the 32nd ACM SIGPLAN conference on Programming language design and implementation - PLDI ’11, page 164, New York, New York, USA. ACM Press.; Sampson, A., Nelson, J., Strauss, K., and Ceze, L. (2014). Approximate Storage in Solid-State Memories. ACM Transactions on Computer Systems, 32(3):1–23.; Sampson, A., Ransford, B., and Ceze, L. (2015). ACCEPT: A Programmer-Guided Compiler Framework for Practical Approximate Computing. University of Washington Technical Report UW-CSE-15-01.; Sanchez, A., Entrena, L., and Kastensmidt, F. (2018). Approximate TMR for selective error mitigation in FPGAs based on testability analysis. In 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pages 112–119. IEEE.; Sanchez-Clemente, A. J., Entrena, L., and Garcia-Valderas, M. (2016). Partial TMR in FPGAs Using Approximate Logic Circuits. IEEE Transactions on Nuclear Science, 63(4):2233–2240.; Shi, Q., Hoffmann, H., and Khan, O. (2015). A Cross-Layer Multicore Architecture to Tradeoff Program Accuracy and Resilience Overheads. IEEE Computer Architecture Letters, 14(2):85–89.; Shivakumar, P., Kistler, M. D., Keckler, S. W., Burger, D. C., and Alvisi, L. (2002). Modeling the effect of technology trends on the soft error rate of combinational logic. Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on, pages 389–398.; Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., and Rinard, M. (2011). Managing performance vs. accuracy trade-offs with loop perforation. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software engineering - SIGSOFT/FSE ’11, page 124, New York, New York, USA. ACM Press.; Stanley-Marbell, P., Alaghi, A., Carbin, M., Darulova, E., Dolecek, L., Gerstlauer, A., Gillani, G., Jevdjic, D., Moreau, T., Cacciotti, M., Daglis, A., Jerger, N. E., Falsafi, B., Misailovic, S., Sampson, A., and Zufferey, D. (2018). Exploiting errors for efficiency: A survey from circuits to algorithms.; Taher, F. N., Callenes-Sloan, J., and Schafer, B. C. (2018). A Machine Learning based Hard Fault Recuperation Model for Approximate Hardware Accelerators. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6. IEEE.; Texas Instruments, I. (2023). Msp430 ultra-low-power mcus.; Tiwari, V., Malik, S., and Wolfe, A. (1994). Power analysis of embedded software: a first step towards software power minimization. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2(4):437–445.; Tofallis, C. (2015). A better measure of relative prediction accuracy for model selection and model estimation. Journal of the Operational Research Society, 66(8):1352–1362.; Traiola, M., Echavarria, J., Bosio, A., Teich, J., and O’Connor, I. (2021). Design Space Exploration of Approximation-Based Quadruple Modular Redundancy Circuits. In IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD, volume 2021-November, pages 1–9. IEEE.; Tsuchiya, T., Ootsu, K., Yokota, T., and Kojima, S. (2022). Assembly code translation from arm64 to risc-v. Proceedings - 2022 23rd ACIS International Summer Virtual Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD-Summer 2022, pages 68–73.; Van Leussen, M., Huisken, J., Wang, L., Jiao, H., and Pineda De Gyvez, J. (2017). Reconfigurable Support Vector Machine Classifier with Approximate Computing. In 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 13–18. IEEE.; Venkataramani, S., Chippa, V. K., Chakradhar, S. T., Roy, K., and Raghunathan, A. (2013). Quality programmable vector processors for approximate computing. In 2013 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1–12.; Venkataramani, S., Sabne, A., Kozhikkottu, V., Roy, K., and Raghunathan, A. (2012). SALSA: Systematic logic synthesis of approximate circuits. In Proceedings of the 49th Annual Design Automation Conference on - DAC ’12, page 796, New York, New York, USA. ACM Press.; Vera, X., Abella, J., Carretero, J., and González, A. (2009). Selective replication. ACM Transactions on Computer Systems, 27(4):1–30.; Wang, Y., Dong, J., Xu, Q., and Qu, G. (2021). Ftapprox: A fault-tolerant approximate arithmetic computing data format. Proceedings -Design, Automation and Test in Europe, DATE, 2021-February:1548–1551.; Xu, Q., Mytkowicz, T., and Kim, N. S. (2016). Approximate Computing: A Survey. IEEE Design and Test, 33(1):8–22.; Yang, Z., Jain, A., Liang, J., Han, J., and Lombardi, F. (2013). Approximate XOR/XNOR-based adders for inexact computing. In 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), pages 690–693. IEEE.; Yanmei Li, Dongmei Li, and Zhihua Wang (2000). A new approach to detect-mitigate-correct radiation-induced faults for SRAM-based FPGAs in aerospace application. In Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093), volume 1, pages 588–594. IEEE.; Yazdanbakhsh, A., Mahajan, D., Esmaeilzadeh, H., and Lotfi-Kamran, P. (2017). AxBench: A Multiplatform Benchmark Suite for Approximate Computing. IEEE Design & Test, 34(2):60–68.; Yen-Kuang Chen, Chhugani, J., Dubey, P., Hughes, C., Daehyun Kim, Kumar, S., Lee, V., Nguyen, A., and Smelyanskiy, M. (2008). Convergence of Recognition, Mining, and Synthesis Workloads and Its Implications. Proceedings of the IEEE, 96(5):790–807.; Zhang, Q., Wang, T., Tian, Y., Yuan, F., and Xu, Q. (2015). ApproxANN: An Approximate Computing Framework for Artificial Neural Network. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015, pages 701–706, New Jersey. IEEE Conference Publications.; https://repositorio.unal.edu.co/handle/unal/85008; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
20
Autori: a ďalší
Predmety: Biogenética, Globalización, Impresión 3D, Informática, Inteligencia artificial, Internet de las cosas, Nanotecnología, Robótica, Tecnologías disruptivas, 3D printing, Artificial intelligence, Biogenetics, Computer science, Disruptive technologies, Globalization, Internet of things, Nanotechnology, Robotics
Popis súboru: 336 p.; application/vnd.openxmlformats-officedocument.wordprocessingml.document; application/octet-stream
Relation: Pensamiento global; Agarwal, R. y Braguinsky, R. (2015). Industry Evolution and Entrepreneurship: Steven Klepper’s Contributions to Industrial Organization, Strategy, Technological Change, and Entrepreneurship. Strategic Entrepreneurship Journal, (9), 380-397.; Andersen, E. S., Dahl, M. S., Lundvall, B.-Å. y Reichstein, T. (2006). Schumpeter’s Process of Creative Destruction and the Scandinavian Systems: A Tale of Two Effects. Ponencia presentada en druid Conference on Knowledge, Innovation and Competitiveness, Copenhagen.; Anderson, C. (2006). The Long Tail: Why the Future of Business is Selling Less of More. Westport: Hyperion e-books. Anderson, P. y Tushman, M. L. (1990). Technological Discontinuities and Dominant Designs: A Cyclical Model of Technological Change. Administrative Science Quarterly, 35(4), 604-633.; Andrei, A. G. y Dumea, A. (2010). Economics of Long Tail, A Challenge for Branding. The Annals of the “Ştefan cel Mare” University of Suceava, (10), 210-216.; Audretsch, D. B. y Thurik, A. R. (2003). Entrepreneurship, Industry Evolution and Economic Growth. Austrian Economics and Entrepreneurial Studies. Advances in Austrian Economics, 6, 39-53; Barnett, C. (2016). The Disruption of Venture Capital. Startupgrind. Recuperado el 3 de octubre del 2018, de medium.com; Bennett, D. (2014). Clayton Christensen Responds to New Yorker Takedown of ‘Disruptive Innovation’. Bloomberg. Recuperado el 3 de julio del 2018, de books.google.com.co; Bower, J. L. y Christensen, C. M. (1995). Disruptive Technologies: Catching the Wave. Harvard Businees Review, 75(1).; Bridgman, T., Cummings, S. y McLaughlin, C. (2016). Restating the Case: How Revisiting the Development of the Case Method can Help us Think Differently About the Future of the Business Scholl. Academy of Management Learning y Education, 15(4).; Brioschi, M. R. (2012-2013). The problem of novelty according C.S. Peirce and A.N. Whitehead (tesis doctoral, Università Degli Studi Milano, Milán, Italia.; Buchler, J. (1955). Philosophical Writings of Peirce Selected and edited with an introduction by Justus Buchler. Nueva York: Dover Publications Inc.; CBInsights (2018a). From Energy to Transport to Healthcare, Here Are 8 Industries Being Disrupted by Elon Musk and his Companies. Recuperado el 1 de octubre del 2018, de www.cbinsights.com; CBInsights (2018b). Venture Capital Funnel Shows Odds of Becoming a Unicorn Are About 1 %. Recuperado el 23 de septiembre del 2018, de www.cbinsights.com; CBInsights (2018c). Killing Strategy: The Disruption of Management Consulting May 31. Recuperado el 22 de septiembre del 2018, de www.cbinsights.com; CBInsights (2018d). Amidst The Retail Apocalypse, Target, Nike, y Adidas Are Using These Local Strategies to Bring Customers in the Door. Recuperado el 2 de octubre del 2018, de www.cbinsights.com; Chandler, A. D. (1962). Strategy and Structure: Chapters in the History of the Industrial Enterprise. Cambridge: The MIT Press.; Chen, J., Yin, X. y Mei, L. (2018). Holistic Innovation: An Emerging Innovation Paradigm. International Journal of Innovation Studies, 2(1), 1-13.; Christensen, C. M. (1992a). The Innovator’s Challenge: Understanding the Influence of Market Environment on Processes of Technology Development in the Rigid Disk Drive Industry. Cambridge: Harvard University Press.; Christensen, C. M. (1992b). Exploring the Limits of the Technology S-Curve. Part i: Component Technologies. Production and Operations Management, 1(4), 334-351.; Christensen, C. M. (1992c). Exploring the Limits of the Technology S-Curve. Part ii: architectural technologies. Production and Operations Management, 1(4), 358-366.; Christensen, C. M. (1993). The Rigid Disk Drive Industry: A History of Commercial and Technological Turbulence. The Business History Review, 67(4), 531-588.; Christensen, C. M. (1997). The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail. Boston: Harvard Business School Press.; Christensen, C., Johnson, M. y Rigby, D. (2002). Foundations for Growth: How to Identify and Build Disruptive New Businesses. mit Sloan Management Review, 43(3), 22-31.; Christensen, C., Verlinden, M. y Westerman, G. (2002). Disruption, Disintegration and the Dissipation of Differentiability. Industrial and Corporate Change, 1(5), 955-993.; Christensen, C. M. y Raynor, M. E. (2003). The Innovator’s Solution: Creating and Sustaining Successful Growth. Boston: Harvard Business Review Press.; Christensen, C. M., Scott, A. D. y Roth, E. A. (2004). Seeing What’s Next: Using the Theories of Innovation to Predict Industry Change. Boston: Harvard Business School Press.; Christensen, C. M. (2006). The Ongoing Process of Building a Theory of Disruption. Journal of Product Innovation Management, (23), 39-55.; Christensen, C. M., Horn, M. B. y Staker, H. (2013). Is K-12 Blended Learning Disruptive? An Introduction to the Theory of Hybrids. Lexington: Clayton Christensen Institute for Disruptive Innovation.; Christensen, C. M. y Van Bever, D. (2014). The Capitalist’s Dilemma. Harvard Business Review. Recuperado el 12 de agosto del 2018, de hbr.org; Christensen, C. M. y Michelle R. Weise. (2014). moocs’ Disruption is Only Beginning. Recuperado el 13 de septiembre del 2018, de www.bostonglobe.com; Christensen, C. M., Raynor, M. y Mcdonald, R. (2015). What is Disruptive Innovation? Harvard Business Review, 93(12), 44-53.; Christensen, C. M., Hall, T., Dillon, K. y Duncan, D. S. (2016). Competing against Luck: The Story of Innovation and Customer Choice. Nueva York: HarperBusiness.; Ciborowski, R. (2016). Innovation Systems in the Terms of Schumpeterian Creative Destruction. Eureka: Social and Humanities, (4), 29-37.; Coccia, M. (2006). Classifications of Innovations Survey and Future Directions. Working Paper ceris-cnr 2/2006, 8(2).; Deloitte University (2017). Your Next Future. Capitalising on Disruptive Change. Westlake: Deloitte University Press; Denning, S. (2015, octubre 15). How Useful Is Christensen’s Theory of Disruptive Innovation? Forbes. Recuperado el 1 de octubre del 2018, de www.forbes.com; Diamandis, P. H. (2016). Exponential Growth Will Transform Humanity in the Next 30 Years. Recuperado el 11 de octubre del 2018, de singularityhub.com; Diamond, Jr., A. M. (2006). Schumpeter’s Creative Destruction: A Review of the Evidence. The Journal of Private Enterprise, 22(1), 120-146.; Diplock, T. y Wheatland, J. (2016). Disruptive Technologies: Part 1. LEK Executive Insights, 18(29), 1-4; Dyer, J., Gregersen, H. y Christensen, C. M. (2011). The Innovator’s dna: Mastering the Fiveskills of Disruptive Innovators. Boston: Harvard Business Review Press.; Elliott, J. E. (1980). Marx and Schumpeter on Capitalism’s Creative Destruction: A Comparative Restatement. The Quarterly Journal of Economics, 95(1), 45-68.; Foreman, A. (2013). Jill Lepore and the Microhistory of America. Recuperado el 2 de octubre del 2018, de www.the-tls.co.uk; Ghandi, A. (2013). Disruptive Innovation. A Reflection on Theory and its Importance in Project Management. Londres: Royal Holloway University of London.; Gao, L. (2015). Network Communications and Economics Lab (ncel), 11-30.; Harari, Y. N. (2014). Sapiens. De animales a dioses: Una breve historia de la humanidad. Barcelona: Debate.; Harari, Y. N. (2016). Homo Deus. Breve historia del mañana. Barcelona: Debate. Hager, C. (2006). Determining Degree of Innovation in Business Models by Applying. Product Innovation Theory. Oslo: Center for Entrepreneurship University Of Oslo.; Henderson, R. (1994). Of Life Cycles Real and Imaginary: The Unexpectedly Long Old Age of Optical Lithograph. Research Policy, 24(4), 631-643.; Henderson, R. M. y Clark, K. B. (1990). Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms. Administrative Science Quarterly (Special Issue: Technology, Organizations, and Innovation), 35(1), 9-30.; Hutt, R. (2016). What is Disruptive Innovation? World Economic Forum (wef), 25 de junio del 2016. Recuperado el 2 de septiembre del 2018, de www.weforum.org; Johansen, A. y Sornette, D. (2000). The Nasdaq Crash of April 2000: Yet Another Example of Log-Periodicity in a Speculative Bubble Ending in a Crash. The European Physical Journal B Condensed Matter and Complex Systems, 17(2), 319-328.; Kant, E. (1921[2007]). Fundamentación de la metafísica de las costumbres (Pedro M. Rosario Barbosa, ed.). Madrid: Creative Commons.; Kantrow, A. (1980). The Strategy-Technology Connection. Harvard Business Review. Recuperado el 13 de septiembre del 2018, de hbr.org; Klepper, S. (1996). Entry, Exit, Growth, and Innovation Over the Product Life Cycle. American Economic Review, 86(3), 562-583.; Klepper, S. (2002). Firm Survival and the Evolution of Oligopoly. rand Journal of Economics, 33(1), 37-61.; Klepper, S. y Simons, K. L. (1997). Technological Extinctions of Industrial Firms: An Inquiry into Their Nature and Causes. Industrial and Corporate Change, 6(6), 379460.; Klepper, S. y Simons, K. L. (2000). The Making of an Oligopoly: Firm Survival and Technological Change in the Evolution of the u.s. Tire Industry. Journal of Political Economy, 108(4), 728-760.; Krugman, P. (1979). A Model of Innovation, Technology Transfer, and the World Distribution of Income. Journal of Political Economy, 87(2), 253-266.; Krugman, Paul. (2014, junio 16). Creative Destruction Yada. New York Times. Recuperado de krugman.blogs.nytimes.com; Kuhn, T. S. (1962). The Structure of Scientific Revolutions. Chicago: The University of Chicago Press.; Kurzweil, R. (2012). La singularidad está cerca. Cuando los humanos transcendamos la biología. Berlín: Lola Books.; Leonard, A. (2014, junio 16). The Emperor of “Disruption Theory” is Wearing No Clothes. Salon. Recuperado el 14 de septiembre del 2018, de www.salon.com; Lepore, J. (1998). The Name of War: King Philip’s War and the Origins of American Identity. Nueva York; Lepore, J. (2001). Historians Who Love Too Much: Reflections on Microhistory and Biography. The Journal of American History, 88(1), 129-144.; Lepore, J. (2002). A is for American: Letters and Other Characters in the Newly United States. Nueva York: Vintage.; Lepore, J. (2014, junio 23). The Disruption Machine. What the Gospel of Innovation Gets Wrong. The New Yorker. Recuperado el 5 de septiembre del 2018, de www.newyorker.com.; Mahajan, V., Muller, M. y Mass, F. M. (1990). New Product Difussion Models in Marketing: A Review and Directions for Research. Journal of Marketing, (54), 1-26.; Marafioti, R. (2004). Charles S. Peirce: El éxtasis de los signos. Buenos Aires: Editorial Biblos.; Marcos, A. (2015). Especie. Diccionario Interdisciplinar Austral. Recuperado el 12 de septiembre del 2018.; Mead, G. H. (1931). The Philosophy of the Present. Londres: The Open Court Company. Mezue, B. C., Christensen, C. M. y Van Bever, D. (2015). The Power of Market Creation. Foreign Affairs, 94(1).; Motamedi, S. (2015). High-End Disruption: Using Affordability to Measure Innovation. Recuperado el 4 de septiembre del 2018, de tannutuva.org; Nogami da Costa, V. K. y Rodríguez-Veloso, A. (2017). Disruptive Innovation in Low-Income Contexts: Challenges and State-Of-The-Art National Research in Marketing. rai Revista de Administração e Inovação, 14, 162-167.; Oostra, A. (2003). Peirce y los diagramas. Ibagué: Universidad del Tolima.; Overall, J. y Wise, S. (2015). An S-Curve Model of the Start-Up Life Cycle through the Lens of Customer Development. The Journal of Private Equity, 18(2), 23-34.; Palmer, T. G. (Ed.). (2011). The Morality of Capitalism. What Your Professors Won’t Tell You. Ottawa: Jameson Books Inc.; Patel, D. A. y Watros, D. R. (2014). Faculty Grows to Largest Size Ever, Report Shows. Recuperado el 12 de junio del 2018, de www.thecrimson.com; Peels, R., Van Woudenberg, R. y De Ridder, G. J. (2017). Newman and Nussbaum on the Purpose of Higher Education. En: A. Halsema y A. Roothaan (Eds.), Scheuren in het bolwerk — vrouwen in de filosofie: Artikelen aangeboden aan Dr. Loes Derksen (pp. 78-86). Ámsterdam: vu-Drukkerij.; Peirce, C. S. (1867). On the Natural Classification of Arguments. Proceedings of the American Academy of Arts and Sciences, (7), 261-287.; Peirce, C. S. (1902). Pragmatic and Pragmatism. En Dictionary of Philosophy and Psychology Vol. 2 (pp. 321-322). Nueva York: Macmillan.; Pichai, S. (2018). ai at Google: Our Principles ai. Recuperado el 21 de septiembre del 2018, de www.blog.google; Piscitelli, A. (2001). La generación Nasdaq: apogeo (¿y derrumbe?) de la economía digital. Buenos Aires: Ediciones Granica.; Popper, K. (1953). Science: Conjectures and Refutations. Lecture given at Peterhouse, Cambridge Summer. Recuperado el 1 de septiembre del 2018, de nemenmanlab.org; Popper, K. (1967). La lógica de la investigación científica. Madrid: Editorial Tecnos. Porter, M. E. (2001). Strategy and the Internet. Harvard Business Review, (7), 261-287.; Raynor, M. E. (2014). Of Waves and Ripples. Disruption Theory’s Newest Critic Tries to Make a Splash. Westlake: Deloitte University Press.; Rees, J. (2014, junio 17). Disruption Disrupted. More or Less Bunk. Recuperado el 1 de octubre del 2018, de moreorlessbunk.wordpress.com; Schoen, D. R. (1969). Managing Technological Innovation. Harvard Business Review, 156-168.v; Schumpeter, J. A. (1939). Business Cycles. A Theoretical, Historical and Statistical Analysis of the Capitalist Process. Nueva York: McGraw-Hill.; Schumpeter, J. A. (1942[2003]). Capitalism, Socialism and Democracy. Londres: Harper Perennial.; Schumpeter, J. A. (1947). The Creative Response in Economic History. The Journal of Economic History, 7(2), 149-159.; Selhofer, H., René, A. y Markus, M. (2012). Disruptive Innovation: Implications for Competitiveness and Innovation Policy. inno-Grips – Global Review of Innovation Policy Studies N.° 4, pp. 1-86.; Shaughnessy, H. (2014). What Did The Innovator’s Dilemma Get Wrong? Recuperado el 20 de junio del 2018, de www.forbes.com; Shaughnessy, H. (2016). Platform Disruption Wave: A New Theory of Disruption and the Eclipse of American Power. Boise: Tru Publishing.; Shaughnessy, H. (2018). Why Disruption Is All About Ecosystem Thinking. Recuperado el 20 de septiembre del 2018, de disruptionhub.com; Sloterdijk, P. (2000). Règles pour le parc humain. Suivi de la Domestication de l’être. París: Mille et Une Nuits.; Staton, M. (2012). The New Liberal Arts. Recuperado el 2 de septiembre del 2018, de www.insidehighered.com; Thurston, T. (2014). Christensen vs. Lepore: A Matter of Fact. Recuperado el 12 de septiembre del 2018, de techcrunch.com; Torretti, R. (2010). La proliferación de los conceptos de especie en la biología evolucionista. Theoria, (69), 325-377.; Ulrich, K. T. y Ellison, D. J. (1999). Holistic Customer Requirements and the Design-Select Decision. Management Science, 45(5), 641-658.; Vásquez Rocca, A. (2016). Sloterdijk, Habermas y Heidegger. Humanismo, posthumanismo y debate en torno al Parque Humano. Eikasia. Revista de Filosofía, 4, 1-22.; Veiga, A. (2016). What Is Disruptive Innovation? Una revisión crítica de la teoría de la innovación disruptiva. Economía, Sociedad y Empresa. Revista de Negocios del ieem, (3), 60-62.; Vieira-Posada, É. (2011). Interpretaciones y transformaciones tecnológicas en los procesos de globalización. Papel Político, 16(2), 667-699.; Von Hippel, E. (1976). The Dominant Role of Users in the Scientific Instrument Innovation Process. Research Policy, 5(3), 212-239.; Von Hippel, E. (1982). Appropriability of Innovation Benefit as a Predictor of the Source of Innovation. Research Policy, (11), 95-115.; Von Hippel, E. (2002). Open Source Projects as Horizontal Innovation Networks by and for Users. mit Sloan Working Paper N.° 4366-02.; Von Hippel, E. y De Jong, J. (2010). Open, Distributed and User-Centered: Towards a Paradigm Shift in Innovation Policy. eim Research and Policy Reports.; Walters, T. (2014, Julio 18). Is Jill Lepore’s Critique of Disruption Theory Really “A Criminal Act of Dishonesty”? Digital Clarity Group. Recuperado el 2 de agosto del 2018, de http://www.digitalclaritygroup.com/; Webster, K. (2015). Payments Disruption by Any Other Name. pymnts.com. Recuperado el 12 de agosto del 2018, de www.pymnts.com; Whitehead, A. N. (1917a). Process and Reality. An Essay in Cosmology. Nueva York: The Free Press.; Whitehead, A. N. (1917b). The Organisation of Thought Educational and Scientific. Londres: Williams and Norgate.; Whitehead, A. N. (1937[1967]). Adventures of Ideas. Nueva York: The Free Press.; Wiener, N. (1948). Cybernetics or Communication and Control in the Animal and the Machine. Cambridge: MIT Press.; Zalamea, F. (2012). Peirce’s Continuum: A Methodological and Mathematical Approach. Recuperado de uberty.org/; BBC Research. (2014). Nanotechnology: A Realistic Market Assessment. Recuperado de www.reportlinker.com; Carson, R. (1962). Silent Spring. Nueva York: Fawcett Publications.; Christensen, C. M. (2016). The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail. Boston: Harvard Business Review Press.; Científica (2008). The Nanotechnology Opportunity Report (3.a ed.). Nueva York: Científica.; Científica (2012). Nanotechnology Takes a Deep Breath and Prepares to Save the World. Global Nanotechnology Funding in 2009. Recuperado de popnano.ru; Colborn, T., Dumanoski, D. y Meyers, J. P. (1997). Our Stolen Future: Are We Threatening Our Fertility, Intelligence, and Survival?—A Scientific Detective Story. Nueva York: Plume.; Danneels, E. (2004). Disruptive Technology Reconsidered: A Critique and Research Agenda. Journal of Product Innovation Management, 21(4), 246-258. www.researchgate.net; Dosi, G., Teece, D. y Chytry, J. (1998). Technology Competitiveness: Perspectives on Industrial and Corporate Change. Oxford: Oxford University Press.; European Environment Agency (eea) (2002). Late Lessons from Early Warnings: The Precautionary Principle 1896-2000 — European Environment Agency. Recuperado de www.eea.europa.eu; European Environment Agency (eea) (2013). Late Lessons from Early Warnings: Science, Precaution, Innovation. eea Report No. 1/2013. Recuperado de www.eea.europa.eu; Etzkowitz, H. y Leydesdorff, L. (2001). The Transformation of University-Industry-Government Relations. Electronic Journal of Sociology, 54(4), 101-117.; Farr, C. (2013). Get acquired! An Idiot’s Guide to Technology M&A. VentureBeat. Recuperado el 15 de noviembre del 2014, de venturebeat.com; Foladori, G. (2013). Nanotechnology Policies in Latin America: Risksto Health and Environment. NanoEthics, 7(2), 135-147. link.springer.com; Foladori, G. (2014). Ciencia ficticia. Estudios Críticos del Desarrollo, 4(7), 41-66. Foladori, G. (2015). Políticas de ciencia y tecnología: ¿beneficios para quién? Revista Iberoamericana de Ciencia, Tecnología y Sociedad, 10(Supl.1). Recuperado de http://www.scielo.org.ar/; Foladori, G. (2016). Políticas públicas en nanotecnología en América Latina. Problemas del Desarrollo, 186(47), 59-82. Recuperado de www.sciencedirect.com; Foladori, G., Figueroa, S., Invernizzi, N. y Záyago, E. (2012). Características distintivas del desarrollo de las nanotecnologías en América Latina. Sociológicas, 14(30), 330-363.; Foladori, G., Invernizzi, N., Osma, J. F. y Záyago Lau, E. (Eds.). (2018). Las nanotecnologías en la cadena de producción. En G. Foladori, Cadenas de producción en las nanotecnologías en América Latina. Bogotá: Universidad de los Andes.; Foster, J. B., McChesney, R. W. y Jonna, J. (2011). Monopoly and Competition in Twenty-First Century Capitalism. Monthly Review, 62(11).; Freeman, C. (1995). The National System of Innovation in Historical Perspective. Journal of Economics, 19(1), 5-24.; Garmulewicz, A., Holweg, M.,Veldhuis, H. yYang, A. (2018). DisruptiveTechnology as an Enabler of the Circular Economy: What Potential Does 3D Printing Hold? California Management Review, 30(6). Recuperado de journals.sagepub.com; Graffagnini, M. J. (2009). Corporate Strategies for Nanotech Companies and Investors in New Economic Times. Nanotechnology Law & Business Journal, 6(2).; Graham, P. (2005). Hiring is Obsolete. Recuperado de www.paulgraham.com; Harvey, D. (2011). A brief History of Neoliberalism. Oxford: Oxford University Press.; Iacopetta, M. y Graham, S. (2014). Nanotechnology and the Emergence of a General Purpose Technology. Annals of Economics and Statistics, 115/116, 5-35. Recuperado de papers.ssrn.com; Invernizzi, N. y Foladori, G. (2013). Inequality Gaps in Nanotechnology Development in Latin America. Journal of Arts and Humanities, 2(3), 36-45. Recuperado de www.theartsjournal.org; Jordan, C. C., Kaiser, I. N. y Moore, V. C. (2014). 2013 Nanotechnology Patent Literature Review: Graphitic Carbon-Based Nanotechnology and Energy Applications Are on the Rise. Nanotechnology Law & Business, 11(2), 111-125.; Lundvall, B. (Ed.). (1992). National Innovation Systems: Towards a Theory of Innovation and Interactive Learning. Londres: Frances Pinter.; LuxResearch (2009, junio 9). The Recession’s Ripple Effect on Nanotech. Recuperado el 17 de noviembre del 2014, de members.luxresearchinc.com; LuxResearch (2014). Nanotechnology Update: Corporations Up Their Spending as Revenues for Nano-Enabled Products Increase. Recuperado el 21 de abril del 2017, de members.luxresearchinc.com; Marx, K. (1980). Capital y tecnología. Manuscritos inéditos (1861-1863). (A. García, trad.). México, D.F.: Terra Nova.; McNeil, R. D., Lowe, J., Mastroianni, T., Cronin, J. y Ferk, D. (2007). Barriers to Nanotechnology Commercialization: Final Report. Recuperado de www.researchgate.net; Mitcham, C. (2003). Co-Responsibility for Research Integrity. Science and Engineering Ethics, 9(2), 273-290. link.springer.com; Nanowerk (s. f.). Nanowerk Nanomaterials Database. Recuperado el 20 de marzo del 2013, de www.nanowerk.com; National Nanotechnology Initiative (s. f. a). What is Nanotechnology? Recuperado el 18 de octubre del 2016, de www.nano.gov; National Nanotechnology Initiative (s. f. b). Resources for Nanotechnology Laboratory Safety. Recuperado el 18 de octubre del 2016, de www.nano.gov; National Center for Manufacturing Sciences (NCMS) (2010, agosto 23). 2009 NCMS Study of Nanotechnology in the u.s. Manufacturing Industry. Recuperado de www.nseresearch.org; Nelson, R. (1993). A Retrospective. En R. Nelson (Ed.), National Innovation Systems. A Comparative Analysis (pp. 504-524). Oxford: Oxford University Press.; Observatorio Iberoamericano de Ciencia, Tecnología e Innovación (2008). La nanotecnología en Iberoamérica. Situación actual y tendencias. Recuperado de www.oei.es; Organización Mundial de Propiedad Intelectual (OMPI) (2007). Informe de la OMPI sobre patentes. Recuperado de www.wipo.int; Plentz, F. (2013). Brazilian Nanotechnology Initiative. Presentado en “Workshop Nanotecnologia e Sociedade na América Latina”. Universidad Federal de Paraná, Curitiba.; Poland, C. A., Duffin, R., Kinloch, I., Mayonard, A., Wallace, W. A., Seaton, A., … Donaldson, K. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 3(7), 423-428.; Roco, M. C. (2003). Broader Societal Issues of Nanotechnology. Journal of Nanoparticle Research, 5, 181-189.; Salamanca-Buentello, F., Persad, D. L., Court, E. B., Martin, D. K., Daar, A. S. y Singer, P. A. (2005). Nanotechnology and the Developing World. PLoS Medicine, 2(5), e97. journals.plos.org; Sargent, J. (2016, septiembre 15). Nanotechnology: A Policy Primer. Congressional Research Service rl34511. Recuperado de fas.org; Schulte, P. A., Geraci, C. L., Murashov, V., Kuempel, E. D., Zumwalde, R. D., Castranova, V., … Martínez, K. F. (2014). Occupational Safety and Health Criteria for Responsible Development of Nanotechnology. Journal of Nanoparticle Research, 16(1). link.springer.com; Schulte, P. A. y Salamanca-Buentello, F. (2007). Ethical and Scientific Issues of Nanotechnology in the Workplace. Environmental Health Perspectives, 115(1), 5-12. ehp.niehs.nih.gov; Schumpeter, J. (1996). Capitalismo, socialismo y democracia. Barcelona: Ediciones Folio.; Shea, C. M., Grinde, R. y Elmslie, B. (2011). Nanotechnology as General-Purpose Technology: Empirical Evidence and Implications. Technology Analysis & Strategic Management, 23(2), 175-192. www.tandfonline.com; Singer, P., Salamanca-Buentello, F. y Daar, A. (2005). Harnessing Nanotechnology to Improve Global Equity. Issues in Science and Technology, 1.; DisruptionHub (s. f.). Technology Archives. Recuperado el 22 de agosto del 2018, de disruptionhub.com; Tsuzuki, T. (2009). Commercial Scale Production of Inorganic Nanoparticles. International Journal of Nanotechnology, 6(5), 567-578. doi: www.researchgate.net; Urquijo, W. (2014). Regulación de las nanotecnologías en América Latina. Observatorio del Desarrollo, 3(12), 15-18. Recuperado de www.researchgate.net; Woodrow Wilson International Centre for Scholars (WWICS) (2015). A Nanotechnology Consumer Products Inventory Project on Emerging Nanotechnologies. Washington: wwics. Recuperado de www.nanotechproject.org; Youtie, J., Iacopetta, M. y Graham, S. (2008). Assessing the Nature of Nanotechnology: Can We Uncover an Emerging General Purpose Technology? The Journal of Technology Transfer, 33(3), 315-329. doi: link.springer.com; Andreev, A. L. y Butyrin, P. A. (2011). Technoscience as an Innovative Social Project. Herald of the Russian Academy of Sciences, 81(2), 75-80.; Bawa, A. S. y Anilakumar, K. R. (2013). Genetically Modified Foods: Safety, Risks and Public Concerns—A Review. Journal of Food Science and Technology, 50(6), 1035-1046.; BBC Research (2014). Nanotechnology: A Realistic Market Assessment. Recuperado de www.reportlinker.com; BBC Research (2016). The Maturing Nanotechnology Market: Products and Applications. Recuperado de Www.bccresearch.com; Berube, D. (2007). Communicating Nanotechnological Risks. En M. C. Roco y W. S. Bainbridge (Eds.), Nanotechnology: Societal Implications ii. Individual Perspectives (pp. 245-251). Nueva York: Springer.; Bhushan, B. (2012). Nanotechnology. En Encyclopedia of Nanotechnology (pp. 18411850). Nueva York: Springer.; Boltzmann, L. (1895). On Certain Questions of the Theory of Gases. Nature, 51(1322), 413-415.; Browne, W. R. y Feringa, B. L. (2009). Making Molecular Machines Work. En Nanoscience and Technology (pp. 79-89). www.worldscientific.com; Buzea, C., Pacheco, I. I. y Robbie, K. (2007). Nanomaterials and Nanoparticles: Sources and Toxicity. Biointerphases, 2(4), mr17-mr71.; Científica (2011). Global Funding of Nanotechnologies – 2011 Edition. Recuperado de www.cientifica.com; Corner, A. y Pidgeon, N. (2012). Nanotechnologies and Upstream Public Engagement. Dilemmas, Debates and Prospects? En B. Herr Harthorn (Ed.), The Social Life of Nanotechnology (pp. 169-194). Nueva York: Routledge.; David, K. H. (2008). Socio-Technical Analysis of those Concerned with Emerging Technology, Engagement, and Governance. En K. H. David y P. B. Thompson (Eds.), What can Nanotechnology Learn from Biotechnology?: Social and Ethical Lessons for Nanoscience from the Debate over Agrifood Biotechnology and gmos. Boston: Elsevier/Academic Press.; De Volder, M. F., Tawfick, S. H., Baughman, R. H. y Hart, A. J. (2013). Carbon Nanotubes: Present and Future Commercial Applications. Science, 339(6119), 535-539. science.sciencemag.org; Drexler, E. (1987). Engines of Creation: The Coming Era of Nanotechnology. Garden City: Anchor.; Echeverría, J. (2003). La revolución tecnocientífica. Madrid: Fondo de Cultura Económica.; Einstein, A. (1905). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen Der Physik, 322(8), 549-560.; Eisler, M. (2012). Perspective: Where Nano Came From. En S. Priest, Nanotechnology and the Public: Risk Perception and Risk Communication (pp. 9-18). Boca Raton: crc Press.; Fanfair, D., Desai, S. y Kelty, C. (2007). The Early History of Nanotechnology. Nanotechnology: Content and Context. Houston: Rice University Press.; Feynman, R. P. (1960). There’s Plenty of Room at the Bottom. Engineering and Science, 23(5), 22-36.; Flores Valdés, J. (1986). La gran ilusión ii. Los cuarks. México D.F.: Fondo de Cultura Económica.; Foladori, G. (2010). Las nanotecnologías en contexto. Sociología y Tecnociencia: Revista Digital de Sociología del Sistema Tecnocientífico, 2(0), 35-55.; Freestone, I., Meeks, N., Sax, M. y Higgitt, C. (2007). The Lycurgus Cup — A Roman Nanotechnology. Gold Bulletin, 40(4), 270-277. link.springer.com; Freudenburg, W. y Collins, M. (2012). Public Responses to Nanotechnology. Risks to the Social Fabric? En B. Herr Harthorn (Ed.), The Social Life of Nanotechnology (pp. 241-264). Nueva York: Routledge.; Gómez, J. (2012). La comprensión pública de la nanotecnología en España. Revista Iberoamericana de Ciencia, Tecnología y Sociedad cts, 7(20), 177-207.; Goncuoglu-Eser, S. (2004). Public Attitudes Toward Genetically Modified Foods (tesis doctoral, Pennsylvania State University, Pennsylvania, Estados Unidos).; Haw, M. (2005). Einstein’s Random Walk. Physics World. Recuperado de physicsworld.com; José-Yacamán, M., Rendón, L., Arenas, J. y Puche, M. C. S. (1996). Maya Blue Paint: An Ancient Nanostructured Material. Science, 273(5272), 223-225. science.sciencemag.org; Kuhn, T. S. (1971). La estructura de las revoluciones científicas (Agustín Contín, trad.). México D.F.: Fondo de Cultura Económica.; Maclurcan, D. y Radywyl, N. (2012). Nanotechnology and Limits to Growth. En D. Maclurcan y N. Radywyl (Eds.), Nanotechnology and Global Sustainability. Boca Raton: crc Press.; McNaghten, P. (2008). From Bio to Nano: Learning the Lessons, Interrogating the Comparisons. En K. H. David y P. B. Thompson (Eds.), What can Nanotechnology Learn from Biotechnology?: Social and Ethical Lessons for Nanoscience from the Debate over Agrifood Biotechnology and gmos. Boston: Elsevier/Academic Press.; Macnaghten, P. (2010). Researching Technoscientific Concerns in the Making: Narrative Structures, Public Responses, and Emerging Nanotechnologies. Environment and Planning A, 42(1), 23-37.; Mariotti, D., Jackson, M., Lewis, E., Schulte, T. y Kurinec, S. (2008). Nanotechnology in Education: Top-Down and Bottom-Up Approach. En Innovations 2008. World Innovations in Engineering Education and Research (pp. 261-272). Arlington: ineer.; Maxwell, J. C. (1965). The Scientific Papers. Recuperado el 7 de noviembre del 2014, de cds.cern.ch; Mongillo, J. F. (2007). Nanotechnology 101. Westport: Greenwood Press.; Mulvaney, P. y Weiss, P. S. (2016). Have Nanoscience and Nanotechnology Delivered? acs Nano, 10(8), 7225-7226. pubs.acs.org; Ngô, C. y Van der Voorde, M. H. (2014). Risks and Toxicity of Nanoparticles. En C. Ngô y M. H. Van de Voorde (Eds.), Nanotechnology in a Nutshell (pp. 439-448). París: Atlantis Press.; Organization for Economic Co-operation and Development (OECD) (2010). The Impacts of Nanotechnology on Companies Policy Insights from Case Studies. Recuperado de www.myilibrary.com; Palmberg, C., Dernis, H. y Miguet, C. (2009). Nanotechnology: An Overview Based on Indicators and Statistics. OECD Science, Technology and Industry Working Papers No. 2009/07.; Perrin, J. (1909). Mouvement brownien et réalité moléculaire. Annales de Chimie et de Physique, 18, 5-104.; Priest, S. (2008). Biotechnology, Nanotechnology, Media, and Public Opinion. En K. H. David y P. B. Thompson (Eds.), What Can Nanotechnology Learn from Biotechnology?: Social and Ethical Lessons for Nanoscience from the Debate over Agrifood Biotechnology and gmos. Boston: Elsevier/Academic Press.; Reibold, M., Paufler, P., Levin, A. A., Kochmann, W., Pätzke, N. y Meyer, D. C. (2006). Materials: Carbon Nanotubes in an Ancient Damascus Sabre. Nature, 444(7117), 286. www.nature.com; Roco, M. C. (2011). The Long View of Nanotechnology Development: The National Nanotechnology Initiative at 10 Years. Journal of Nanoparticle Research, 13(2), 427-445.; Roco, M. C. (2017). Overview. En T. O. Mensah, B. Wang, G. Bothun, J. Winter y V. Davis (Eds.), Nanotechnology Commercialization (pp. 1-23). Nueva Jersey: Wiley-Blackwell. onlinelibrary.wiley.com; Rogers, B. (2011). Nanotechnology: Understanding Small Systems (2.a ed.). Boca Raton: Taylor & Francis.; Rogers, B., Adams, J. y Pennathur, S. (2011). Nanotechnology: Understanding Small Systems (2.a ed.). Boca Raton: crc Press.; Schultz, L. I. y Joutz, F. L. (2010). Methods for Identifying Emerging General Purpose Technologies: A Case Study of Nanotechnologies. Scientometrics, 85(1), 155-170.; Selin, C. (2007). Expectations and the Emergence of Nanotechnology. Science, Technology & Human Values, 32(2), 196-220.; Smalley, R. (2001). Of Chemistry, Love and Nanobots. Scientific American, 285(3), 76-77.; Taniguchi, N. (1974). On the Basic Concept of Nanotechnology. En Proceedings of the International Conference on Production Engineering (pp. 18-23). Tokio: Japan Society of Precision Engineering.; Teichert, N. (2012). Innovation in General Purpose Technologies: How Knowledge Gains when It Is Shared. Karlsruhe: kit Scientific Publishing.; Tsuzuki, T. (2009). Commercial Scale Production of Inorganic Nanoparticles. International Journal of Nanotechnology, 6(5), 567-578.; Wong, P. K., Ho, Y. P. y Chan, C. K. (2007). Internationalization and Evolution of Application Areas of an Emerging Technology: The Case of Nanotechnology. Scientometrics, 70(3), 715-737.; Youtie, J., Iacopetta, M. y Graham, S. (2008). Assessing the Nature of Nanotechnology: Can We Uncover an Emerging General Purpose Technology? The Journal of Technology Transfer, 33(3), 315-329.; Záyago, E., Foladori, G. y Figueroa, E. A. (2012). Toward an Inventory of Nanotechnology Companies in México. Nanotechnology Law & Business, 9, 283.; Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., … Horvath, P. (2007). CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science, 315(5819), 1709-1712. science.sciencemag.org; Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., … Bonas, U. (2009). Breaking the Code of dna Binding. Science, 326(5959), 1509-1512. science.sciencemag.org; Cho, S. W., Kim, S., Kim, J. M. y Kim, J.-S. (2013). Targeted Genome Engineering in Human Cells With the Cas9 RNA-Guided Endonuclease. Nature Biotechnology, 31(3), 230-232. www.nature.com; Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., … Zhang, F. (2013). Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 339(6121), 819823. science.sciencemag.org; Crick, F. (1970). Central Dogma of Molecular Biology. Nature, 227(6), 6-8. Recuperado de www.nature.com; Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzáles, K., Chao, Y., Pirzada, Z. A., … Charpentier, E. (2011). CRISPR RNA Maturation by Trans-Encoded Small RNA and Host Factor RNase iii. Nature, 471(7340), 602-607. www.nature.com; Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D. L., Wei, P., … Zhu, J. K. (2013). Efficient Genome Editing in Plants Using a CRISPR/Cas System. Cell Research, 23(10), 12291232. www.nature.com; Garneau, J. E., Dupuis, M. È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., … Moineau, S. (2010). The CRISPR/cas Bacterial Immune System Cleaves Bacteriophage and Plasmid dna. Nature, 468(7320), 67-71. www.nature.com; Gasiunas, G., Barrangou, R., Horvath, P. y Siksnys, V. (2012). Cas9-crrna Ribonucleoprotein Complex Mediates Specific dna Cleavage for Adaptive Immunity in Bacteria. Proceedings of the National Academy of Sciences, 109(39), E2579-E2586. www.pnas.org; Haridy, R. (2018). usda Confirms it Won’t Regulate CRISPR Gene-Edited Plants Like it Does gmos. New Atlas. Recuperado de newatlas.com; Hartung, F. y Schiemann, J. (2014). Precise Plant Breeding Using New Genome Editing Techniques: Opportunities, Safety and Regulation in the eu. Plant Journal, 78(5), 742-752. onlinelibrary.wiley.com; Hsu, P. D., Lander, E. S. y Zhang, F. (2014). Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell, 157(6), 1262-1278. www.ncbi.nlm.nih.gov; Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Kaini, P., Sander, J. D., … Yeh, J. R. J. (2013). Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System. PLoS one, 8(7). journals.plos.org; Ito, Y., Nishizawa-Yokoi, A., Endo, M., Mikami, M. y Toki, S. (2015). CRISPR/Cas9-Mediated Mutagenesis of the rin Locus that Regulates Tomato Fruit Ripening. Biochemical and Biophysical Research Communications, 467(1), 76-82. www.sciencedirect.com; Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. y Charpentier, E. (2012). A Programmable Dual-RNA Guided dna Endonuclease in Adaptive Bacterial Immunity. Science, 337(6096), 816-821. science.sciencemag.org; Kim, Y. G., Cha, J. y Chandrasegaran, S. (1996). Hybrid Restriction Enzymes: Zinc Finger Fusions to Fok i Cleavage Domain. Proceedings of the National Academy of Sciences, 93(3), 1156-1160. www.pnas.org; Koike-Yusa, H., Li, Y., Tan, E. P., Velasco-Herrera, M. del C. y Yusa, K. (2014). Genome-Wide Recessive Genetic Screening in Mammalian Cells with a Lentiviral CRISPR-Guide RNA Library. Nature Biotechnology, 32(3), 267-273. www.nature.com; Lander, E. S. (2016). The Heroes of CRISPR. Cell, 164(1-2), 18-28. doi: www.cell.com; Li, J., Aach, J., Norville, J. E., McCormack, M., Bush, J., Church, G. M. y Sheen, J. (2014). Multiplex and Homologous Recombination-Mediated Plant Genome Editing via Guide RNA/Cas9, Nature Biotechnology, 31(8), 688-691. www.nature.com; Li, J. F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., … Sheen, J. (2013). Targeted Mutagenesis in the Model Plant Nicotiana benthamiana Using Cas9 RNA-Guided Endonuclease. Nature Biotechnology, 31(8). www.nature.com; Li, W., Teng, F., Li, T. y Zhou, Q. (2013). Simultaneous Generation and Germline Transmission of Multiple Gene Mutations in Rat Using CRISPR-Cas Systems. Nature Biotechnology, 31(8), 684-686. www.nature.com; Li, Z., Liu, Z.-B., Xing, A., Moon, B. P., Koellhoffer, J. P., Huang, L., … Cigan, A. M. (2015). Cas9-Guide RNA Directed Genome Editing in Soybean. Plant Physiology, 169(2), 960-970. www.plantphysiol.org; Louwen, R., Horst-Kreft, D., De Boer, A. G., Van der Graaf, L., De Knegt, G., Hamersma, M., … Van Belkum, A. (2013). A Novel Link Between Campylobacter jejuni Bacteriophage Defence, Virulence and Guillain-Barré Syndrome. European Journal of Clinical Microbiology and Infectious Diseases, 32(2), 207-226. link.springer.com; Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., … Church, G. M. (2013). RNA-Guided Human Genome Engineering via Cas9. Science, 339(6121), 823-826. science.sciencemag.org; Marraffini, L. A. y Sontheimer, E. J. (2008). CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting dna. Science, 322(5909), 1843-1845. www.ncbi.nlm.nih.gov; Mojica, F. J. M., Díez-Villaseñor, C., García-Martínez, J. y Soria, E. (2005). Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. Journal of Molecular Evolution, 60(2), 174-182. link.springer.com; Mojica, F. J. M., Juez, G. y Rodríguez-Valera, F. (1993). Transcription at Different Salinities of Haloferax Mediterranei Sequences Adjacent to Partially Modified PstI Sites. Molecular Microbiology, 9(3), 613-621. onlinelibrary.wiley.com; Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., … Sha, J. (2014). Generation of Gene-Modified Cynomolgus Monkey via Cas9/RNA-Mediated Gene Targeting in One-Cell Embryos. Cell, 156(4), 836-843. www.cell.com; Podevin, N., Davies, H. V., Hartung, F., Nogué, F. y Casacuberta, J. M. (2013). Site-Directed Nucleases: A Paradigm Shift in Predictable, Knowledge-Based Plant Breeding. Trends in Biotechnology, 31(6), 375-383. www.sciencedirect.com; Pul, Ü., Wurm, R., Arslan, Z., Geißen, R., Hofmann, N. y Wagner, R. (2010). Identification and Characterization of E. coli CRISPR-Cas Promoters and their Silencing by h-ns. Molecular Microbiology, 75(6), 1495-1512. onlinelibrary.wiley.com; Quinlan, A. (2016). Different Ways of Gene Editing. Bioradiations. Recuperado el 2 de abril del 2018, de www.bioradiations.com; Rager Fuller, N. (2012). Biology Research Overview. nsf National Science Foundation. Recuperado el 6 de abril del 2018, de www.nsf.gov; Rouet, P., Smih, F. y Jasin, M. (1994a). Expression of a Site-Specific Endonuclease Stimulates Homologous Recombination in Mammalian Cells. Proceedings of the National Academy of Sciences of the United States of America, 91(13), 6064-6068. www.pnas.org; Rouet, P., Smih, F. y Jasin, M. (1994b). Introduction of Double-Strand Breaks into the Genome of Mouse Cells by Expression of a Rare-Cutting Endonuclease. Molecular and Cellular Biology, 14(12), 8096-8106. mcb.asm.org; Shalem, O., Sanjana, N. E. y Zhang, F. (2015). High-Throughput Functional Genomics Using CRISPR-Cas9. Nature Reviews Genetics, 16(5), 299-311.; Sorek, R., Kunin, V. y HugENHoltz, P. (2008). CRISPR — A Widespread System that Provides Acquired resistance against Phages in Bacteria and Archaea. Nature Reviews Microbiology, 6(3), 181-186. www.nature.com; Svitashev, S., Young, J. K., Schwartz, C., Gao, H., Falco, S. C. y Cigan, A. M. (2015). Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA. Plant Physiology, 169(2), 931-945. www.plantphysiol.org; Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., … Zhao, K. (2016). ENHanced Rice Blast Resistance by CRISPR/ Cas9-Targeted Mutagenesis of the erf Transcription Factor Gene Oserf922. PLoS one, 11(4), 1-18. journals.plos.org; Wang, H., La Russa, M. y Qi, L. S. (2016). CRISPR/Cas9 in Genome Editing and Beyond. Annual Review of Biochemistry, 85(1), 227-264. www.annualreviews.org; Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F. y Jaenisch, R. (2013). One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering. Cell, 153(4), 910-918. www.cell.com; Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C. y Qiu, J. L. (2014). Simultaneous Editing of Three Homoeoalleles in Hexaploid Bread Wheat Confers Heritable Resistance to Powdery Mildew. Nature Biotechnology, 32(9), 947-951. www.nature.com; Yin, L., Maddison, L. A. y Chen, W. (2016). Multiplex Conditional Mutagenesis in Zebrafish using the CRISPR/Cas System. Methods in Cell Biology (Vol. 135). europepmc.org; Zegans, M. E., Wagner, J. C., Cady, K. C., Murphy, D. M., Hammond, J. H. y O’Toole, G. A. (2009). Interaction Between Bacteriophage dmS3 and Host CRISPR Region Inhibits Group Behaviors of Pseudomonas Aeruginosa. Journal of Bacteriology, 91(1), 210-219. jb.asm.org; Adleman, L. (1994). Molecular Computation of Solutions to Combinatorial Problems. Science, 266(5187), 1021-1024. science.sciencemag.org; Bernstein, D. J. (2009). Introduction to Post-Quantum Cryptography. En D. J. Bernstein, J. Buchmann y E. Dahmen (Eds.), Post-Quantum Cryptography (pp. 1-14). Berlín: Springer Berlin Heidelberg. link.springer.com; Boole, G. (1847). The Mathematical Analysis of Logic: Being an Essay Towards a Calculus of Deductive Reasoning. Londres: Forgotten Books.; Borchardt, M. y Roggi, I. (2017). Ciencias de la computación en los sistemas educativos de América Latina. Bogotá: Ministerio de Educación.; Breiman, L. (2001). Statistical Modeling: The Two Cultures. Statistical Science, 16(3), 199-231. Recuperado de projecteuclid.org; Carlson, B., Burgess, A., Miller, C. y Bauer, L. (2012). Timeline of Computing History. ieee’s Computer Society. Recuperado de www.computer.org; Caspersen, M. E., Gal-Ezer, J., Mcgettrick, A. y Nardelli, E. (2018). Informatics for All: The Strategy. Londres: amc Europe Council.; Center for the Study of Language and Information (1997). Stanford Encyclopedia of Philosophy. Stanford: Stanford University Press. Recuperado de plato.stanford.edu; Chourabi, H., Nam, T., Walker, S., Gil-García, J. R., Mellouli, S., Nahon, K., … Scholl, H. J. (2012). Understanding Smart Cities: An Integrative Framework. En Proceedings of the Annual Hawaii International Conference on System Sciences (pp. 2289-2297). ieeexplore.ieee.org; Church, A. (1936). An Unsolvable Problem of Elementary Number Theory. American Journal of Mathematics, 58(2), 345-363. www.jstor.org; Cook, S. (2000). The P versus NP Problem. Clay Mathematical Institute. dl.acm.org; Computer Science Teachers Association (csta) (2017). csta K-12 Computer Science Standards, Revised 2017. Recuperado de drive.google.com; Das, S. K., Kant, K. y Zhang, N. (2012). Handbook on Securing Cyber-Physical Critical Infrastructure. Nueva York: Elsevier.; Davis, M. (2004). The Myth of Hypercomputation. En C. Teuscher (Ed.), Alan Turing: Life and Legacy of a Great Thinker (pp. 195-211). Berlín: Springer Berlin Heidelberg. link.springer.com; Davis, P. y Gregersen, N. H. (Eds.). (2014). Information and the Nature of Reality. Cambridge: Cambridge University Press.; Denning, P. J. (2007). Computing is a Natural Science. Communications of the acm, 50(7), 13. dl.acm.org; Devlin, K. J. (2002). The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time. Nueva York: Basic Books.; Dodig-Crnkovic, G. (2015). Floridi’s Informational Structural Realist Basis for Info-Computational Modelling of Cognizing Agents. Journal of Experimental and Theoretical Artificial Intelligence, 27(1), 13-22. www.tandfonline.com; Donoho, D. (2015). 50 Years of Data Science. Recuperado de courses.csail.mit.edu; Feynman, R. P. (1961). There is Plenty of Room at the Bottom. En H. D. Gilbert (Ed.), Miniaturization. Nueva York: Reinhold.; Feynman, R. P. (1982). Simulating Physics with Computers. International Journal of Theoretical Physics, 21(6-7), 467-488. link.springer.com; Floridi, L. (2008). A Defence of Informational Structural Realism. Synthese, 161(2), 219253. link.springer.com; Floridi, L. (2010). Information. A Very Short Introduction. Oxford: Oxford University Press.; Gödel, K. (1965). On Formally Undecidable Propositions of Principia Mathematica and Related Systems i. En M. Davis (Ed.), The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computables Functions (pp. 5-38). Mineola: Dover.; Goodman, M. (2015). Future Crimes. Inside the Digital Underground and the Battle for Our Connected World. Londres: Random House.; Hankin, C., Carson, S. G., Crafa, S., Grau, O., Kirchner, C., Knowles, B., … Tamburri, D. A. (2018). When Computers Decide: European Recommendations on Machine-Learning Automated Decision Making. Londres: amc Europe Council.; Harari, Y. N. (2015). Homo Deus. Breve historia del mañana. Nueva York: Penguin Random House.; IEEE Standard Association (2018). The ieee Global Initiative on Ethics of Autonomous and Intelligent Systems. Recuperado de standards.ieee.org; Jiménez, M. y Cerdas, R. J. (s. f.). La robótica educativa como agente promotor del estudio por la ciencia y la tecnología en la región atlántica de Costa Rica. Madrid: OEI.; Kochenberger, G., Hao, J. K., Glover, F., Lewis, M., Lü, Z., Wang, H. y Wang, Y. (2014). The Unconstrained Binary Quadratic Programming Problem: A Survey. Journal of Combinatorial Optimization, 28(1), 58-81. link.springer.com; LeCun, Y. A., Bengio, Y. y Hinton, G. E. (2015). Deep learning. Nature, 521(7553), 436-444. www.nature.com; Lewis, M. y Glover, F. (2017). Quadratic Unconstrained Binary Optimization Problem Preprocessing: Theory and Empirical Analysis. Wiley Online Library. Recuperado de onlinelibrary.wiley.com; Lucero, M. M. (2003). Entre el trabajo colaborativo y el aprendizaje colaborativo. Revista Iberoamericana de Educación, 33(1), 1-21.; Luu, L., Chu, D.-H., Olickel, H., Saxena, P. y Hobor, A. (2016). Making Smart Contracts Smarter. En Proceedings of the 2016 acm sigsac Conference on Computer and Communications Security ccs’16 (pp. 254-269). dl.acm.org; Manav Gupta. (2017). Blockchain for Dummies, IBM Limited Edition. Recuperado de www.ibm.com; Mohseni, M., Read, P. y Neven, H. (2017). Commercialize early quantum technologies. Nature, 543, 171-174. www.nature.com; Miller, D. A. B. (2008). Quantum Mechanics for Scientists and Engineers. Cambridge: Cambridge University Press. www.cambridge.org; National Institute of Standards and Technology (NIST) (2017). Post-Quantum Cryptography Standardization — Post-Quantum Cryptography %7C CSRC. Recuperado el 28 de mayo del 2018, de csrc.nist.gov; Perdomo-Ortiz, A., Feldman, A., Ozaeta, A., Isakov, S. V., Zhu, Z., O’Gorman, B., … Biswas, R. (2017). On the Readiness of Quantum Optimization Machines for Industrial Applications. Recuperado de arxiv.org; Perdomo-Ortiz, A., Fluegemann, J., Narasimhan, S., Biswas, R. y Smelyanskiy, V. N. (2015). A Quantum Annealing Approach for Fault Detection and Diagnosis of Graph-Based Systems. The European Physical Journal Special Topics, 224(1), 131148. link.springer.com; Provost, F. y Fawcett, T. (2013). Data Science and its Relationship to Big Data and Data-Driven Decision Making. Big Data, 1(1), 51-59. www.liebertpub.com; Real Academia Española (RAE) (2014). Diccionario de la lengua española (23.a ed.). Recuperado el 22 de mayo del 2018, de dle.rae.es; Robles, J. M. (Coord). (2017). Las desigualdades digitales. Los límites de la sociedad red. Panorama Social, (25).; Roquet, N., Soleimany, A. P., Ferris, A. C., Aaronson, S. y Lu, T. K. (2016). Synthetic Recombinase-Based State Machines in Living Cells. Science, 353(6297), aad8559. science.sciencemag.org; Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P. y Harnisch, M. (2015). Industry 4.0. The Future of Productivity and Growth in Manufacturing. Boston Consulting, (1-5). www.bcg.com; Sanders, M. (2009). stem, stem education, stemmania. The Technology Teacher, 68(4), 20-26.; Satoshi Nakamoto. (2008). Bitcoin. Www.Bitcoin.Org, 9. link.springer.com; Schaller, R. R. (1997). Moore’s Law: Past, Present and Future. Spectrum ieee, 34(6), 5259. ieeexplore.ieee.org; Shannon, C. E. (1947). A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379-423. dl.acm.org; Shor, P. W. (1994). Algorithms for Quantum Computation: Discrete Logarithms and Factoring. En Proceedings 35th Annual Symposium on Foundations of Computer Science (pp. 124-134). ieeexplore.ieee.org; Tucker, A. B. (2004). Computer Science Handbook (2.a ed.). Boca Raton: Chapman and Hall/CRC.; Turing, A. M. (1937). On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42(1), 230265. academic.oup.com; Wiesner, S. (1983). Conjugate Coding. acm sigact News, 15(1), 78-88. dl.acm.org; Wing, J. M. (2006). Computational Thinking. Communications of the acm, 49(3), 33. dl.acm.org; Xia, F., Yang, L. T., Wang, L. y Vinel, A. (2012). Internet of Things. International Journal of Communication Systems, 25(9), 1101-1102. onlinelibrary.wiley.com; Zdeborová, L. (2017). Machine Learning: New Tool in the Box. Nature Physics, 13(5). rum-data.nature.com; Zyskind, G., Nathan, O. y Pentland, A. S. (2015). Decentralizing Privacy: Using Blockchain to Protect Personal Data. En Proceedings 2015 ieee Security and Privacy Workshops, spw 2015 (pp. 180-184). ieeexplore.ieee.org; Atherton, K. (2015). Is 3D-Printing A Gun Free Speech? Popular Science. Recuperado de www.popsci.com.; Berg, B., Hof, S. y Kosta, E. (2016). 3D Printing, Legal, Philosophical and Economic Dimensions. Nueva York: Springer.; Bianchi, E. y Szpak, C. (2013). Cadenas globales de producción: implicancias para el comercio internacional y su gobernanza. Recuperado de www.flacso.org.ar; Briggs, A. y Burke, P. (2002). De Gutenberg a internet: una historia social de los medios de comunicación. Buenos Aires: Taurus.; Cornish Álvarez, M. L. (1997). El abc de los plásticos. Bogotá: Universidad Iberoamericana.; Coronel, J., Palacio, J. y Rueda-Esteban, R. (2017). Multiple Software Based 3D Modeling Protocol for Printing Anatomical Structures. International Journal of Morphology, 35(2), 425-429. scielo.conicyt.cl; Dandgaval, O. y Bichkar, P. (2016). Rapid Prototyping Technology — Study of Fused Deposition Modeling Technique. International Journal of Mechanical and Production Engineering, 4(4).; Deckard, C. (1989). Method and Apparatus for Producing Parts by Selective Sintering. Austin: University of Texas.; DHL Trend Research (2016). 3D Printing and the Future of Supply Chains. Recuperado de www.dhl.com; Eisenstein, E. (1980). The Printing Press as an Agent of Change. Cambridge: Cambridge University Press. www.cambridge.org; FormLabs. (2018). 3D Printing with Desktop Stereolithography. Recuperado de www.dynamism.com; Grieser, F. (2015). fdm vs sla: 3D Printing Explained and Compared. Recuperado de all3dp.com; Hull, C. W. (1991). Apparatus for Production of Three-Dimensional Objects by Stereolithography. US Patent 4575330A, Estados Unidos.; Kellner, T. (2017). An Epiphany of Disruption: ge Additive Chief Explains How 3D Printing Will Upend Manufacturing. Recuperado de www.ge.com; Kodama, H. (1981). Automatic Method for Fabricating a Three‐Dimensional Plastic Model with Photo‐Hardening Polymer. Review of Scientific Instruments, 52(11), 1770-1773. aip.scitation.org; Lipson, H. y Kurman, M. (2013). Fabricated. Hoboken: John Wiley.; Locker, A. (2017). Metal 3D Printer Guide 2018 — All About Metal 3D Printing. Recuperado de all3dp.com; Lonjon, C. (2017). Discover the History of 3D Printer. Sculpteo 3D Printing Blog: Tutorials, News, Trends and Resources. Recuperado de www.sculpteo.com; MakerBot (2018). Connected 3D Printing Solutions. Recuperado de www.makerbot.com; Martínez Ávila, H., Schwarz, S., Rotter, N. y GatENHolm, P. (2016). 3D Bioprinting of Human Chondrocyte-Laden Nanocellulose Hydrogels for Patient-Specific Auricular Cartilage Regeneration. Bioprinting, (1-2), 22-35. www.sciencedirect.com; Massachusetts Institute of Technology (MIT) (1993). Three-Dimensional Printing Techniques. Massachusetts: MIT Press; McKinsey & Company (2017). How 3-D Printing Will Transform the Metals Industry. Recuperado de www.mckinsey.com.; Narula, R. (2014). Globalization and Technology. Nueva York: John Wiley & Sons.; Nieto Olarte, M. (2013). Las máquinas del imperio y el reino de Dios: reflexiones sobre ciencia, tecnología y religión en el mundo atlántico del siglo XVI. Bogotá: Ediciones Uniandes.; Pastrana, E. y Pacheco, Y. (2010). Convención Ramsar a lo largo del eje localglobal; protección de humedales en el Valle del Cauca. Revista Papel Político, 15(2). Recuperado de revistas.javeriana.edu.co; Pew, S. (2016). Manufacturing the Future: The Next Era of Globalization with 3D Printing. Stratasys. Recuperado de www.javelin-tech.com; Sandia National Laboratories (s. f.). Laser Engineered Net Shaping. Recuperado de www.sandia.gov; Schirato, T. y Webb, J. (2003). Chapter 1. The Idea of Globalization. En R. K. Schaeffer (Ed.), Understanding Globalization: The Social Consequences of Political, Economic, and Environmental Change (pp. 111-138). Thousand Oaks: Sage Publications.; Smart, T. (s. f.). Formlabs, a Leader in Desktop 3D Printing. Tech Gen Mag. Recuperado el 10 de febrero del 2018, de techgenmag.com; Stephenson, S. (2013). Global Value Chains: The New Reality of International Trade. E15 Initiative. Recuperado de e15initiative.org; Stratasys (s. f.). PolyJet Multi-Material 3D Printing. Recuperado de usglobalimages.stratasys.com; The Ford Motor Company. (2017). Ford Tests Large-Scale 3D Printing with Light-Weighting and Personalization in Mind. Recuperado de media.ford.com; ThingUniverse (2018). Digital Designs for Physical Objects. Recuperado de thingiverse.com; United Nations (2000). Economic Globalization: Trends, Risks and Risk Prevention. Genova: United Nations.; Universidad de los Andes (2018). Nueva impresora 3D inventada en los Andes recibe patente. Recuperado de uniandes.edu.co; Vukicevic, M., Mosadegh, B., Min, J. y Little, S. (2017). Cardiac 3D Printing and its Future Directions. jacc: Cardiovascular Imaging, 10(2), 171-184. imaging.onlinejacc.org; Warnier, C., Verbruggen/Unfold, D., Ehmann, S. y Klanten, R. (2014). Printing Things: Visions and Essentials for 3D Printing. Berlín: Die Gestalten Verlag.; Xu, T., Jin, J., Gregory, C., Hickman, J. J., Boland, T. (2004). Ink-Jet Printing of Viable Cells. Biomaterials, 25(1), 93-99.; Alkhatib, H., Faraboschi, P., Frachtenberg, E., Kasahara, H., Lange, D., Laplante, P., … Schwan, K. (2015). What Will 2022 Look Like? The ieee cs 2022 Report. Computer, 48(3), 68-76. waseda.pure.elsevier.com; AMP Robotics (2017). Robots for recycling. Recuperado de www.amprobotics.com; Asada, M. (2017). A Report on RoboCup 2017. ieee Robotics & Automation Magazine, 24(4), 21-23. Ieeexplore.ieee.org; Christensen, H. I. (2016). A Roadmap for us Robotics. From Internet to Robotics. Recuperado de jacobsschool.ucsd.edu; Coparm Srl (2015). E-Waste Recycling Plants. Recuperado de coparm.net; Danahy, E., Wang, E., Brockman, J., Carberry, A., Shapiro, B. y Rogers, C. B. (2014). lego-Based Robotics in Higher Education: 15 Years of Student Creativity. International Journal of Advanced Robotic Systems, 11(2). journals.sagepub.com; D’Andrea, R. (2012). A Revolution in the Warehouse: A Retrospective on Kiva Systems and the Grand Challenges Ahead. ieee Transactions on Automation Science and Engineering, 9(4), 638-639. www.research-collection.ethz.ch; DARPA. (2015). DARPA Robotics Challenge. Recuperado de www.darpa.mil; Eder, T. (2017). Nokia Saving Lives Project Wins the United Arab Emirates Drones for Good Award 2017. ieee Robotics & Automation Magazine, 24(2), 91-92. www.researchgate.net; Estrada, F. J. (2017). Practical Robotics in Computer Science Using the lego nxt: An Experience Report. En acm Conference on Innovation and Technology in Computer Science Education (pp. 329-334). dl.acm.org; ETH Zurich (2016). The Premiere Cybathlon 2016. Recuperado de Cybathlon.ethz.ch; Guizzo, E. (2014). Dean Kamen’s “Luke Arm” Prosthesis Receives fda Approval. ieee Spectrum. Recuperado de spectrum.ieee.org; Team kaist (2015). Biped Humanoid Robot DRC Hubo [video]. Recuperado de www.youtube.com; Krebs, H. I., Ferraro, M., Buerger, S. P., Newbery, M. J., Makiyama, A., Sandmann, M., … Neville, H. (2004). Rehabilitation Robotics: Pilot Trial of a Spatial Extension for mit-Manus. Journal of NeuroEngineering and Rehabilitation, 1(5). jneuroengrehab.biomedcentral.com; Louie, W-Y G., Vaquero, T., Nejat, G. y Beck, J. C. (2014). An Autonomous Assistive Robot for Planning, Scheduling and Facilitating Multi-User Activities. En ieee International Conference on Robotics and Automation (ICRA) (pp. 5292-5298). ieeexplore.ieee.org; Magnenat, S., Shin, J., Riedo, F., Siegwart, R. y Ben-Ari, M. (2014). Teaching a Core CS Concept through Robotics. En ACM Conference on Innovation & Technology in Computer Science Education (pp. 315-320). dl.acm.org; NASA Science (2018). Mars Exploration Program. Recuperado de mars.nasa.gov; Novak, D., Wolf, P. y Guglielmelli, E. (2017). Cybathlon 2016: Showcasing Advances in Assistive Technologies through Competition. ieee Robotics & Automation Magazine, 24(4), 24-122.; Pepper (2017). SoftBank Robotics. Recuperado de www.softbankrobotics.com; RoboCup (s. f.). RoboCup Federation. Recuperado de www.robocup.org; Sabattini, L., Aikio, M., Beinschob, P., Boehning, M., Cardarelli, E., Digani, V., … Fuerstenberg, K. (2018). The pan-Robots Project: Advanced Automated Guided Vehicle Systems for Industrial Logistics. En ieee Robotics & Automation Magazine, 25(1), 5-64. ieeexplore.ieee.org; Sanbot (2017). Qihan Technology Co. Recuperado de en.sanbot.com; Tesla (2017). Tesla Autopilot. Recuperado de www.tesla.com; Waymo (2017). Google Self-Driving Car Project. Recuperado de waymo.com; Akputu, O. K., Seng, K. P. y Lee, Y. L. (2018). Affect Recognition for Web 2.0 Intelligent E-Tutoring Systems: Exploration of Students’ Emotional Feedback. En Information Resources Management Association (Ed.), Student Engagement and Participation: Concepts, Methodologies, Tools, and Applications (pp. 338-368). Bolzano: igi Global.; Baghaee, H. R., Mirsalim, M., Gharehpetan, G. B. y Talebi, H. A. (2017). Nonlinear Load Sharing and Voltage Compensation of Microgrids Based on Harmonic Power-Flow Calculations using Radial Basis Function Neural Networks. ieee Systems Journal, 12(3).; Bustamante, P, López Celani, N., Quintero, O. L. y Pérez E. (2015). Recognition and Regionalization of Emotions in the Arousal-Valence Plane. En Conference Proceedings: Annual International Conference of the ieee Engineering in Medicine and Biology Society (pp. 6042-6045). www.researchgate.net; Les Économistes Atterrés (2017). Changer d’avenir; réinventer le travail et le modèle économique. París: Les Liens Qui Liberent (e-book).; Gómez-Montoya, A., Quintero, O. L., López, N. M. y Castro-Martínez, J. (2016). An Approach to Emotion Recognition in Single-Channel eeg Signals: A Mother Child Interaction. Journal of Physics: Conference Series, 705, 1-4. www.researchgate.net; Gómez-Montoya, A., Quintero, O. L., López, N. M. y Castro-Martínez, J. (2017). An Approach to Emotion Recognition in Single-Channel EEG Signals using Discrete Wavelet Transform. En 38th Annual International Conference of the ieee Engineering in Medicine and BIology Society. www.researchgate.net; Hastie, T., Tibshirani, R. y Friedman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference and Prediction. Nueva York: Springer; López, C. N., Ponce, S., Quintero, O. L. y Vargas-Bonilla, F. (2016). Improving Quality of Life: Home Care for Chronically Ill and Elderly People Chapter Caregiving and Home Care. Recuperado de www.intechopen.com; Mejía, G., Gómez-Montoya, A. y Quintero, O. L. (2016). Reconocimiento de emociones utilizando la transformada wavelet estacionaria en señales EEG multicanal. En vii Latin American Conference on Biomedical Engineering claib, Bucaramanga, Colombia.; Mejía, S., Quintero, O. L. y Castro-Martínez, J. (2015). Dynamic Analysis of Emotions through Artificial Intelligence. Avances en Psicología Latinoamericana, 33, 1-30.; Gómez-Montoya, A., Quintero, O. L., López Pulido, S. (2017). Analysis of Functional Connectivity Networks from Emotional EEG Signals. En ICAMI 2017: A Memorable Synapsis (pp. 651-652).; Restrepo, D. y Gómez-Montoya, A. (2017). Short Research Advanced Project: Development of Strategies for Automatic Facial Feature Extraction and Emotion Recognition 2017. ieee 3rd Colombian Conference on Automatic Control (CCAC).; Hurtado, L, Quintero, O. L. y García, J. (2014). Estimación del precio de oferta de la energía eléctrica en Colombia mediante inteligencia artificial. Journal of Quantitative Methods for Economics and Business Administration, 18, 54-87.; Karaboga, D. y Kaya, E. (2018). Adaptive Network Based Fuzzy Inference System (anfis) Training Approaches: A Comprehensive Survey. Artificial Intelligence Review, 1-31.; Kim, B. H. y Jo, S. (2018). Deep Physiological Affect Network for the Recognition of Human Emotions. ieee Transactions on Affective Computing. ieeexplore.ieee.org; Linnainmaa, S. (1976). Taylor Expansion of the Accumulated Rounding Error. bit Numerical Mathematics, 16(2), 146-160.; Masood, Z., Majeed, K., Samar, R. y Raja, M. A. Z. (2017). Design of Mexican Hat Wavelet Neural Networks for Solving Bratu Type Nonlinear Systems. Neurocomputing, 221, 1-14.; Quintero, O. L., Villa, L., Castañeda, L. y Mejía, G. (2015). Fuzzy Inference System for Modelling Failure Modes in a Ropeway for Massive Transportation. Wit Transactions on Information and Communication Technologies, 1, 113-136. www.atlantis-press.com; Quintero, O. L., Villa, L. F., Muñoz, S. y Bastidas, M. (2014). Information Retrieval on Documents Methodology Based on Entropy Filtering Methodologies. International Journal of Business Intelligence and Data Mining, 3(3), 281-296. www.inderscience.com; Rakhshandehroo, G., Akbari, H., Afshari Igder, M. y Ostadzadeh, E. (2017). Long-Term Groundwater-Level Forecasting in Shallow and Deep Wells Using Wavelet Neural Networks Trained by an Improved Harmony Search Algorithm. Journal of Hydrologic Engineering, 23(2).; Rissanen, J. (2010). Minimum Description Length Principle. En Encyclopedia of Machine Learning (pp. 666-668). Nueva York: Springer.; Rudovic, O., Lee, J., Dai, M., Schuller, B. y Picard, R. (2018). Personalized Machine Learning for Robot Perception of Affect and Engagement in Autism Therapy. Science Robotics, 3(19).; Uribe, A., Gómez-Montoya, A., Bastidas, M., Quintero, O. L. y Campo, D. (2017). A Novel Emotion Recognition Technique from Voiced-Speech. ieee 3rd Colombian Conference on Automatic Control (CCAC).; Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. Neural Networks, 61, 85-117.; Sierra-Sosa, D., Bastidas, M., Ortiz, D., Quintero, O. L. (2016). Double Fourier Analysis for Emotion Identification in Voiced Speech. Journal of Physics: Conference Series, 705, 1-6. iopscience.iop.org; Zadeh, L. (2005). Toward a Generalized Theory of Uncertainty (gtu) — An Outline. Information Sciences, 172, 1-40.; Acemoglu, D. (2002). Technical Change, Inequality, and the Labor Market. Journal of Economic Literature, 40(1).; Acemoglu, D. y Autor, D. (2011). Skills, Tasks and Technologies: Implications for Employment and Earnings. NBER Working Paper No. 16082.; Autor, D. H., Katz, L. F. y Krueger, A. B. (1998). Computing Inequality: Have Computers Changed the Labor Market? The Quarterly Journal of Economics, 113(4), 1169-1213.; Arango, L., Posada, C. y Uribe, J. (2005). Cambios en la estructura de salarios urbanos en Colombia, 1984-2000. Lecturas de Economía, (63), 7-39.; Baldwin, R. y Cain, G. (1997). Shifts in u.s. Relative Wage: The Role of Trade, Technology, and Factor Endowments. Institute for Research on Poverty Discussion Paper No. 1132.; Bailey, T. (1990). Changes in the Nature and Structure of Work: Implications for Skill Requirements and Skill Formation. Berkeley: National Center of Research in Vocational Education.; Berman, E., Bound, J. y Machin, S. (1998). Implications of Skill-Biased Technological Change: International Evidence. The Quarterly Journal of Economics, 113(4), 1245-1279.; Berman, E., Bound, J. y Griliches, Z. (1993). Changes in the Demand for Skilled Labor within us Manufacturing Industries: Evidence from the Annual Survey of Manufacturing. NBER No. w4255.; Benavente, J. M., Bravo, D. y Montero, R. (2011). Wages and Workplace Computer Use in Chile. The Developing Economies, 49(4), 382-403.; Calderón, C., Ochoa, G. y Huesca, L. (2017). Mercado laboral y cambio tecnológico en el sector manufacturero de las regiones de México (2005-2014). Economía, Sociedad y Territorio, 17(54), 523-560.; Camberos, M., Huesca, L. y Castro, D. (2013). Cambio tecnológico y diferencial salarial en las regiones de México: un análisis de datos de panel para el sector servicios. Estudios Fronterizos, 14(28), 187-211.; Davis, S. T. y Haltiwanger, J. (1992). Gross Job Creation, Gross Job Destruction, and Employment Reallocation. The Quarterly Journal of Economics, 107(3), 819-863.; DiNardo, J. E. y Pischke, J. S. (1996). The Returns to Computer Use Revisited: Have Pencils Changed the Wage Structure Too? NBER No. w5606.; Dunne, T., Foster, L., Haltiwanger, J. y Troske, K. (2004). Wage and Productivity Dispersion in us Manufacturing: The Role of Computer Investment. Journal of Labor Economics, 22(2), 397-429.; Félix-Verduzco, G. yTorres-García, A. J. (2018). Prima salarial al uso de computadora en el trabajo. Evidencia de microdatos para México. El Trimestre Económico, 85(337), 137-168.; Freeman, R. (1976). The Overeducated American. Nueva York: Academic Press. Gottschalk, P. y Joyce, M. (1991). Changes in Earnings Inequality — An International Perspective. lis Working Paper Series No. 66.; Huesca, L. y Ochoa, G. (2016). Desigualdad salarial y cambio tecnológico en la Frontera Norte de México. Problemas del Desarrollo, 47(187), 165-188.; Katz, L. F. y Murphy, K. M. (1992). Changes in Relative Wages, 1963-1987: Supply and Demand Factors. The Quarterly Journal of Economics, 107(1), 35-78.; Krueger, A. (1993). How Computers Have Changed the Wage Structure: Evidence from Microdata, 1984-1989. The Quarterly Journal of Economics, 108(1), 33-60.; Liu, J. T., Tsou, M. W. y Hammitt, J. K. (2004). Computer Use and Wages: Evidence from Taiwan. Economics Letters, 82(1), 43-51.; Manacorda, M., Sánchez-Páramo, C. y Schady, N. (2010). Changes in Returns to Education in Latin America: The Role of Demand and Supply of Skills. ilr Review, 63(2), 307-326.; Michaels, G., Natraj, A. y Van Reenen, J. (2010). Has ICT Polarized Skill Demand? Evidence from Eleven Countries over 25 Years. NBER No. 16138.; Navarro, L. (2010). The Impact of Internet Use on Individual Earnings in Latin America. Development Research Working Paper Series No. 2010/11.; Ng, Y. C. (2006). Levels of Computer Self-Efficacy, Computer Use and Earnings in China. Economics Letters, 90(3), 427-432.; Oosterbeek, H. y Ponce, J. (2011). The Impact of Computer Use on Earnings in a Developing Country: Evidence from Ecuador. Labour Economics, 18(4), 434-440.; Rodríguez López, S. (2014). Wage Inequality in Uruguay: Technological Change Impact on Occupational Tasks. Serie Documentos de Trabajo/fcea-ie; dt15/14.; Rodríguez, R. y Castro, D. (2012). Efectos del cambio tecnológico en los mercados de trabajo regionales en México. Estudios Fronterizos Nueva Época, 13(26).; Romer, P. (1990). Endogenous Technological Change. Journal of Political Economy, 98(5, Part 2), S71-S102.; Torres, A. y Félix, G. (2017). Rendimiento al uso de pc en México: un análisis comparativo por sector de actividad. En Compendio de resultados de investigación aplicada en la ingeniería (pp. 139-155), s. l.; Torres, A. y Ochoa, G. (2018). Desigualdad salarial asociada al uso de tic en México: un análisis por ocupaciones. Cuadernos de Economía, 37(74).; http://dx.doi.org/10.16925/9789587601268; https://hdl.handle.net/20.500.12494/35985
Nájsť tento článok vo Web of Science
Full Text Finder