Výsledky vyhledávání - acm: c.: computer system organizacia/c.4: performance of system/c.4.3: modeling techniques
-
1
Autoři: Fumio Okura1 okura@ist.osaka-u.ac.jp
Zdroj: Breeding Science. 2022, Vol. 72 Issue 1, p31-47. 17p.
Témata: Tree planting, Computer graphics, Computer vision, Vision, Plant anatomy
Plný text ve formátu PDF -
2
Autoři: a další
Zdroj: ACM Computing Surveys. Mar2019, Vol. 51 Issue 2, p1-35. 35p.
-
3
Autoři: a další
Zdroj: Scientific Papers: Animal Science & Biotechnologies / Lucrari Stiintifice: Zootehnie si Biotehnologii. 2024, Vol. 57 Issue 1, p1-36. 36p.
Témata: Assessment of education, Computer science education, Landscape assessment, Master's degree, Computer simulation, Educational outcomes
Plný text ve formátu PDF -
4
Autoři:
Zdroj: Communications of the ACM. Sep68, Vol. 11 Issue 9, p622-629. 8p. 9 Diagrams.
-
5
Autoři: a další
Zdroj: Computer Graphics Forum. May2015, Vol. 34 Issue 2, p361-372. 12p. 8 Color Photographs, 2 Black and White Photographs, 4 Diagrams, 3 Charts, 1 Graph.
-
6
Autoři: a další
Zdroj: ENTCS: Electronic Notes in Theoretical Computer Science. May2006, Vol. 153 Issue 2, p161-175. 15p.
-
7
Autoři:
Zdroj: Communications of the ACM. May96, Vol. 39 Issue 5, p46-53. 8p.
-
8
Autoři: Lynch, W. C.1
Zdroj: Communications of the ACM. Jul1972, Vol. 15 Issue 7, p579-585. 7p.
-
9
Adaptive bandwidth allocation and traffic flow control using fuzzy systems and multifractal modeling
Autoři: Cardoso, Alisson Assis
Thesis Advisors: Vieira, Flávio Henrique Teles, Carvalho, Cedric Luiz de, Brito, Leonardo da Cunha
Zdroj: Biblioteca Digital de Teses e Dissertações da UFGUniversidade Federal de GoiásUFG.
Témata: Análise multifractal, Modelagem Fuzzy, Predicão de tráfego de rede, Alocacão de banda, Controle de tráfego de rede, Funções de base ortonormal, Orthonormal basis function, Multifractal analysis, Fuzzy modeling, Network traffic prediction, Band-width allocation, Traffic flow control, SISTEMAS DE COMPUTACAO::HARDWARE
Popis souboru: application/pdf
Relation: -5088589215393046129; 600; -7705723421721944646; -4730207349379833806; 2075167498588264571; AQUINO, V. A.; BARRIA, J. A. Multiresolution fir neural-network-based learning algorithm applied to network traffic prediction. IEEE Transactions on Systems, v. 36, n. 2, p. 208–220, 2006. Citado na p´agina 69. BEZDEK, J. Fuzzy models What are they, and why? Fuzzy Systems, IEEE Transactions on, v. 1, n. 1, p. 1–6, 1993. ISSN 1063-6706. Citado 2 vezes nas p´aginas 17 e 55. CHEN, B.; LIU, X.; TONG, S. Adaptive Fuzzy Output Tracking Control of MIMO Nonlinear Uncertain Systems. Fuzzy Systems, IEEE Transactions on, v. 15, n. 2, p. 287–300, April 2007. Citado na p´agina 78. CHEN, B.-S.; PENG, S.-C.; WANG, K.-C. Traffic modeling, prediction, and congestion control for high-speed networks: a fuzzy ar approach. Fuzzy Systems, IEEE Transactions on, v. 8, n. 5, p. 491–508, 2000. Citado na p´agina 55. CHEN, T. M.; LIU, S. S.; SAMALAM, V. K. The Available Bit Rate Service for Data in ATM Networks. Comm. Mag., v. 34, n. 5, p. 56–58, 63–71, maio 1996. Citado 3 vezes nas p´aginas 79, 80 e 89. CHUI, C. K. An Introduction to Wavelets. San Diego, CA, USA: Academic Press Professional, Inc., 1992. ISBN 0-12-174584-8. Citado na p´agina 22. DANG, T. D.; MOLNAR, S.; MARICZA, I. Capturing the complete characteristics of multifractal network traffic. GLOBECOM, Taipei, Taiwan, Novembro 2002. Citado 2 vezes nas p´aginas 21 e 83. DANG, T. D.; MOLNAR, S.; MARICZA, I. Capturing the Complete Multifractal Characteristics of Network Traffic. In: In Proc., GLOBECOM 2002. [S.l.: s.n.], 2002. Citado na p´agina 21. DANG, T. D.; MOLNAR, S.; MARICZA, I. Queuing performance estimation for general multifractal traffic. Int. J. Commun. Syst., v. 16, n. 2, p. 117–136, 2003. Citado 4 vezes nas p´aginas 19, 21, 22 e 28. DEC. Digital Equipament Corporation Traces. 1995. Dispon´ıvel em: . Citado 2 vezes nas p´aginas 57 e 127. DINIZ, P. S. R. Adaptive Filtering: Algorithms and Practical Implementation. [S.l.]: Springer, 2008. Citado 3 vezes nas p´aginas 45, 49 e 54. DITZE, M.; JAHNICH, I. Towards end-to-end QoS in service oriented architectures. In: Industrial Informatics, 2005. INDIN ’05. 2005 3rd IEEE International Conference on. [S.l.: s.n.], 2005. p. 92–97. Citado na p´agina 17. DURRESI, A.; SRIDHARAN, M.; JAIN, R. Congestion control using adaptive multilevel early congestion notification. International Journal of High performance and Networking, v. 4, n. 5, 2006. Citado na p´agina 78. EHLERS, R. S. [S.l.]: Departamento de Estat´ısticas UFPR, 2005. Citado na p´agina 31. FARHANG-BOROUJENY, B. Adaptive Filters: Theory and Applications. [S.l.]: John Wiley & Sons, 1999. Citado 2 vezes nas p´aginas 60 e 90. FELDMANN, A.; GILBERT, A. C.; WILLINGER, W. Data networks as cascades: investigating the multifractal nature of Internet WAN traffic. SIGCOMM Comput. Commun. Rev., ACM, New York, NY, USA, v. 28, n. 4, p. 42–55, 1998. Citado na p´agina 19. GILL, P. E.; MURRAY, W.; WRIGHT, M. H. Practical Optimization. [S.l.]: Emerald Group Publishing Limited, 1982. Citado na p´agina 48. GONCALVES, B. H. P.; VIEIRA, F. H. T.; COSTA, V. H. T. Modelagem Multifractal BMWM Adaptiva para Tr´afego de Redes de Computadores. In: X Encontro Anual de Computa¸c˜ao - EnAComp 2013. [S.l.: s.n.], 2013. p. 383–390. Citado 6 vezes nas p´aginas 24, 25, 82, 83, 85 e 86. GRIPENBERG, G.; NORROS, I. On the prediction of fractional brownian motion. Journal of Applied Probability, v. 33, p. 400–410, 1996. Citado na p´agina 56. GULER, O. Foundations of Optimization (Graduate Texts in Mathematics, Vol. 258). [S.l.]: Springer, 2010. Citado na p´agina 48. HABIB, I. W.; SAADAWI, T. N. Access flow control algorithms in broadband networks. Computer Communications, v. 15, n. 5, p. 326–332, 1992. Citado 2 vezes nas p´aginas 79 e 89. HATANO, T.; SHIGENO, H.; OKADA, K. TCP-friendly Congestion Control for HighSpeed Network. In: Applications and the Internet, 2007. SAINT 2007. International Symposium on. [S.l.: s.n.], 2007. p. 10–10. Citado na p´agina 17. HAYKIN, S. S. Modern filters. [S.l.]: Macmillan New York, 1989. Citado na p´agina 57. HIRCHOREN, G.; ARANTES, D. Predictors for the discrete time fractional gaussian processes. In: Telecommunications Symposium, 1998. ITS ’98 Proceedings. SBT/IEEE International. [S.l.: s.n.], 1998. p. 49–53 vol.1. Citado na p´agina 56. HU, Q.; PETR, D. A predictive self-tuning fuzzy-logic feedback rate controller. Networking, IEEE/ACM Transactions on, v. 8, n. 6, p. 697–709, Dec 2000. Citado na p´agina 78. INTEL. Intel Pentium Processor T4500. 2014. Dispon´ıvel em: . Citado na p´agina 58. JACOBSON, V. Congestion Avoidance and Control. SIGCOMM Comput. Commun. Rev., v. 25, n. 1, p. 157–187, jan. 1995. ISSN 0146-4833. Citado na p´agina 81. JANTZEN, J. Foundations of Fuzzy Control. [S.l.]: John Wiley & Sons, 2007. Citado na p´agina 38. JUSAK, J.; HARRIS, R. Study of UDP-based Internet traffic: Long-range dependence characteristics. In: Australasian Telecommunication Networks and Applications Conference (ATNAC), 2011. [S.l.: s.n.], 2011. p. 1–7. ISSN Pending. Citado na p´agina 17. KARNIK, A.; KUMAR, A. Performance of TCP Congestion Control with Explicit Rate Feedback. IEEE/ACM Trans. Netw., IEEE Press, v. 13, n. 1, p. 108–120, fev. 2005. ISSN 1063-6692. Citado 2 vezes nas p´aginas 79 e 89. KIM, E. et al. A new approach to fuzzy modeling. Fuzzy Systems, IEEE Transactions on, v. 5, n. 3, p. 328–337, Aug 1997. Citado na p´agina 55. KIM, S. et al. Dataset of BitTorrent traffic on Korea Telecom’s mobile WiMAX network. 2012. Dispon´ıvel em: . Citado 4 vezes nas p´aginas 22, 88, 129 e 131. KUO, S. M.; LEE, B. H.; TIAN, W. Real-Time Digital Signal Processing: Fundamentals, Implementations and Applications. [S.l.]: John Wiley & Sons, 2013. Citado na p´agina 50. LEE, I. W. C.; FAPOJUWO, A. O. Stochastic Processes for Computer Network Traffic Modeling. Comput. Commun., Elsevier Science Publishers B. V., v. 29, n. 1, p. 1–23, dez. 2005. ISSN 0140-3664. Citado na p´agina 78. LEE, K. Y. Complex fuzzy adaptive filter with LMS algorithm. Signal Processing, IEEE Transactions on, v. 44, n. 2, p. 424–427, 1996. ISSN 1053-587X. Citado na p´agina 57. LEE, T.-J.; VECIANA, G. de. Model and performance evaluation for multiservice network link supporting ABR and CBR services. Communications Letters, IEEE, v. 4, n. 11, p. 375–377, Nov 2000. Citado na p´agina 80. LI, H.; CHEN, C. P.; HUANG, H.-P. Fuzzy Neural Intelligent Systems: Mathematical Foundation and the Applications in Engineering. [S.l.]: CRC Press, 2000. Citado na p´agina 35. LILLY, J. H. Fuzzy control and identification. [S.l.]: John Wiley & Sons, 2010. Citado na p´agina 40. LIU, H.-H.; HSU, P.-L. Design and simulation of adaptive fuzzy control on the traffic network. In: SICE-ICASE, 2006. International Joint Conference. [S.l.: s.n.], 2006. p. 4961–4966. Citado na p´agina 55. MAMDANI, E.; ASSILIAN, S. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, v. 7, n. 1, p. 1 – 13, 1975. Citado na p´agina 35. NORROS, I. A storage model with self-similar input. Queueing Systems. Citado na p´agina 32. OUYANG, C.-S.; LEE, W.-J.; LEE, S.-J. A TSK-type neurofuzzy network approach to system modeling problems. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, v. 35, n. 4, p. 751–767, Aug 2005. Citado na p´agina 78. OUYANG, Y. C.; YANG, C. W.; LIAN, W. S. Neural networks based variable bit rate traffic prediction for traffic control using multiple leaky bucket. Journal of High Speed Networks, v. 15, n. 2, p. 11–122, 2006. Citado na p´agina 69. PAPOULIS, A. Probability, Random Variables, and Stochastic Processes. [S.l.]: Mc-Graw Hill, 1984. Citado na p´agina 58. PARK, K.; WILLINGER, W. Self-similar Network Traffic and Performance Evaluation. New York: John Wiley and Sons, 2000. Citado 4 vezes nas p´aginas 19, 20, 31 e 55. PAVLOV, A. N.; ANISHCHENKO, V. S. Multifractal analysis of complex signals. Physics-Uspekhi, v. 50, n. 8, p. 819, 2007. Citado na p´agina 32. PAXSON, V.; FLOYD, S. Wide area traffic: the failure of poisson modeling. Networking, IEEE/ACM Transactions on, v. 3, n. 3, p. 226–244, Jun 1995. Citado na p´agina 57. RAMAKRISHNAN, K. K.; JAIN, R. A Binary Feedback Scheme for Congestion Avoidance in Computer Networks. ACM Trans. Comput. Syst., v. 8, n. 2, p. 158–181, maio 1990. ISSN 0734-2071. Citado na p´agina 89. RIBEIRO, V. J. et al. Multiscale queuing analysis of long-range-dependent network traffic. In: Proc. IEEE INFOCOM. [S.l.: s.n.], 2000. p. 1026–1035. Citado na p´agina 22. RIBEIRO, V. J. et al. Small-time scaling behavior of internet backbone traffic. Computer Networks: The International Journal of Computer and Telecommunications Networking, Elsevier North-Holland, Inc., v. 48, n. 3, p. 315–334, 2005. Citado na p´agina 31. RIEDI, R. H. et al. A multifractal wavelet model with application to network traffic. Information Theory, IEEE Transactions on, v. 45, n. 3, p. 992–1018, Apr 1999. Citado 5 vezes nas p´aginas 19, 22, 24, 31 e 83. ROCHA, F. G. C.; VIEIRA, F. H. T. Modelagem de tr´afego de v´ıdeo mpeg-4 utilizando cascata multifractal com distribuicao autorregressiva dos multiplicadores. In: The 8th International Information and Telecommunication Technologies Symposium. [S.l.: s.n.], 2009. Citado na p´agina 22. ROLLS, D. A.; MICHAILIDIS, G.; HERN´aNDEZ-CAMPOS, F. Queueing analysis of network traffic: Methodology and visualization tools. Comput. Netw., v. 48, n. 3, p. 447–473, jun. 2005. ISSN 1389-1286. Citado 2 vezes nas p´aginas 65 e 93. RONGCAI, Z.; SHUO, Z. Network traffic generation: A combination of stochastic and self-similar. In: Advanced Computer Control (ICACC), 2010 2nd International Conference on. [S.l.: s.n.], 2010. v. 2, p. 171–175. Citado na p´agina 17. ROSS, T. J. Fuzzy logic with engineering applications. [S.l.]: John Wiley & Sons, 2009. Citado 8 vezes nas p´aginas 6, 17, 35, 36, 40, 42, 43 e 55. SCHILLING, R.; HARRIS, S. Fundamentals of digital signal processing using MATLAB. [S.l.]: Cengage Learning, 2011. Citado na p´agina 45. SEURET, S.; GILBERT, A. Pointwise h¨older exponent estimation in data network traffic. ITC Specialist Semina, 2000. Citado na p´agina 31. SOUZA, B. V. L.; VIEIRA, F. H. T. Algoritmo de predi¸c˜ao de tr´afego de rede baseado na fun¸c˜ao autocorrela¸c˜ao de um modelo multifractal. In: XXXIV Congresso Nacional de Matem´atica Aplicada e Computacional. ´Aguas de Lid´oias, SP: [s.n.], 2012. Citado na p´agina 56. SUGENO, M.; YASUKAWA, T. A fuzzy-logic-based approach to qualitative modeling. Fuzzy Systems, IEEE Transactions on, v. 1, n. 1, p. 7–, Feb 1993. Citado na p´agina 55. TAKAGI, T.; SUGENO, M. Fuzzy identification of systems and its applications to modeling and control. Systems, Man and Cybernetics, IEEE Transactions on, SMC-15, n. 1, p. 116–132, Jan 1985. Citado na p´agina 55. TOREYIN, B. et al. Lms based adaptive prediction for scalable video coding. In: Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on. [S.l.: s.n.], 2006. v. 2, p. II–II. Citado na p´agina 57. TRAN, H. T.; ZIEGLER, T. Adaptive bandwidth provisioning with explicit respect to qos requirements. Computer Communications, v. 28, p. 1862–1876, 2005. Citado na p´agina 69. VIEIRA, F.; ROCHA, F. An adaptive fuzzy model using orthonormal basis functions based on multifractal characteristics applied to network traffic control. Neurocomputing, v. 74, n. 11, p. 1894–1907, 2011. Citado na p´agina 82. VIEIRA, F. H. T.; COSTA, V. H. T.; SOUZA, B. V. L. Neural network based approaches for network traffic prediction. Artificial Intelligence, Evolutionary Computing and Metaheuristics, v. 427, p. 657–684, 2013. Citado na p´agina 22. VIEIRA, F. H. T.; LING, L. L. Modelagem fuzzy utilizando fun¸c˜oes de base ortonormais aplicada `a predi¸c˜ao adaptativa de tr´afego de redes. Learning and Nonlinear Models. Rev. Socied. Brasileira de Redes Neurais (SBRN), v. 4, n. 2, p. 93–11, 2006. Citado 2 vezes nas p´aginas 19 e 26. VIEIRA, F. H. T.; LING, L. L. Performance bounds for a cascade based multifractal traffic model with generalized multiplier distributions. Journal of Communication and Information Systems, v. 21, p. 165–175, 2006. Citado na p´agina 20. VIEIRA, F. H. T.; LING, L. L. Modelagem de tr´afego de redes utilizando cascata multifractal generalizada. Revista de Inform´atica Te´orica e aplicada, v. 15, n. 2, 2008. Citado na p´agina 31. VIEIRA, F. H. T.; ROCHA, F. G. C.; LEMOS, R. P. An algorithm for adaptive prediction of local singularities of network traffic flows. 2010. Citado na p´agina 31. WANG, C. et al. LRED: A Robust and Responsive AQM Algorithm Using Packet Loss Ratio Measurement. Parallel and Distributed Systems, IEEE Transactions on, v. 18, n. 1, p. 29–43, Jan 2007. Citado 2 vezes nas p´aginas 78 e 79. WANG, L.-X. Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1994. ISBN 0-13-099631-9. Citado 11 vezes nas p´aginas 6, 37, 39, 40, 41, 42, 44, 50, 57, 59 e 88. WANG, Z.-x. et al. Research on fuzzy neural network algorithms for nonlinear network traffic predicting. In: Optoelectronics Letters. [S.l.: s.n.], 2006. p. 373–375. ISSN Pending. Citado na p´agina 17. WITS. WITS: Waikato Internet Traffic Storage from University of Waikato. 2014. Dispon´ıvel em: . Citado 2 vezes nas p´aginas 57 e 88. YU, Y. et al. Traffic prediction in 3G mobile networks based on multifractal exploration. Tsinghua Science and Technology, v. 18, n. 4, p. 398–405, 2013. Citado na p´agina 17. ZHANG, R.; PHILLIS, Y. A.; KOUIKOGLOU, V. S. Fuzzy Control of Queuing Systems. [S.l.]: Springer, 2005. Citado na p´agina 17. ZOU, D.; ZHANG, X.; WANG, W. Multi-service traffic models of heterogeneous wireless communication networks. Proc. of the 7th World Congress on Intelligent Control and Automation, p. 495–498, 2008. Citado na p´agina 21.
-
10
Autoři:
Zdroj: Computer Networks. Mar2009, Vol. 53 Issue 4, p541-555. 15p.
-
11
Autoři: a další
Zdroj: Communications of the ACM. Dec1972, Vol. 15 Issue 12, p1063-1069. 7p. 1 Diagram, 2 Charts, 2 Graphs.
-
12
Autoři:
Zdroj: Computer Graphics Forum. Aug2017, Vol. 36 Issue 5, p59-69. 11p.
-
13
Zdroj: Communications of the ACM. Oct2003, Vol. 46 Issue 10, p79-84. 6p. 1 Diagram, 1 Chart.
-
14
Autoři:
Zdroj: ACM Transactions on Storage. 12(2)
Témata: Design, Algorithms, Measurement, Performance, Data layout, storage optimization, tiered storage, predictive modeling, Data Format, Networking & Telecommunications
Popis souboru: application/pdf
-
15
Autoři: a další
Zdroj: Communications of the ACM. Aug2020, Vol. 63 Issue 8, p83-91. 9p. 5 Diagrams, 2 Charts.
-
16
Autoři: a další
Zdroj: ACM Transactions on Computer Systems. Aug2006, Vol. 24 Issue 3, p211-249. 39p. 17 Diagrams, 5 Charts, 2 Graphs.
-
17
Autoři: a další
Zdroj: Computer Graphics Forum. Oct2016, Vol. 35 Issue 7, p323-332. 10p. 5 Color Photographs, 10 Diagrams, 3 Graphs.
-
18
Autoři:
Zdroj: Kanev, Svilen, Gu-Yeon Wei, and Brooks, David. 2012. XIOSim: Power-performance Modeling of Mobile x86 Core. In Proceedings of the 2012 ACM/IEEE International Symposium on Low Power Electronics and Design, 267-272, Redondo Beach, California. doi:10.1145/2333660.2333722
Témata: in-order, power-performance, simulation, x86
Popis souboru: application/pdf
Relation: Proceedings of the 2012 ACM/IEEE international symposium on Low power electronics and design - ISLPED '12; ISLPED '12 Proceedings of the 2012 ACM/IEEE international symposium on Low power electronics and design
Přístupová URL adresa: http://nrs.harvard.edu/urn-3:HUL.InstRepos:34728751
-
19
Autoři: Caetano, Samuel Sabino
Thesis Advisors: Ferreira, Deller James, Camilo Junior, Celso Gonçalves, Soares, Telma Woerle de Lima, Martinhon, Carlos Alberto de Jesus
Zdroj: Biblioteca Digital de Teses e Dissertações da UFGUniversidade Federal de GoiásUFG.
Témata: Algoritmos Genéticos Híbridos, CSCL, CSCW, CSCL@Work, Meta-Heurística, Heurística, Formação de grupos, Criação do conhecimento organizacional, Algoritmos genéticos, Hybrid genetic algorithms, MetaHeuristics, Heuristic, Groups formation, Organizational knowledge creation, Genetic algorithms, TEORIA DA COMPUTACAO::ANALISE DE ALGORITMOS E COMPLEXIDADE DE COMPUTACAO
Popis souboru: application/pdf
Relation: -3303550325223384799; 600; -7712266734633644768; 437660438475277419; [1] ABDOLLAH HOMAIFAR, C. X. Q.; LAI, S. H. Constrained optimization via genetic algorithms. SIMULATION, 62(4):242–254, 1994. [2] ABNAR, S.; OROOJI, F.; TAGHIYAREH, F. An evolutionary algorithm for forming mixed groups of learners in web based collaborative learning environments. In: Technology Enhanced Education (ICTEE), 2012 IEEE International Conference on, p. 1–6, 2012. [3] ADAMIDES, E. D.; KARACAPILIDIS, N. Information technology support for the knowledge and social processes of innovation management. Technovation, 26:50–59, 2006. [4] AGGARWAL, A. Functional diversity and its impact on distributed groups: An exploratory study. In: Proceedings of the 2012 45th Hawaii International Conference on System Sciences, HICSS ’12, p. 444–453, Washington, DC, USA, 2012. IEEE Computer Society. [5] AGGARWAL, A. K. Diversity in distributed decision making: An exploratory study. In: Proceedings of the 2010 43rd Hawaii International Conference on System Sciences, HICSS ’10, p. 1–11,Washington, DC, USA, 2010. IEEE Computer Society. [6] AGHA, S.; ALRUBAIEE, L.; JAMHOUR, M. Effect of core competence on competitive advantage and organizational performance. International Journal of Business and Management, 7(1):192–204, Janeiro 2012. [7] ANDERSON, W.; HILTZ, S. Culturally heterogeneous vs. culturally homogeneous grupos in distributed group support systems: effects on group process and consensus. In: 34th International Conference on Systems Sciences, 2001. [8] ANNE POWELL, GABRIELE PICCOLI, B. I. Virtual teams: A review of current literature and directions for future research. The data base for Advances in Information Systems, 35(1):6–36, 2004. [9] APPELBAUM, S. H.; GALLAGHER, J. The competitive advantage of organizational learning. Journal of Workplace Learning: Employee Counselling Today, 12(2):40–56, 2000. [10] ARAGON, C. R.; WILLIAMS, A. Collaborative creativity: a complex systems model with distributed affect. In: CHI ’11 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, p. 1875–1884, 2011. [11] ASOH, H.; MÜHLENBEIN, H. On the mean convergence time of evolutionary algorithms without selection and mutation. In: PARALLEL PROBLEM SOLVING FROM NATURE, LECTURE NOTES IN COMPUTER SCIENCE 866, p. 88–97. Springer-Verlag, 1994. [12] AVOLIO, B. Full Leadership Development: Building the Vital Forces in Organizations. Advanced Topics in Organizational Behavior series. SAGE Publications, 1999. [13] BANDURA, A. Social foundations of thought and action: a social cognitive theory. Prentice-Hall series in social learning theory. Prentice-Hall, 1986. [14] BANI-HANI, J. S.; FALEH, A. A. The impact of core competencies on competitive advantage: Strategic challenge. Journal of Business and Management, 4(2), 2011. [15] BARDIN, L. Análise de conteúdo. Edições 70, 2006. Título original: L’analyse de contenu, Presses Universitaires de France, 1977. [16] BARNATT, C. Virtual organizations in the small busciness sector: the case of cavendish management resources. International Small Business Journal, 15(4):36–47, 1997. [17] BASADUR, M.; HEAD, M. Team performance and satisfaction: A link to cognitive style within a process framework. Journal of Creative Behavior, 35:227–248, 2001. [18] BASS, B. Transformational Leadership: Industrial, Military, and Educational Impact. Lawrence Erlbaum Associates, Incorporated, 1998. [19] BASS, B.; AVOLIO, B. Improving Organizational Effectiveness Through Transformational Leadership. Thousands Oaks, California, 1994. [20] BATTITI, R.; BRUNATO, M.; MASCIA, F. Reactive search and intelligent optimization. Technical report, Università Degli Studi di Trento, Julho 2007. [21] BEKELE, R. Computer-Assisted Learner Group Formation Based on Personality Traits. PhD thesis, Universität Hamburg, 2005. [22] BELBIN, M. Team Roles at Work. Oxford: Butterworth Heinemann, 1993. [23] BELBIN, R. Management Teams: Why They Succeed Or Fail. Butterworth- Heinemann, 1981. [24] BELEW, R. K. Evolving networks: Using the genetic algorithm with connectionist learning. Technical report, University of California, La Jolla, CA 92093, Junho 1990. [25] BERGER, N. Pionnering experiences in distance learning: Lessons learned. Journal of Management Education, 23(6):684–690, 1999. [26] BERTTUCCI, A.; MELONI, C.; CONTE, S.; CARDELLINI, L. The role of personality gender and interaction in a cooperative and a computer supported collaborative learning task. Journal of Science Education, 6:32–36, 2005. [27] BRADLEY, J. H.; HEBERT, F. J. The effect of personality type on team performance. Journal of Management Development, 16:337–353, 1997. [28] BRANDON, D.; HOLLINGSHEAD, A. Collaborative learning and computer supported groups. Communication Education, 48(2):109–126, 1999. [29] BRASIL. Constituição da república federativa do brasil. Internet. http://www.planalto.gov.br/ccivil_03/Constituicao/Constituicao.htm, acesso em 14/07/2013. [30] BROPHY, D. Understanding, measuring, and enhancing collective creative problem-solving efforts. Creative Research Journal, 3:199–299, 1998. [31] BROWN, A.; CAMPIONE, J. Guided discovery in a community of learners. In: Press, C. M., editor, Classroom lessons: Integrating cognitive theory and classroom practice, p. 229–270. Classroom lessons: Integrating cognitive theory and classroom practice, 1994. [32] BROWN, S.; EISENHARDT, K. Product development: past research; present findings, and future directions. Academy of Management Review, 20:343–378, 1995. [33] BUNDERSON, J. S.; SUTCLIFFE, K. Comparing alternative conceptualizatios of funcional diversity and performance effects. Academy of Management Journal, 45 (5):875–893., 2002. [34] CAETANO, S. S.; FERREIRA, D. J.; CAMILO-JR, C. G. Multi-objective genetic algorithm for competency-based selection of auditing teams. Journal of Software & Systems Development, 2013(2013), 2013. [35] CANNON, D.; WHEELDON, D. ITIL Service Operation. TSO, May 2007. [36] CARSON, J. B.; TESLUK, P. E.; MARRONE, J. A. Shared leadership in teams: An investigation of antecedent conditions and performance. Academy of Management Journal, 50(5):1217–1234, 2007. [37] CARTE, T. A.; CHIDAMBARAM, L.; BECKER, A. Emergent leadership in selfmanaged virtual teams: A longitudinal study of concentrated and shared leadership behaviors. Group Decision and Negotiation, 15(4):323–343, 2006. [38] CAVANAUGH, R.; ELLIS, M.; LAYTON, R.; ARDIS, M. Automating the process of assigning students to cooperative-learning teams. In: in proc. 2004 ASEE Annual Conf, 2004. [39] CHAN, K. W. Issues of heterogeneous grouping for engaged learning. In: APERA Conference 2006, 2006. [40] CHIDAMBARAM, L.; CARTE, T. Diversity: Is there more than meets the eye. In: The 38th International Conference on System Science, 2005. [41] CHRISTODOULOPOULOS, C. E.; PAPANIKOLAOU, K. A. Investigation of group formation using low complexity algorithms. In: Proceedings of Workshop on Personalisation in E-Learning Environments at Individual and Group Level, p. 57– 60, 2007. 1th International Conference on User Modeling. [42] CONGER, J. A., K. R. A. Towards a behavioral theory of charismatic leadership in organizational settings. Academy of Management Review, 12:637–647, 1987. [43] COX, T. The multicultural organization. Academy of Management Executive, 5:34–47, 1991. [44] COX, T.; BLAKE, S. Managing cultural diversity: Implications for organizational competitiveness. Academy of Management Executive, 5:45–56, 1991. [45] DARWIN, C. On the Origin of the Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life. John Murray, 1859. [46] DAVIDSON, N.; KROLL, D. L. An overview of research on cooperative learning related to mathematic. Journal for Research in Mathematics Education, 22:362– 365, 1991. [47] DE GEUS, A. The living company. Harvard Business School Press, 1997. [48] DE PAIVA, I. A.; PERNAMBUCO, M. M. C. A. Educação e realidade: interdisciplinar. Universidade Federal do Rio Grande do Norte, 2005. [49] DEB, K. An efficient constraint handling method for genetic algorithms. In: Computer Methods in Applied Mechanics and Engineering, p. 311–338, 1998. [50] DILLENBOURG, P. Over-scripting cscl: The risks of blending collaborative learning with instructional design. http://hal.archivesouvertes. fr/docs/00/19/02/30/PDF/Dillenbourg-Pierre-2002.pdf, acesso em 14.05.2013. [51] DILLENBOURG, P. What do you mean by ’collaborative learning’? Collaborativelearning: Cognitive and Computational Approaches., 1999. [52] DOWLING, K.; CHIM, T. Reflectors as online extraverts. Educational Studies, 30(06):265–276, 2004. [53] DRUCKER, P. Post-Capitalism Society. Butterworth Heinemann, 1993. [54] EBRAHIM, N. A.; AHMED, S.; TAHA., Z. Virtual teams: a literature review. Australian Journal of Basic and Applied Sciences, 3(3):2653–2669, 2009. [55] EIBEN, A. E.; SMITH, J. E. Introduction to Evolutionary Computing. Natural Computing Series. Springer, 2003. [56] EIBEN, A.; RAUÉ, P.-E.; RUTTKAY, Z. Ga-easy and ga-hard constraint satisfaction problems, 1995. [57] EL-MIHOUB, T. A.; HOPGOOD, A. A.; NOLLE, L.; BATTERSBY, A. Hybrid genetic algorithms: A review. Engineering Letters, 13(2), 2006. [58] ENGELBRECHT, A. P. Computational intelligence : an introduction. John Wiley & Sons, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2nd edition edition, 2007. [59] FELDER, R. M.; SILVERMAN, L., K. Learning and teaching styles in engineering education. Engr. Education, 78:674–681, 1988. Disponível em http://www4.ncsu.edu/unity/lockers/users/f/felder/public/Papers/LS-1988.pdf, acesso em 28/12/2012. [60] FELDER, R. M. How students learn: Adapting teaching styles to learning styles. In: Frontiers In Education Conference Proceedings, p. 489–493, 1988. [61] FELIX, Z.; TEDESCO, P. Formação de grupos de aprendizagem em ambientes cscl ciente de contexto. II SEGeT – Simpósio de Excelência em Gestão e Tecnologia, 2006. [62] FILHO, J. A. B. L.; QUARTO, C. C.; FRANCA, R. M. Clustering algorithm for the socio-affective groups formation in aid of computer supported collaborative learning. Sistemas Colaborativos II, Simpósio Brasilerio de, 0:24–27, 2010. [63] FISCHER, G. A conceptual framework for computer-supported collaborative learning at work. In: Goggins, S. P.; Jahnke, I.; Wulf, V., editors, Computer- Supported Collaborative Learning at the Workplace, volume 14 de Computer- Supported Collaborative Learning Series, p. 23–42. Springer US, 2013. [64] FORSYTH, D. Group Dynamics. Psychology Series. Brooks/Cole, Wadsworth, 1999. [65] FREED, S. Pensar, dialogar e aprender. http://www.andrews.edu/ freed/ppdfs/4- 10InterdependenciaPositiva.pdf, acesso em 17.02.2013. [66] GOGGINS, S.; JAHNKE, I.; WULF, V. Cscl@work revisited - beyond cscl and cscw?: are there key design principles for computer supported collaborative learning at the workplace? In: Proceedings of the 17th ACM international conference on Supporting group work, GROUP ’12, p. 323–326, New York, NY, USA, 2012. ACM. [67] GOGGINS, S. P.; JAHNKE, I. Cscl@work: Making learning visible in unexpected online places across established boundaries. IJSKD, 4(3):17–37, 2012. [68] GOIÁS, E. Lei no 17.663, de 14 de junho de 2012. Internet, 06 2012. Dispõe sobre a reestruturação da Carreira dos Servidores do Poder Judiciário do Estado de Goiás e dá outras providências. [69] GRAF, S.; BEKELE, R. Forming heterogeneous groups for intelligent collaborative learning systems with ant colony optimization. In: Springer-Verlag Berlin, H., editor, ITS’06 Proceedings of the 8th international conference on Intelligent Tutoring Systems, p. 217–226, 2006. [70] GRANT, R. Toward a knoledge-based theory of firm. Strategic Management Journal, 17:109–122, 1996. [71] GRUAU, F.; WHITLEY, D. Adding learning to the cellular development of neural networks: Evolution and the baldwin effect. Evol. Comput., 1(3):213–233, Sept. 1993. [72] GRUDIN, J. Computer-supported cooperative work: history and focus. Computer, 27(5):19–26, 1994. [73] GRUNERT, K. G.; HILDEBRANDT, L. Success factors, competitive advantage and competence development. Journal of Business Research, 57(5):459 – 461, 2004. Success factors, competitive advantage and competence development . [74] GUIMERÀ, R.; UZZI2, B.; SPIRO, J.; AMARAL1, L. A. N. Team assembly mechanisms determine collaboration network structure and team performance. Science, 308(5722):697–702, April 2005. [75] GUZZO, R.; DICKSON, M. Teams in organizations: Recent research on performance and effectiveness. Annual Review of Psychology, 47:307–338, 1996. [76] HAKKINEN, P. What makes learning and understanding in virtual teams so difficult? CyberPsychology & Behavior, 7(2):201–206, 2004. [77] HARE, A. P. Types of roles in small groups : A bit of history and a current perspective. Small Group Research, 25:433–448, 1994. [78] HARRINGTON, D.; KEARNEY, A. The business school in transition: New opportunities in management development, knowledge transfer and knowledge creation. Journal of European Industrial Training, 35(2):116–134, 2011. [79] HARRISON, D.; PRICE, K.; GAVIN, J.; FLOREY, A. Time, teams and task performance: Changing effects of surface and deep-level diversity on group functioning. Academy of Management Journal, 45(5):1029–1045, 2002. [80] HART, W. E. Adaptive global optimization with local search. PhD thesis, La Jolla, CA, USA, 1994. UMI Order No. GAX94-32928. [81] HAUPT, R.; HAUPT, S. Practical Genetic Algorithms. Wiley, 2nd edition, 2004. [82] HENRY, S. M.; STEVENS, K. T. Using belbin’s leadership role to improve team effectiveness: an empirical investigation. J. Syst. Softw., 44(3):241–250, Jan. 1999. [83] HOADLEY, C. Roles, design, and the nature of cscl. Computers in Human Behavior, 26(4):551–555, Julho 2010. Elsevier Science Publishers B. V. Amsterdam, The Netherlands, The Netherlands. [84] HOLLAND, J. H. Adaptation in Natural and Artificial Systems. The University of Michigan Press, 1975. [85] HOUSE, R. J.; SHAMIR, B. Toward the integration of transformational, charismatic, and visionary theories. In: Press, U. A., editor, Leadership theory and research: Perspectives and directions, p. 81–107. M. M. Chemers and R. Ayman, San Diego, CA, 1993. [86] HOWELL, J.; AVOLIO, B. J. Transformational leadership, transactional leadership, locus of control and support for innovation: Key predictors of consolidated-business unit performance. Journal of Applied Psychology, 78:891–902, 1993. [87] HUBSCHER, R. Assigning students to groups using general and contextspecific criteria. IEEE Trans. Learn. Technol., 3(3):178–189, July 2010. [88] JANIS, I. Group Think. 1971. [89] JARKE, M. Experience-based knowledge management:a cooperative information systems perspective. Control Engineering Practice, 10:561–569, 2002. [90] JARVENPAA, S. L.; LEIDNER, D. E. Communication and trust in global virtual teams. Organization Science, 10(6):791–815, June 1999. [91] JIN, N.; TSANG, E.; LI, J. A constraint-guided method with evolutionary algorithms for economic problems. Appl. Soft Comput., 9(3):924–935, June 2009. [92] JOHNSON, D. W.; JOHNSON, R. Learning together and alone: Cooperation, competition and individualistic learning. Prentice Hall, 1987. [93] JOHNSON, D. W.; JOHNSON, R. T. Making cooperative learning work. Theory Into Practice, 38(2):67–73, 1999. [94] JOHNSON, D. W.; JOHNSON, R. T.; STANNE, M. B. Impact of group processing on achievement in cooperative groups. The journal of Social Psycology, 130(4):507– 516, 2001. [95] JOHNSON, D.; JOHNSON, R. Creative controversy: intellectual challenge in the classroom. Interaction Book Company, 1995. [96] JOHNSON, R. T.; JOHNSON, D. W. An overview of cooperative learning. http://teachers.henrico.k12.va.us/staffdev/mcdonald_j/downloads/21st/comm/BenefitsOfCL/OverviewOfCoopLrng_acesso em 27.12.2012. [97] JÄRVELÄ, S.; JÄRVENOJA, H.; VEERMANS, M. Understanding the dynamics of motivation in socially shared learning. International Journal of Educational Research, 47(2):122–135, 2008. [98] JUNG, D.; AVOLIO, B. Effects of leadership style and followers’ cultural values on performance under different task structure conditions. Academy of Management Journal, 42:208–218, 1999. [99] KANKANHALLI, A.; TAN, B.; WEI, K.-K. Conflict and performance in global virtual teams. J. Manage. Inf. Syst., 23(3):237–274, Jan. 2007. [100] KAPLAN, H., R.; NORTON, D. The Balanced Scorecard: Translating Strategy Into Action. Harvard Business School Press. Harvard Business School Publishing India Pvt. Limited, 1996. [101] KESSLER, E. H. Leveraging e-r&d processes: a knowledge-based view. Technovation, 23:905–915, 2003. [102] KIRSCHNER, P. A.; STRIJBOS, J.-W.; KREIJNS, K.; BEERS, P. Designing electronic collaborative learning environments. Educational Technology Research and Development, 52(3):47–66, 2004. [103] KOLB, D. A. The modern american college - Responding to the new realities of diverse students and a changing of society. Artur W. Chichering and associates, 1981. [104] KOLB D., A. Learning Style Inventory: Technical Manual. 1976. [105] KREBS, S., H. E.; BORDIA, P. Virtual teams and group member dissimiliarity. Small Group Research, 37(6):721–741, 2006. [106] KREIJNS, C.; P.A., K.; JOCHEMS, W. Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: a review of the research. Computers in Human Behavior, 19:335–354, 2003. [107] KREIJNSA, K.; KIRSCHNERB, P. A.; JOCHEMSB, W. Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: a review of the research. Computers in Human Behavior, 19:335–353, 2003. [108] KURTZBERG, T. R. Feeling creative, being creative: An empirical study of diversity and creativity in teams. Creativity Research Journal, 17 (1):51–65, 2005. [109] LAZERSON, M.; WAGENER, U. Teaching and learning the unfamiliar. Change: The Magazine of Higher Learning, 31:38–39, 1999. [110] LIANG, C.-J.; LIN, Y.-L.; HUANG, H.-F. Effect of core competence on organizational performance in an airport shopping center. Journal of Air Transport Management, 31(0):23 – 26, 2013. Notes . [111] LIN, Y.-T.; HUANG, Y.-M.; CHENG, S.-C. An automatic group composition system for composing collaborative learning groups using enhanced particle swarm optimization. Comput. Educ., 55(4):1483–1493, Dec. 2010. [112] LLOYD, V.; RUDD, C.; TAYLOR, S. ITIL - Service Design. TSO (The Stationery Office), 2007. [113] MACMASTER, M. D. The Intelligence Advantage: Organizing for Complexity. Butterworth-Heinemann Limited, 1996. [114] MAHFOUD, S. W. Boltzmann selection. In: Handbook of Evolutionary Computation, p. 231–234. IOP Publishing Ltd and Oxford University Press, 1997. Release 97/1. [115] MARGERISON, C.; MCCANN, D. Team Management: Practical New Approaches. Management Books 2000 Limited, 1995. [116] MARK, G. Conventions and commitments in distributed cscw groups. Comput. Supported Coop. Work, 11(3):349–387, Nov. 2002. [117] MARREIROS, A.; FONSECA, J.; CONBOY, J. O trabalho científico em ambiente de aprendizagem cooperativa. Revista da Educação, 10(2):99–112, 2001. [118] MARROTTA, S.; PETERS, B.; PALIOKAS, K. Teaching group dinamics: An interdisciplinary model. Journal of Specialists in Group Work, 25(1):16–28, 2000. [119] MARTÍN, E.; PAREDES, P. Using learning styles for dynamic group formation in adaptive collaborative hypermedia systems. Matera, M. & Comai, S. (Eds.) Engineering Advanced Web Applications. Proceedings of Workshops in Connection with 4th International Conference on Web Engineering, p. 188–197, 2004. [120] MICHALEWICZ, Z.; FOGEL, D. How to Solve It: Modern Heuristics. Springer, 2004. [121] MICHALEWICZ, Z. Genetic algorithms, numerical optimization, and constraints. p. 151–158. Morgan Kaufmann, 1995. [122] MICHALEWICZ, Z. A survey of constraint handling techniques in evolutionary computation methods. In: Proceedings of the 4th Annual Conference on Evolutionary Programming, p. 135–155. MIT Press, 1995. [123] MICHALEWICZ, Z. Genetic algorithms + data structures = evolution programs (3rd ed.). Springer-Verlag, London, UK, UK, 1996. [124] MISIOLEK, N. I.; HECKMAN, R. Patterns of emergent leadership in virtual teams. In: Proceedings of the Proceedings of the 38th Annual Hawaii International Conference on System Sciences (HICSS’05) - Track 1 - Volume 01, HICSS ’05, p. 49.1–, Washington, DC, USA, 2005. IEEE Computer Society. [125] MITCHELL, M. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, USA, 1998. [126] MORAES, R. Análise de conteúdo. Internet, 1999. http://cliente.argo.com.br/ mgos/analise_de_conteudo_moraes.html, acesso em 13.07.2013. [127] MORENO, J.; OVALLE, D. A.; VICARI, R. M. A genetic algorithm approach for group formation in collaborative learning considering multiple student characteristic. Computers & Education, 2011. [128] MUDRACK, P. E.; FARRELL, G. M. An examination of functional role behavior and its consequences for individuals in group settings. Small Group Research, 26(4):542–571, 1995. [129] MULDER, I.; SWAAK, J.; KESSELS, J. In search of reflective behavior and shared understanding in ad hoc expert teams. Cyberpsychol Behavior, 7(2):141–154, April 2004. [130] NASAJON, L. Gerenciamento da diversidade nas organizações. internet, May 2012. http://era.org.br/2012/05/gerenciamento-da-diversidade-nas-organizacoes, acesso em 09.06.2013. [131] NONAKA, I. An Inquiry into the Good, translated by M. Abe and C. Ive. Yale University Press, 1990. [132] NONAKA, I. A dynamic theory of organizational knowledge creation. Organization Science, 5 (1):14–37, 1994. [133] NONAKA, I.; UNIVERSITY, T. The Knowledge-Creating Company : How Japanese Companies Create the Dynamics of Innovation: How Japanese Companies Create the Dynamics of Innovation. Oxford University Press, USA, 1995. [134] NONAKA, I. A empresa criadora do conhecimento. In: Bookman., editor, Gestão do Conhecimento, chapter 2, p. 39–53. Hirotaka Takeuchi and Ikujiro Nonaka, 2009. Tradução: Ana Thorell. [135] NONAKA, I.; TAKEUCHI, H. Teoria da criação do conhecimento organizacional. In: Bookman., editor, Gestão do Conhecimento, chapter 3, p. 54–91. Hirotaka Takeuchi and Ikujiro Nonaka, 2009. Tradução: Ana Thorell. [136] O’DONNELL, A. M.; DANSEREAU. Scripted cooperation in student dyads: A method for analyzing and enhancing academic learning and performance. In: Hertz-Lazarowitz.; Miller, N., editors, Interaction in cooperative groups: The theoretical anatomy of group learning, p. 120–144, New York, 1992. Cambridge University Press. [137] OLIVER, R.; OMARI, A. Using online technologies to support problem based learning: Learners’ responses and perceptions. Australian Journal of Education Technologies, 15(1):58–79, 1999. [138] ORAVEC, J. Virtual indivuals, virtuals groups. Cambridge University Press, 1996. [139] OUNNAS, A.; MILLARD, D. E.; DAVIS, H. C. A metrics framework for evaluating group formation. ACM, p. 221–224, 2007. [140] PAAVOLA, S. LIPPONEN, L. H. K. Epistemological foundations for cscl: A comparison of three models of innovative knowledge communities. In: CSCL 2002, p. 24–32, 2002. [141] PALMER, J. D.; FIELDS, N. A. Computer supported cooperative work. Washington Post., p. 15–17, 1994. [142] PANITZ, T. A definition of collaborative vs cooperative learning. Internet, 1996. http://www.londonmet.ac.uk/deliberations/collaborative-learning/panitzpaper. cfm, acesso em 24.06.2012. [143] PAREDES, P., A. O. A.; RODRIGUES, P. A method for supporting heterogeneousgroup formation through heuristics and visualization. Journal of Universal Computer Science, 16:2882–2901, 2010. [144] PAUL, S., S. P. S. I.; MYKYTYN, P. Impact of heterogeneity and collaborative conflict management style on the performance of synchronous global virtual teams. Information and Management, 41:303–321, 2004. [145] PEA, R. Seeing what we build together: Distributed multimedia learning environments for transformative communications. In: Koschmann, T., editor, CSCL:Theory and Practice of an emerging paradigm. Lawrence Erlbaum Associates, 1996. [146] PEREIRA, M. A. A.; FREIRE, J. E.; SEIXAS, J. A. Utilização da aprendizagem cooperativa no ensino de engenharia. In: XXII Encontro Nacional de Engenharia de Produção, 2002. [147] PODER JUDICIÁRIO, ESTADO DE GOIÁS, BRASIL. Regimento interno do tribunal de justiça do estado de goiás. Internet, Setembro 2000. [148] PODER JUDICIÁRIO, ESTADO DE GOIÁS, BRASIL. Resolução 44 de 10 de dezembro de 2001. Internet, 12 2001. Institui o Sistema de Controle Interno das atividades administrativas do Poder Judiciário do Estado de Goiás. [149] PODER JUDICIÁRIO, ESTADO DE GOIÁS, BRASIL. Decreto Judiciário 416/2010, chapter I, p. 1. Número 520. Poder Judiciário, 02 2010. Publicado em 12/02/2010. [150] PODER JUDICIÁRIO, ESTADO DE GOIÁS, BRASIL. Decreto Judiciário 288/2011, chapter I, p. 14. Número 914. Poder Judiciário, 09 2011. Publicado em 30/09/2011. [151] PODER JUDICIÁRIO, ESTADO DE GOIÁS, BRASIL. Provimento 11 de 25 de outubro de 2012. Internet, 10 2012. Dispõe sobre a nova sistemática de indenização aos oficiais de justiça avaliadores judiciários, das despesas de condução no cumprimento de mandado da Justiça Gratuita. [152] PODER JUDICIÁRIO, ESTADO DE GOIÁS, BRASIL. Portal da transparência. Internet, 2013. http://www.tjgo.jus.br/index.php/tribunal/tribunal-portaldatransparencia, acesso em 13.07.2013. [153] PORTER, M. Competitive Advantage: Creating and Sustaining Superior Performance. Free Press, 2008. [154] PRAHALAD, C.; HAMEL, G. The core competence of the corporation. Harvard Business Review, p. 1–15, May-June 1990. [155] QURESHI, S. Organisational change through collaborative learning in a network form. Group Decision and Negotiation, 9:129–147, 2000. [156] RAD, P.; LEVIN, G. Achieving project management success using virtual teams. J Ross Publishing Series. J ROSS PUB Incorporated, 2003. [157] REDMOND, M. A. A computer program to aid assignment of student project groups. ACM, p. 134–138, 2001. [158] RESTA, P.; LAFERRIÈRE, T. Technology in support of collaborative learning. Education and Psychology Review, 19:65–83, 2007. [159] ROBBINS, H.; FINLEY, M. Why teams don’t work. Texere, 2000. [160] ROBERT.JR., L. P. A multi-level analysis of the impact of shared leadership in diverse virtual teams. In: Proceedings of the 2013 conference on Computer supported cooperative work, p. 363–374. ACM, 2013. ISBN: 978-1-4503-1331-5. [161] ROBERTS, A. G. Team Role Balance: Investigating Knowledge-Building in CSCL Environment. PhD thesis, Queensland University of Technology, 2007. [162] RODDEN, T. A survey of CSCW systems in Interacting with Computers, volume 3. 1991. [163] RODRIGUES, P. B. Prática de ensino supervisionada em ensino do 1.o e do 2.o ciclo do ensino básico. Master’s thesis, Instituto Politécnico de Bragança - Escola Superior de Educação, 2012. [164] ROMNEY. The benefits of collaborative learning. Internet, december 1996. http://www.ucalgary.ca/pubs/Newsletters/Currents/Vol3.6/Benefits.html, acesso em24.03.2013. [165] ROTH, G.; ASSOR, A.; KANAT-MAYMON, Y.; KAPLAN, H. Autonomous motivation for teaching: How self-determined teaching may lead to self-determined learning. Journal of Educational Psychology, 99(4):761–774, 2007. [166] ROTHLAUF, F. Representations for Genetic and Evolutionary Algorithms. Springer-Verlag, 2006. [167] RUSSELL, S. J.; NORVIG, P.; CANDY, J. F.; MALIK, J. M.; EDWARDS, D. D. Artificial intelligence: a modern approach. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996. [168] RYAN, R. M.; DECI, E. L. Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1):54–67, 2000. [169] SALMON, G. E-moderating: the key to teaching and learning online. 2000. [170] SARKER, S.; SARKER, S.; NICHOLSON, D.; JOSHI, K. Knowledge transfer in virtual systems development teams: an exploratory study of four key enablers. Professional Communication, IEEE Transactions on, 48(2):201–218, 2005. [171] SCHEDLER, A. Conceptualizing accountability. In: Schedler, A.; Diamond, L.; Plattner, M., editors, The Self-Restraining State: Power and Accountability in New Democracies, chapter I, p. 13–28. Lynne Rienner Publishers, 1999. [172] SHAH, A. Why fighting corruption remains a losing battle. In: Antho., editor, Governance, risk and compliance handbook : technology, finance, environmental and international guidance and best practices, chapter 10, p. 133–152. Jonh Wiley and Sons, 2008. [173] SHAMIR, B.; HOUSE, R. J.; ARTHUR, M. B. The motivational effects of charismatic leadership: A self-concept based theory. Organization Science November, 4(4):577–594, 1993. [174] SHAW, M.; ROBBIN, R.; BELSER, J. Group dynamics: the psychology of small group behavior. McGraw-Hill series in psychology. McGraw-Hill, 1981. [175] SIMON, D. Evolutionary Optimization Algorithms. Wiley, 2013. [176] SLAVIN, R. E. Cooperative learning. Review of Educational Research, 50(2):315– 342, 1980. [177] SLAVIN, R. E. Developmental and motivational perspectives on cooperative learning: A reconciliation. Child Development, 58:1161–1167, 1987. [178] SLAVIN, R. E. Research on cooperative learning and achievement: What we know, what we need to know. Contemporary Educational Psychology, 21(4):43–69, 1996. [179] SMITH, E. Applying knowledge enabling methods in the classroom and in the workplace. Journal of Workplace Learning, 12:236–244, 2000. [180] SPADA, H. Of scripts, roles, positions, and models. Computers in Human Behavior, 26:547–550, 2010. [181] STAHL, G.; KOSCHMANN, T.; SUTHERS, D. Computer-supported collaborative learning: An historical perspective. Cambridge handbook of the learning sciences, p. 409–426, 2006. [182] STRIJBOS, J.-W.; WEINBERGER, A. Emerging and scripted roles in computersupported collaborative learning. Computers in Human Behavior, 26(4):491 – 494, 2010. Emerging and Scripted Roles in Computer-supported Collaborative Learning . [183] TAKEUCHI, H.; NONAKA, I. Criação e dialética do conhecimento. In: Bookman., editor, Gestão do Conhecimento, chapter 1, p. 17–38. Hirotaka Takeuchi and Ikujiro Nonaka, 2009. Tradução: Ana Thorell. [184] TAMPOE, M. Exploiting the core competences of your organization. Long Range Planning, 27(4):66 – 77, 1994. [185] TARANTINO, A. Introduction. In: Tarantino, A., editor, Governance, risk and compliance handbook : technology, finance, environmental and international guidance and best practices. Jonh Wiley and Sons, 2008. [186] TEECE, D. J. Strategies for managing knowledge assets: the role of firm structure and industrial context. Long Range Planning, 33:35–54, 2000. [187] TERRACIANO, A.; ABDEL-KHALEK, A.; ADAM, N.AND ADAMOVOVA, L. A. C.; AHAN, H.; ET AL. National character does not reflect mean personality trait levels in 49 cultures. Science, 310(5745):96–100, 2005. [188] THIERENS, D.; GOLDBERG, D.; PEREIRA, A. Domino convergence, drift, and the temporal-salience structure of problems. In: Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, p. 535–540, 1998. [189] TIDD, J.; BESSANT, J.; PAVITT, K. Managing Innovation: Integrating Technological, Market and Organizational Change. Wiley, 2011. [190] U.S. DEPT. OF ED. OFFICE OF RESEARCH, U. Cooperative learning. Internet, 1992. http://www2.ed.gov/pubs/OR/ConsumerGuides/cooplear.html, acesso em 24.06.2012. [191] VALCKE, M.; MARTENS, R. The problem arena of researching computer supported collaborative learning: Introduction to the special section. Computers & Education, 46(1):1 – 5, 2006. Methodological Issues in Researching CSCL . [192] VALLERAND, R. J.; PELLETIER, L. G.; BLAIS, M. R.; BRIÈRE, N. M.; SENÉCAL, C., V. E. F. The academic motivation scale: A measure of intrinsic, extrinsic, and a motivation in education. Educational and Psychological Measurement, 52:1003–1017, 1992. [193] VECCHIO, R. P. Leadership Understanding the Dynamics of Power and Influence in Organizations. University of Notre Dame Press, 2nd edition, 2007. [194] VONDERWELL, S. An examination of asynchronous communication experiences and perspectives of students in an online course: A case study. The Internet and Higher Education, 6(1):77–90, 2003. [195] WAKEFIELD, R.; LEIDNER, D.; GARRISON, G. A model of conflict, leadership and performance in virtual teams. Information Systems Research, 19(4):434–455, 2008. [196] WEBB, N. M. Testing a theoretical model of student interaction and learning in small groups. In: Hertz-Lazarowitz, R.; Miller, N., editors, Interaction in Cooperative Groups: The theoretical anatomy of group learning, p. 102–119+. Cambridge University Press, 1992. [197] WEBB, N. M. Predicting learning from student interaction: Defining the interaction variable. Educational Psychologist, 18:33–41, 1983. [198] WEINBERGER, A.; FISCHER, F. A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Education, 46(1):71 – 95, 2006. Methodological Issues in Researching CSCL . [199] WESSNER, M.; PFISTER, H. R. Group formation in computer-supported collaborative learning. ACM, 2001. [200] YAMAGUCHI, R.; BOS, N.; OLSON, J. Emergent leadership in small groups using computer-mediated communication. In: Proceedings of the Conference on Computer Support for Collaborative Learning: Foundations for a CSCL Community, CSCL ’02, p. 138–143. International Society of the Learning Sciences, 2002. [201] YANNIBELLI, V.; AMANDI, A. A deterministic crowding evolutionary algorithm to form learning teams in a collaborative learning context. Expert Systems with Applications, p. 8584–8592, 2012. [202] YUKL, G. Leadership in organizations. Prentice Hall, 2002. [203] ZACCARO, S.; BLAIR, V.; PETERSON, C.; ZAZANIS, M. Collective efficacy. In: Plenum Press, ., editor, Self-Efficacy, Adaptation, and Adjustment : Theory, Research, and Application (Plenum Series in Social/Clinical Psychology), chapter 11, p. 305–328. James E. Maddux, University of Michigan, May 1995. [204] ÖZGÜR YENIAY. Penalty function methods for constrained optimization with genetic algorithms. Mathematical and Computational Applications, 10(1):45–56, 2005. [205] ZHANG, M.; LADO, A. Information systems and competitive advantage: a competency based view. Technovation, 21:147–156, 2001. [206] ZIGURS, I. Leadership in virtual teams: Oxymoron or opportunity? Organizational Dynamics, 31(4):339–351, 2002.
-
20
Autoři: Guedes, Diego Américo
Thesis Advisors: Cardoso, Kleber Vieira, Ziviani, Artur
Zdroj: Biblioteca Digital de Teses e Dissertações da UFGUniversidade Federal de GoiásUFG.
Témata: Ciência das Redes, Redes Complexas Dinâmicas, Métricas de Centralidade, Redes em Malha Sem Fio, Network Science, Dynamic Complex Networks, Centrality Metrics, Wireless Mesh Networks, CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Popis souboru: application/pdf
Relation: -3303550325223384799; 600; -7712266734633644768; 3671711205811204509; 2075167498588264571; [1] Localização dos nós na Athens Wireless Metropolitan Network. http://wind.awmn.net/?page=gmap , July 2013. [2] Localização dos nós na Seattle Wireless. http://map.seattlewireless.net , July 2013. [3] AGUAYO, D.; BICKET, J.; BISWAS, S.; JUDD, G.; MORRIS, R. Link-level measurements from an 802.11b mesh network. SIGCOMM Computer Communication Review, 34(4):121–132, August 2004. [4] AIELLO, W.; CHUNG, F.; LU, L. A random graph model for massive graphs. In: Proceedings of the thirty-second annual ACM symposium on Theory of computing, STOC ’00, p. 171–180, 2000. [5] AIELLO, W.; CHUNG, F.; LU, L. Handbook of massive data sets. chapter Random evolution in massive graphs, p. 97–122. Kluwer Academic Publishers, 2002. [6] AKYILDIZ, I. F.; WANG, X.; WANG, W. Wireless mesh networks: a survey. Comput. Netw. ISDN Syst., 47(4):445–487, 2005. [7] ALBERT, R.; JEONG, H.; BARABASI, A. L. The diameter of the world wide web. Nature, 401:130–131, 1999. [8] ALMIRON, M. G.; RAMOS, H. S.; OLIVEIRA, E. M.; AO G. M. DE MENEZES, J.; GUIDONI, D. L.; STANCIOLI, P. O.; DA CUNHA, F. D.; DE AQUINO, A. L. L.; MINI, R. A. F.; FRERY, A. C.; LOUREIRO, A. A. F. Redes complexas na modelagem de redes de computadores. Minicurso SBRC, 2010. [9] AMARAL, L. A.; OTTINO, J. M. Complex networks. The European Physical Journal B-Condensed Matter and Complex Systems, 38(2):147–162, 2004. [10] ANTIQUEIRA, L.; NUNES, M. G. V.; JÚNIOR, O. N. O.; COSTA, L. F. Complex networks in the assessment of quality text. In Physics, 2005. [11] BARABÁSI, A.-L.; ALBERT, R. Emergence of scaling in random networks. Science, 286(5439):509–512, 1999. [12] BARABÁSI, A.-L.; ALBERT, R.; JEONG, H. Scale-free characteristics of random networks: the topology of the world-wide web. Physica A: Statistical Mechanics and its Applications, 281(1-4):69–77, 2000. [13] BARABASI, A.-L.; OLTVAI, Z. N. Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 5(2):101–113, 2004. [14] BENDER, E. A.; CANFIELD, E. R. The asymptotic number of labeled graphs with given degree sequences. Journal of Combinatorial Theory, Series A, 24(3):296– 307, May 1978. [15] BERMAN, K. A. Vulnerability of scheduled networks and a generalization of Menger’s Theorem. Networks, 28(3):125–134, 1996. [16] BHADRA, S.; FERREIRA, A. Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks. In: Proc. 2nd Intl. Conference on Ad Hoc Networks and Wirelsss (AdHoc-Now), p. 259–270, 2003. [17] BIANCHI, G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3):535–547, 2000. [18] BICKET, J.; AGUAYO, D.; BISWAS, S.; MORRIS, R. Architecture and evaluation of an unplanned 802.11b mesh network. In: International conference on Mobile computing and networking, p. 31–42, 2005. [19] BICKET, J. C. Bit-rate selection in wireless networks. Master’s thesis, Master of Science in Computer Science and Engineering at the Massachusetts Institute of Technology, 2005. [20] BISWAS, S.; MORRIS, R. Opportunistic routing in multi-hop wireless networks. SIGCOMM Computer Communication Review, 34(1):69–74, 2004. [21] BONACICH, P. Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2(1):113–120, 1972. [22] BONACICH, P. Power and centrality: a family of measures. American Journal of Sociology, 92(5):1170–1182, 1987. [23] BONACICH, P.; LLOYD, P. Eigenvector-like measures of centrality for asymmetric relations. Social Networks, 23(3):191–201, 2001. [24] BONDY, J. A.; MURTY, U. S. R. Graph theory. Springer, 2008. [25] BORGATTI, S. P. Centrality and network flow. Social Networks, 27(1):55–71, 2005. [26] BÖRNER, K.; SANYAL, S.; VESPIGNANI, A. Network science. Annual Review of Information Science and Technology, 41(1):537–607, 2007. [27] Bornholdt, S.; Schuster, H. G., editors. Handbook of graphs and networks: from the genome to the Internet. John Wiley & Sons, Inc., 2003. [28] BRANDES, U.; FLEISCHER, D. Centrality measures based on current flow. In: Conference on Theoretical Aspects of Computer Science (STACS), p. 533–544. Springer-Verlag, 2005. [29] BRIN, S.; PAGE, L. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1-7):107–117, 1998. [30] CALDEIRA, S. M. G. Lendo Bohr ao pé da letra: análise de elementos conceituais em escritos de Niels Bohr. Master’s thesis, Universidade Federal da Bahia, 2007. [31] Carrington, P. J.; Scott, J.; Wasserman, S., editors. Models and methods in social network analysis. Cambridge University Press, 2005. [32] CASTEIGTS, A.; FLOCCHINI, P.; QUATTROCIOCCHI, W.; SANTORO, N. Timevarying graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Systems, 2012. [33] CHAINTREAU, A.; MTIBAA, A.; MASSOULIE, L.; DIOT, C. The diameter of opportunistic mobile networks. In: Proceedings of the 2007 ACM CoNEXT conference, CoNEXT ’07, p. 1–12, 2007. [34] CHEN, Q.; HYUNSEOK, Q. C.; GOVINDAN, R.; JAMIN, S.; SHENKER, S. J.; WILLINGER, W. The origin of power laws in internet topologies revisited. In: In IEEE INFOCOM 2002, p. 608–617, 2002. [35] COHEN, J.; PIRES, K.; DUARTE JR., E. P. Medidas de conectividade baseadas em cortes de vértices para redes complexas. In: XXIX Simpósio Brasileiro de Redes e Sistemas Distribuídos (SBRC 2011), September 2012. [36] COSTA, L. D. F.; A., F.; TRAVIESO, G.; BOAS, V. P. R. Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1):167– 242, 2006. [37] DIESTEL, R. Graph theory. Springer, 2006. [38] DUFFY, K.; LEITH, D. J.; LI, T.; MALONE, D. Improving fairness in multi-hop mesh networks using 802.11e. In: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2006 4th International Symposium on, p. 1–8, 2006. [39] ELIANOS, F. A.; PLAKIA, G.; FRANGOUDIS, P. A.; POLYZOS, G. C. Structure and evolution of a large-scale wireless community network. In: IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks & Workshops (WoWMoM), p. 1–6, 2009. [40] ERD˝O S, P.; RÉNYI, A. On the evolution of random graphs. In: Publication of the Mathematical Institute of the Hungarian Academy of Sciences, p. 17–61, 1960. [41] ERD˝O S, P.; RÉNYI, A. On the strength of connectedness of a random graph. Acta Mathematica Hungarica, 12:261–267, 1961. [42] ERD˝O S, P.; RÉNYI, A. On random graphs. Publicationes Mathematicae Debrecen, 6:290–297, 1959. [43] EULER, L. Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae, 8:128–140, 1741. [44] EVERETTA, M.; BORGATTI, S. P. Ego network betweenness. Social Network, 27:31–38, 2005. [45] FALOUTSOS, M.; FALOUTSOS, P.; FALOUTSOS, C. On power-law relationships of the internet topology. SIGCOMM Computer Communication Review, 29(4):251– 262, 1999. [46] FLORY, P. J. Molecular size distribution in three dimensional polymers. III. Tetrafunctional branching units. Journal of the American Chemical Society, 63(11):3096–3100, 1941. [47] FOUNDATION, W. L. Wireless Leiden. http://www.wirelessleiden.nl , June 2012. [48] FOUNDATION, W. L. About Wireless Leiden. http://www.wirelessleiden.nl/en/about-wireless-leiden , May 2013. [49] FOUNDATION, W. L. Localização dos nós na Wireless Leiden. http://www.wirelessleiden.nl/en/coverage-map , July 2013. [50] FRANGOUDIS, P. A.; POLYZOS, G. C.; KEMERLIS, V. P. Wireless community networks: an alternative approach for nomadic broadband network access. IEEE Communications Magazine, 2011. [51] FREEMAN, L. Centrality in social networks conceptual clarification. Social Networks, 1(3):215–239, 1979. [52] FRIEDRICH, J.; FROHN, S.; GUBNER, S.; LINDEMANN, C. Understanding IEEE 802.11n multi-hop communication in wireless networks. In: International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), p. 321–326, May 2011. [53] GE, Y.; THAM, C.-K.; KONG, P.-Y.; ANG, Y.-H. Dynamic end-to-end capacity in IEEE 802.16 wireless mesh networks. Computer Network, 54:2147–2165, 2010. [54] GILBERT, E. Random graphs. The Annals of Mathematical Statistics, 30(4):1141– 1144, 1959. [55] GUEDES, D.; SILVA, E.; CARDOSO, K. Uma métrica para classificação dinâmica de nós em redes sem fio comunitárias. In: XXX Simpósio Brasileiro de Telecomunicações (SBrT 2012), September 2012. [56] GUEDES, D.; SILVA, E.; ZIVIANI, A.; CARDOSO, K. Dynamic labeling in wireless mesh networks. In: 4th IEEE Latin-American Conference on Communications (LATINCOM 2012), November 2012. [57] GUEDES, D.; ZIVIANI, A.; CARDOSO, K. Dynamic labeling in wireless mesh networks. IEEE Latin America Transactions, 11(3):948–954, 2013. [58] HODGMAN, T. C. A historical perspective on gene/protein functional assignment. Bioinformatics, 16(1):10–15, 2000. [59] HUBBELL, C. H. An input-output approach to clique identification. Sociometry, 28(4):377–399, 1965. [60] HWANG, W.; KIM, T.; RAMANATHAN, M.; ZHANG, A. Bridging centrality: graph mining from element level to group level. In: ACM international conference on Knowledge discovery and data mining (SIGKDD), p. 336–344, 2008. [61] JAMAKOVI´C, A. Characterization of complex networks – Application to robustness analysis. PhD thesis, Delft University of Technology, the Netherlands, 2008. [62] JÄRVELIN, K.; KEKÄLÄINEN, J. Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information and System Security(TISSEC), 20(4):422– 446, 2002. [63] KATZ, L. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43, 1953. [64] KEMPE, D.; KLEINBERG, J.; KUMAR, A. Connectivity and inference problems for temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002. [65] KENDALL, M. G. A new measure of rank correlation. Biometrika, 30(1-2):81–93, 1938. [66] KLEINBERG, J. The small-world phenomenon: an algorithmic perspective. In: Proceedings of the thirty-second annual ACM symposium on Theory of computing, STOC ’00, p. 163–170, 2000. [67] KRAMER, R.; LOPEZ, A.; KOONEN, A. Municipal broadband access networks in the Netherlands - three successful cases, and how New Europe may benefit. In: International conference on Access networks (AcessNets), p. 1–8, September 2006. [68] MALCZEWSKI, J.; OGRYC˙ZAK, W. An interactive approach to the central facility location problem: locating pediatric hospitals in Warsaw. Geographical Analysis, 22(3):244–258, 1990. [69] MALONE, D.; DUFFY, K.; LEITH, D. Modeling the 802.11 distributed coordination function in nonsaturated heterogeneous conditions. IEEE/ACM Transactions on Networking, 15(1):159–172, 2007. [70] MEIRELLES, A. L. S. Estratégias para aumentar a acurácia do sensoriamento de espectro baseado em sensor de energia. Master’s thesis, Universidade Federal de Goiás, 2012. [71] MELUCCI, M. Weighted rank correlation in information retrieval evaluation. In: Information Retrieval Technology, volume 5839, p. 75–86. Springer Berlin / Heidelberg, 2009. [72] MENDES, G. A. Estudo de sistemas complexos com interações de longo alcance: percolação, redes e tráfego. PhD thesis, Universidade Federal do Rio Grande do Norte, 2010. [73] MILGRAM, S. The small world problem. Psychology Today, 2:60–67, 1967. [74] MOLLOY, M.; REED, B. A critical point for random graphs with a given degree sequence. Random Structures and Algorithms, 6(2-3):161–180, 1995. [75] MONTGOMERY, D. C.; RUNGER, G. C. Applied statistics and probability for engineers, 4th Edition, and JustAsk! Set. John Wiley & Sons, 4 edition, May 2006. [76] NANDA, S.; KOTZ, D. Localized bridging centrality for distributed network analysis. In: International Conference on Computer Communications and Networks (ICCCN), p. 1–6, August 2008. [77] NANDA, S.; KOTZ, D. Social network analysis plugin (SNAP) for mesh networks. In: IEEE Wireless Communications and Networking Conference (WCNC), p. 725– 730, March 2011. [78] NETWORK SIMULATOR 3. Artigos validados no ns-3. http://www.nsnam.org/overview/publications/ , July 2013. [79] NETWORK SIMULATOR 3. Documentação do ns-3. http://www.nsnam.org/doxygen-release/index.html , July 2013. [80] NETWORK SIMULATOR 3. ns-3. http://www.nsnam.org/ , July 2013. [81] NEWMAN, M. E. J. The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United States of America, 98(2):404–409, 2001. [82] NEWMAN, M. E. J. The structure and function of complex networks. SIAM REVIEW, 45:167–256, 2003. [83] NEWMAN, M. E. J.; GIRVAN, M. Finding and evaluating community structure in networks. Physical Review E, 69(2), 2003. [84] NEWMAN, M. E. J. A measure of betweenness centrality based on random walks. Social Networks, 27(1):39–54, 2005. [85] Newman, M. E. J.; Barabási, A. L.; Watts, D. J., editors. The structure and dynamics of networks. Princeton University Press, 2006. [86] NEWMAN, M.; WATTS, D. Scaling and percolation in the small-world network model. Phys. Rev. E, 60(6):7332–7342, 1999. [87] PALUMBO, M. C.; COLOSIMO, A.; GIULIANI, A.; FARINA, L. Functional essentiality from topology features in metabolic networks: a case study in yeast. FEBS Lett, 579(21):4642–4646, 2005. [88] PASTOR-SATORRAS, R.; VESPIGNANI, A. Evolution and structure of the Internet: a statistical physics approach. Cambridge University Press, 2004. [89] PINHEIRO, L.; SILVA, E. As redes cognitivas na ciência da informação brasileira: um estudo nos artigos científicos publicados nos periódicos da área. Ciência da Informação, 37(3), 2008. [90] RAPOPORT, A. Nets with distance bias. Bulletin of Mathematical Biophysics, 13:85–91, 1951. [91] RAPOPORT, A. Spread of information through a population with sociostructural bias: I. Assumption of transitivity. Bulletin of Mathematical Biology, 15(4):523–533, 1953. [92] RAPOPORT, A. Contribution to the theory of random and biased nets. Bulletin of Mathematical Biology, 19(4):257–277, December 1957. [93] REKA, A.; BARABÁSI. Statistical mechanics of complex networks. Reviews of Modern Physics, 74:47–97, 2002. [94] ROBINSON, J.; RANDHAWA, T. Saturation throughput analysis of ieee 802.11e enhanced distributed coordination function. Selected Areas in Communications, IEEE Journal on, 22(5):917–928, 2004. [95] SHIMBEL, A. Structural parameters of communication networks. Bulletin of Mathematical Biology, 15(4):501–507, 1953. [96] SHMOYS, D. B.; TARDOS, E.; AARDAL, K. Approximation algorithms for facility location problems (extended abstract). In: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, STOC ’97, p. 265–274, 1997. [97] SOLOMONOFF, R.; RAPOPORT, A. Connectivity of random nets. Bulletin of Mathematical Biology, 13(2):107–117, 1951. [98] TOREGAS, C.; SWAIN, R.; REVELLE, C.; BERGMAN, L. The location of emergency service facilities. Operations Research, 19:1363–1373, 1971. [99] VAN DRUNEN, R.; VAN GULIK, D.-W.; KOOLHAAS, J.; SCHUURMANS, H.; VIJN, M. Building a wireless community network in the netherlands. In: USENIX/Freenix Conference, p. 219–230, 2003. [100] WASSERMAN, S.; FAUST, K. Social network analysis: methods and applications. Cambridge University Press, 1994. [101] WATTS, D. J.; STROGATZ, S. H. Collective dynamics of small-world networks. Nature, 393(6684):409–10, 1998. [102] WATTS, D. J. Small worlds: The dynamics of networks between order and randomness. Princeton University Press, 1999. [103] WATTS, D. J. Six degrees: the science of a connected age (open market edition). W. W. Norton & Company, reprint edition, 2004. [104] WAXMAN, B. Routing of multipoint connections. IEEE Journal on Selected Areas in Communications, 6(1-2):1617 – 1622, 1988. [105] WEHMUTH, K.; ZIVIANI, A. Um novo algoritmo distribuído para avaliação e localização de centralidade de rede. In: Workshop em Desempenho de Sistemas Computacionais e de Comunicação (WPerformance), July 2011. [106] XUAN, B. B.; FERREIRA, A.; JARRY, A. Computing shortest, fastest, and foremost journeys in dynamic networks. International Journal of Foundations of Computer Science, 14(2):267–285, 2003. [107] YOU, L.; DONG, C.; CHEN, G.; DAI, Y.; ZHOU, W. Fhmesh: a flexible heterogeneous mesh networking platform. In: Sixth International Conference on Mobile Ad-hoc and Sensor Networks (MSN), 2010.
Full Text Finder
Nájsť tento článok vo Web of Science