Search Results - acm: c.: computer system organización/c.1: process architectural/c.1.4: parallel architectural
-
1
Authors: et al.
Contributors: et al.
Source: Software Architecture for Big Data and the Cloud ; https://inria.hal.science/hal-01507344 ; Ivan Mistrik; Rami Bahsoon; Nour Ali; Maritta Heisel; Bruce Maxim. Software Architecture for Big Data and the Cloud, Morgan Kaufmann, 2017, 9780128054673
Subject Terms: ACM: C.: Computer Systems Organization/C.2: COMPUTER-COMMUNICATION NETWORKS/C.2.4: Distributed Systems, [INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], [INFO.INFO-OS]Computer Science [cs]/Operating Systems [cs.OS], [INFO.INFO-PF]Computer Science [cs]/Performance [cs.PF], [INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR]
Relation: info:eu-repo/grantAgreement/EC/FP7/318521/EU/Hardware- and Network-Enhanced Software Systems for Cloud Computing/HARNESS
-
2
Contributors: The Pennsylvania State University CiteSeerX Archives
File Description: application/pdf
-
3
Authors: et al.
Contributors: et al.
Source: ftp://www.cos.ufrj.br/pub/tech_reps/es47798.ps.gz
Subject Terms: DSM architectures, performance evaluation, logic programming
File Description: application/postscript
-
4
Authors:
Contributors:
Subject Terms: Cyber-Physical Systems, parallel computing systems, a set of interrelated works, multilevel stochastic modeling, Markov process, distribution function of a random variable
Subject Geographic: Львів
File Description: 26-32; application/pdf; image/png
Relation: Advances in Cyber-Physical Systems, 1 (3), 2018; 1. Tsvetkov V. Ya., Alpatov A. N. Problems of distributed systems // Prospects of science and education – 2014. – No. 6. – P. 31–36.; 2. Khaitan et al., “Design Techniques and Applications of Cyber Physical Systems: A Survey”, IEEE Systems Journal, 2014.; 3. Rad, Ciprian-Radu; Hancu, Olimpiu; Takacs, Ioana-Alexandra; Olteanu, Gheorghe (2015). “Smart Monitoring of Potato Crop: A Cyber-Physical System Architecture Model in the Field of Precision Agriculture”. Conference Agriculture for Life, Life for Agriculture. 6: 73–79.; 4. Bocharov P. L., Ignatushchenko V. V. Mathematical models and methods for evaluating the effectiveness of parallel computing systems on complexes of interrelated jobs // Tez. report international conf, “High-Performance Computing Systems in Management and Scientific Research,” Alma-Ata, 1991, p. 6.; 5. Ignatushchenko V. V., Klushin Y. S. Prediction of the implementation of complex software systems on parallel computers: direct stochastic modeling // Automation and Remote Control. 1994. No. 12, p. 142–157.; 6. Khritankov A. S. Mathematical model of performance characteristics of distributed computing systems. Computer science, management, economics. JOBS OF MIPT. – 2010. – Vol. 2, No. 1 (5), p. 110–115.; 7. Ivutin A. N., Larkin E. V. Prediction of the execution time of the algorithm. Magazine. News of TSU. Technical science. Issue number 3/2013 C 301–315.; 8. Ivanov N. N. Mathematical prediction of reliable execution of sets of tasks with symmetric runtime distributions. Journal of Open Education, Issue No. 2–2 / 2011, p. 52–55.; 9. Kulagin V. P., Problems of parallel computing systems Perspectives of Science & Education. 2016. 1 (19) International Scientific Electronic Journal ISSN 2307–2334 (Online); 11. Salibekyan S. M., Panfilov P. B. Questions of automaton-network modeling of computer systems with data flow control // Information technologies and computer systems. 2015. No. 1. P. 3–9.; 12. Kulikov, I., Chernykh, I., Glinsky, B., Weins, D., Shmelev, A. Astrophysics simulation on RSC massively parallel architecture // Proc. 2015 IEEE/ACM 15th Int. Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015. IEEE Press, 2015.1131–1134.; 13. Boccara N. Modeling Complex Systems. NY: Springer, 2004. 397 p.; 14. Lublinsky B. Defining SOA as an architectural style. 9 January 2007. [Electronic resource]: .; 15. Ivanov S.V., Identification of Parametrically Connected Models of Complex Systems, Nauch.-tekhnich. we know SPSU ITMO. Highperformance computing and computer modeling technologies. 2008. Vol. 54. pp. 100–107.; 16. Ivanov N. N., Ignatushchenko V. V., Mikhailov A. Y., Static prediction of the execution time of complexes of interrelated jobs in multiprocessor computing systems, Avtomat. and Telemekh., 2005, issue 6, 89–103.; 17. Ignatushchenko V. V., Klushin Y. S. Prediction of the implementation of complex software systems on parallel computers: direct stochastic modeling // Automation and Remote Control. 1994. N12, p. 142–157.; 18. Klushin, Y. S. Improving the accuracy of estimating the execution time of folding software systems in multiprocessor computer systems for belt stochastic modeling. Bulletin of NU “Lviv; 19. Klushin Y. S. reducing the number of states of the Markov process when executing complex software systems on parallel computers. Scientific Bulletin of Chernivtsi University. Computer systems and components. 2016. T. 7. Vol. 2, pp. 53–62.; 20. Reibman A. L., Trivedi K. S. Numerical transient analysis of Markov models // Computers and Operations Research. 1988. Vol. 15. No. 1. P. 19–36.; 21. Preidunov Y. V. Development of mathematical models and methods for predicting the implementation of complex software systems on parallel computing systems. PhD thesis. M.: Inst. Of Problems of Management RAS, 1992.; 1. Tsvetkov V. Ya., Alpatov A. N. Problems of distributed systems, Prospects of science and education – 2014, No. 6, P. 31–36.; 2. Khaitan et al., "Design Techniques and Applications of Cyber Physical Systems: A Survey", IEEE Systems Journal, 2014.; 3. Rad, Ciprian-Radu; Hancu, Olimpiu; Takacs, Ioana-Alexandra; Olteanu, Gheorghe (2015). "Smart Monitoring of Potato Crop: A Cyber-Physical System Architecture Model in the Field of Precision Agriculture". Conference Agriculture for Life, Life for Agriculture. 6: 73–79.; 4. Bocharov P. L., Ignatushchenko V. V. Mathematical models and methods for evaluating the effectiveness of parallel computing systems on complexes of interrelated jobs, Tez. report international conf, "High-Performance Computing Systems in Management and Scientific Research," Alma-Ata, 1991, p. 6.; 5. Ignatushchenko V. V., Klushin Y. S. Prediction of the implementation of complex software systems on parallel computers: direct stochastic modeling, Automation and Remote Control. 1994. No. 12, p. 142–157.; 6. Khritankov A. S. Mathematical model of performance characteristics of distributed computing systems. Computer science, management, economics. JOBS OF MIPT, 2010, Vol. 2, No. 1 (5), p. 110–115.; 7. Ivutin A. N., Larkin E. V. Prediction of the execution time of the algorithm. Magazine. News of TSU. Technical science. Issue number 3/2013 P. 301–315.; 8. Ivanov N. N. Mathematical prediction of reliable execution of sets of tasks with symmetric runtime distributions. Journal of Open Education, Issue No. 2–2, 2011, p. 52–55.; 11. Salibekyan S. M., Panfilov P. B. Questions of automaton-network modeling of computer systems with data flow control, Information technologies and computer systems. 2015. No. 1. P. 3–9.; 12. Kulikov, I., Chernykh, I., Glinsky, B., Weins, D., Shmelev, A. Astrophysics simulation on RSC massively parallel architecture, Proc. 2015 IEEE/ACM 15th Int. Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015. IEEE Press, 2015.1131–1134.; 17. Ignatushchenko V. V., Klushin Y. S. Prediction of the implementation of complex software systems on parallel computers: direct stochastic modeling, Automation and Remote Control. 1994. N12, p. 142–157.; 18. Klushin, Y. S. Improving the accuracy of estimating the execution time of folding software systems in multiprocessor computer systems for belt stochastic modeling. Bulletin of NU "Lviv; 20. Reibman A. L., Trivedi K. S. Numerical transient analysis of Markov models, Computers and Operations Research. 1988. Vol. 15. No. 1. P. 19–36.; 21. Preidunov Y. V. Development of mathematical models and methods for predicting the implementation of complex software systems on parallel computing systems. PhD thesis. M., Inst. Of Problems of Management RAS, 1992.; Klushyn Y. High-performance software for designing complex Cyber-Physical Systems on the parallel computers / Yuriy Klushyn // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 3. — No 1. — P. 26–32.; https://ena.lpnu.ua/handle/ntb/45679; Klushyn Y. High-performance software for designing complex Cyber-Physical Systems on the parallel computers / Yuriy Klushyn // Advances in Cyber-Physical Systems. — Lviv Politechnic Publishing House, 2018. — Vol 3. — No 1. — P. 26–32.
Availability: https://ena.lpnu.ua/handle/ntb/45679
-
5
Authors: et al.
Contributors: et al.
Source: RAPIDO '15 Proceedings of the 2015 Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools ; https://cea.hal.science/cea-01818887 ; RAPIDO '15 Proceedings of the 2015 Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools, Jan 2015, Amsterdam, Netherlands. ⟨10.1145/2693433.2693440⟩
Subject Terms: ACM: I.: Computing Methodologies/I.6: SIMULATION AND MODELING/I.6.7: Simulation Support Systems, ACM: I.: Computing Methodologies/I.6: SIMULATION AND MODELING/I.6.7: Simulation Support Systems/I.6.7.0: Environments, ACM: C.: Computer Systems Organization/C.1: PROCESSOR ARCHITECTURES/C.1.1: Single Data Stream Architectures, [INFO]Computer Science [cs]
Subject Geographic: Amsterdam, Netherlands
-
6
Authors: et al.
Contributors: et al.
Subject Terms: 合成演算法, 晶片網路, 計算機結構, synthesis, architectural, NoC, Network-on-Chip
File Description: 5270259 bytes; application/pdf
Relation: Bibliography [1] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D. Lindqvist, “Network on a chip: An architecture for billion transistor era,” Proc. of the IEEE NorChip Conference, November 2000. [2] Luca Benini and Giovanni De Micheli, “Network on chips: A new soc paradigm,” IEEE Computers, pp. 70-78, January 2002. [3] Wayne H. Wolf, “Hardware-software codesign of embedded systems,” Proc. IEEE, July 1994. [4] Jingcao Hu and Radu Marculescu, “Energy-aware communication and task scheduling for network-on-chip architecture under real-time constraints,” IEEE Design, Automation and Test in Europe Conference and Exhibition (DATE), 2004. [5] Jingcao Hu and Radu Marculescu,”Energy-aware mapping for tile-based noc architectures under performance constraints,” IEEE ASP-DAC, 2003. [6] Wayne H. Wolf, “An architectural co-synthesis algorithm for distributed, embedded computing systems,” IEEE Transaction on Very Large Scale Integration (VLSI) Systems, vol. 5, June 1997. [7] William J. Dally and Brian Towles, “Route packets, not wires: On-chip interconnection networks,” Proc. Design Automation Conference (DAC), pp. 684-689, June 2001. [8] Shashi Kumar et. al., “A network on chip architecture and design methodology,” IEEE Computer Society Annual Symposium on VLSI, pp. 117-124, April 2002. [9] Terry Tao Ye, Luca Benini, and Giovanni De Micheli, “Analysis of power consumption on switch fabrics in network routers,” Proc. Design Automation Conference (DAC), June 2002. [10] Terry Tao Ye, Luca Benini, and Giovanni De Micheli, “Packetized on-chip interconnect communication analysis for mpsoc,” Proceedings of Design Automation and Test in Europe (DATE), pp. 344-349, March 2003. [11] Vincent Nollet, Thµeodore Marescaux, and Diederik Verkest, “Operating-system controlled network-on-chip,” Proceedings of the 41st Annual Conference on Design Automation (DAC), pp. 256-259, June 2004. [12] Srinivasan Murali and Giovanni De Micheli, “Bandwidth-constrained mapping of cores onto noc architectures,” Proceedings of the Design, Automation and Test in Europe Conference (DATE), vol. 2, February 2004. [13] Dongkun Shin and Jihong Kim, “Power-aware communication optimization for network-on-chips with voltage scalable links,” ACM CODES+ISSS, 2004. [14] Gilbert C. Sih and Edward A. Lee, “A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures,” IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 2, pp. 175-187, February 1993. [15] Bita Gorjiara, Nader Bagherzadeh, and Pai Chou, “An efficient voltage scaling algorithm for complex socs with few number of voltage modes,” Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED), pp. 381-386, August 2004. [16] Ireneusz Karkowski and Henk Corporaal, “Design space exploration algorithm for heterogeneous multi-processor embedded system design,” Proceedings of the 35st Annual Conference on Design Automation (DAC), June 1998. [17] Marco DiNatale and John A. Stankovic, “Applicability of simulated annealing methods to real-time scheduling and jitter control,” IEEE Real-Time Systems Symposium (RTSS), pp. 190-199, 1995. [18] Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen, “Low-power cmos digital design,” IEEE Journal of Solid-State Circuit, vol. 27, no. 4, April 1992. [19] Graham R. L., “Bounds for certain multiprocessing anomalies,” Bell Syst. Tech. J., pp. 1563-1581, November 1966. [20] Manacher G. K., “Production and stabilization of real-time task schedulers,” J. ACM, pp. 439-465, July 1967. [21] T. Adam, K. Chandy, and J. Dickson., “A comparison of list schedules for parallel processing systems,” Commun. ACM, vol. 17, no. 12, pp. 685-690, December 1974. [22] Martin Grajcar, “Strengths and weaknesses of genetic list scheduling for heterogeneous systems,” Proceedings of the Second International Conference on Application of Concurrency to System Design (ACSD), pp. 123-132, June 2001. [23] T. C. Hu, “Parallel sequencing and assembly line problem,” Oper. Res, vol. 9, no. 6, pp. 841-848, November 1961. [24] Christopher J. Glass and Lionel M. Ni, “The turn model for adaptive routing,” Proceedings., The 19th Annual International Symposium on Computer Architecture (ISCA), pp. 278-287, May 1992. [25] S. Kirkpatrick, C. D. Gelatt, Jr., and M.P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680, May 1983. [26] Emile Aarts and Jan Korst, Simulated Annealing and Boltzmann Machines, Wiley and Sons, 1989. [27] Robert P. Dick, David L. Rhodes, and Wayne H. Wolf, “Tgff: Task graphs for free," Proc. Intl. Workshop on Hardware/Software Codesign, March 1998.
-
7
Authors: et al.
Contributors: et al.
Source: https://inria.hal.science/tel-01956255 ; Hardware Architecture [cs.AR]. Université de Rennes 1 [UR1], 2018. English. ⟨NNT : ⟩.
Subject Terms: Network on chip NoC, Réseau sur puce NoC, ACM: C.: Computer Systems Organization/C.2: COMPUTER-COMMUNICATION NETWORKS/C.2.1: Network Architecture and Design, ACM: D.: Software/D.4: OPERATING SYSTEMS, [INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR], [INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET]
-
8
Authors: et al.
Source: 2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), 1-6 October, 2023, Västerås, Sweden ; 979-83-503-2498-3
Subject Terms: Engineering sciences. Technology, Computer. Automation
Relation: info:eu-repo/semantics/altIdentifier/isi/001137051500068
-
9
Authors: et al.
Subject Terms: Computer Science - Hardware Architecture, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Performance, archi, info
Relation: http://arxiv.org/abs/2301.00414
Availability: http://arxiv.org/abs/2301.00414
-
10
Authors: et al.
Contributors: et al.
Source: 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (IEEE/ACM CCGrid)
https://hal.inria.fr/hal-01901988
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (IEEE/ACM CCGrid), May 2018, Washington DC, United StatesSubject Terms: [INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC]
Subject Geographic: Washington DC, United States
Time: Washington DC, United States
Relation: hal-01901988; https://hal.inria.fr/hal-01901988; https://hal.inria.fr/hal-01901988/document; https://hal.inria.fr/hal-01901988/file/article.pdf
-
11
Authors:
Contributors:
Subject Terms: 670 - Manufactura, 620 - Ingeniería y operaciones afines, 680 - Manufactura para usos específicos, 600 - Tecnología (Ciencias aplicadas), Diseño industrial, Automatización, Productos nuevos, Diseños de productos, Desarrollo de nuevos productos, Design, industrial, Automation, New products, New product development, Diseño generativo realimentado, Diseño generativo, Optimización multiobjetivo, Diseño paramétrico, Grafos direccionales, Frentes de Pareto, Programación paralela, Feedback-based generative design, Feedback generative design, Generative design, Multi-objective optimization, Parametric design, Directed graphs, Pareto fronts, parallel programming
File Description: xxiii, 206 páginas; application/pdf
Relation: [1] J. S. Restrepo Mendoza and E. Cordoba Nieto, “DISEÑO PARAMÉTRICO PARA CLASIFICACIÓN DE FAMILIAS DE PRODUCTOS EN MANUFACTURA DISCRETA EN EL LABFABEXUN,” in CONGRESO INTERNACIONAL DE INGENIERÍA MECÁNICA, MECATRÓNICA Y AUTOMATIZACIÓN - Memorias 2021, pp. 21–21, 2021.; Martin Hankel, “RAMI4.0 – Reference Architecture Model Industry 4.0.,” 11 2016.; TheOPCFoundation, “RAMI4.0 by Martin Hankel (Bosch-Rexroth) at OPC Day Europe 2016,” 2 2017.; Gonz´alez, “Measurement of Areas on a Sphere Using Fibonacci and Latitude-Longitude Lattices,” Mathematical Geosciences, vol. 42, pp. 49–64, 1 2010.; Departamento Nacional de Planeaci´on (DNP), Superintendencia de Industria y Comercio (SIC), Direcci´on Nacional de Derecho de Autor (DNDA), Instituto Colombiano Agropecuario (ICA), Organizaci´on Mundial de la Propiedad Intelectual (OMPI), and Misi´on permanente de Colombia ante las naciones Unidas, “Reporte sobre la informaci ´on en materia de Propiedad Intelectual en Colombia,” tech. rep., 2017.; J. Mountstephens and J. Teo, “Progress and challenges in generative product design: A review of systems,” 12 2020.; Z. Jiang, H. Wen, F. Han, Y. Tang, and Y. Xiong, “Data-driven generative design for mass customization: A case study,” Advanced Engineering Informatics, vol. 54, 10 2022.; P. Wolniak, B. Sauthoff, D. Kloock-Schreiber, and R. Lachmayer, “AUTOMATED PRODUCT FUNCTIONALITY and DESIGN OPTIMIZATION INSTANCING A PRODUCT-SERVICE SYSTEM,” in Proceedings of the Design Society: DESIGN Conference, vol. 1, pp. 1405–1414, Cambridge University Press, 2020.; M. A. S. Al-Shamsi, “Review of Korean Imitation and Innovation in the Last 60 Years,” 3 2022.; B. Bartikowski, F. Fastoso, and H. Gierl, “Luxury cars Made-in-China: Consequences for brand positioning,” Journal of Business Research, vol. 102, pp. 288–297, 9 2019; K. D. Thoben, S. A. Wiesner, and T. Wuest, “Industrie 4.0 and smart manufacturing-a review of research issues and application examples,” 2017.; D. G. Ullman, The Mechanical Design Process, vol. 1. 2010.; A. M. Farid and N. P. Suh, Axiomatic Design in Large Systems. 2016.; R. L. Norton, Dise˜no de m´aquinas. Un enfoque integrado. Pearson Educaci´on, cuarta edi ed., 2011.; S. BuHamdan, A. Alwisy, and A. Bouferguene, “Generative systems in the architecture, engineering and construction industry: A systematic review and analysis,” International Journal of Architectural Computing, 2020.; D. Nagaraj and D. Werth, “Towards a Generalized System for Generative Engineering,” in ACM International Conference Proceeding Series, Association for Computing Machinery, 1 2020.; S. Fox, “A preliminary methodology for generative production systems,” Journal of Manufacturing Technology Management, vol. 22, no. 3, pp. 348–364, 2011.; A. N. Pilagatti, G. Vecchi, E. Atzeni, L. Iuliano, and A. Salmi, “Generative Design and new designers’ role in the manufacturing industry,” in Procedia CIRP, vol. 112, pp. 364–369, Elsevier B.V., 2022.; C. Hyunjin, “A Study on Application of Generative Design System in Manufacturing Process,” in IOP Conference Series: Materials Science and Engineering, vol. 727, Institute of Physics Publishing, 1 2020.; J.Wu, M. Li, Z. Chen, W. Chen, X.Wu, and Y. Xi, “Generative Design of the Roller Seat of the Wind Turbine Blade Turnover Machine Based on Cloud Computing,” ICMAE 2020 - 2020 11th International Conference on Mechanical and Aerospace Engineering, pp. 212–217, 2020.; H. Li and R. Lachmayer, “Automated exploration of design solution space applying the generative design approach,” in Proceedings of the International Conference on Engineering Design, ICED, vol. 2019-August, pp. 1085–1094, Cambridge University Press, 2019.; S. Khan and M. J. Awan, “A generative design technique for exploring shape variations,” Advanced Engineering Informatics, vol. 38, no. October, pp. 712–724, 2018.; S. Khan, E. Gunpinar, and B. Sener, “GenYacht: An interactive generative design system for computer-aided yacht hull design,” Ocean Engineering, vol. 191, no. August, p. 106462, 2019.; E. Gunpinar and S. Gunpinar, “A shape sampling technique via particle tracing for CAD models,” Graphical Models, vol. 96, no. January, pp. 11–29, 2018; S. Oh, Y. Jung, S. Kim, I. Lee, and N. Kang, “Deep generative design: Integration of topology optimization and generative models,” Journal of Mechanical Design, Transactions of the ASME, vol. 141, 11 2019; P. Ghannad and Y. C. Lee, “Automated modular housing design using a module configuration algorithm and a coupled generative adversarial network (CoGAN),” Automation in Construction, vol. 139, 7 2022; N. A. Kallioras and N. D. Lagaros, “DzAI: Deep learning based generative design,” Procedia Manufacturing, vol. 44, pp. 591–598, 2020; N. A. Kallioras and N. D. Lagaros, “Mlgen: Generative design framework based on machine learning and topology optimization,” Applied Sciences (Switzerland), vol. 11, 12 2021; J. C. Garc´ıa Carrero, Planeaci´on de trayectorias en vuelo de un manipulador industrial para el Laboratorio F´abrica Experimental UN. PhD thesis, Universidad Nacional de Colombia, Bogot´a D.C, 2017; C. Sarmiento Fautoque, Desarrollo Te´orico- Experimental en la Geometr´ıa de Maquinado M´ulti-ejes aplicando Ingenier´ıa Inversa Mixta. PhD thesis, Universidad Nacional de Colombia, Bogot´a D.C., 2014; V. Granadeiro, L. Pina, J. P. Duarte, J. R. Correia, and V. M. Leal, “A general indirect representation for optimization of generative design systems by genetic algorithms: Application to a shape grammar-based design system,” Automation in Construction, vol. 35, pp. 374–382, 2013; H. Li and R. Lachmayer, “Generative Design Approach for Modeling Creative Designs,” IOP Conference Series: Materials Science and Engineering, vol. 408, no. 1, 2018; S. S. Pibal, K. Khoss, and I. Kovacic, “Framework of an algorithm-aided BIM approach for modular residential building information models,” International Journal of Architectural Computing, vol. 20, pp. 777–800, 12 2022; M. Younus, C. Peiyong, L. Hu, and F. Yuqing, “MES development and significant applications in manufacturing -A review,” in ICETC 2010 - 2010 2nd International Conference on Education Technology and Computer, vol. 5, 2010; T. A. Jauhar, M. Safdar, I. Kim, and S. Han, “Web-based Product Data Visualization and Feedback between PLM and MES,” in Proceedings - Web3D 2020: 25th ACM Conference on 3D Web Technology, Association for Computing Machinery, Inc, 11 2020; G. Bruno, A. Faveto, and E. Traini, “An open source framework for the storage and reuse of industrial knowledge through the integration of plm and mes,” Management and Production Engineering Review, vol. 11, pp. 62–73, 6 2020; E. Traini, G. Bruno, A. Awouda, P. Chiabert, and F. Lombardi, “Integration Between PLM and MES for One-of-a-Kind Production,” in IFIP Advances in Information and Communication Technology, vol. 565 IFIP, pp. 356–365, Springer, 2019; M. I. Mahmoud, H. H. Ammar, M. M. Hamdy, and M. H. Eissa, “Production operation management using Manufacturing Execution Systems (MES),” in 2015 11th International Computer Engineering Conference: Today Information Society What’s Next?, ICENCO 2015, pp. 111–116, Institute of Electrical and Electronics Engineers Inc., 2 2016; W. Qifeng and W. Zhangjian, “Web services-based system integration approach for manufacturing execution system,” in Proceedings - 2011 International Conference on Internet Computing and Information Services, ICICIS 2011, pp. 469–472, 2011; S.-H. Jing, Q.-J. Meng, and W.-Q. Cao, “Cement Enterprise MES Key Technology Research and Application,” in 2007 International Conference on Machine Learning and Cybernetics, pp. 277–282, IEEE, 8 2007; W. Qu, W. Cao, and Y. C. Su, “Design and implementation of smart manufacturing execution system in solar industry,” Journal of Ambient Intelligence and Humanized Computing, 2020; Y. Yue-Xina and R. Gong-Chang, “Design of Real Time Data Acquisition System Framework for Production Workshop Based on OPC Technology,” in MATEC Web of Conferences, vol. 128, EDP Sciences, 10 2017; X. Zeng, “Design and implementation of production management system in aviation machining workshop based on MES,” in Proceedings - International Conference on Control Science and Electric Power Systems, CSEPS 2021, pp. 385–388, Institute of Electrical and Electronics Engineers Inc., 5 2021; S. Mantravadi, C. Møller, C. LI, and R. Schnyder, “Design choices for next-generation IIoT-connected MES/MOM: An empirical study on smart factories,” Robotics and Computer-Integrated Manufacturing, vol. 73, 2 2022; J. Barata, P. R. da Cunha, A. S. Gonnagar, and M. Mendes, “Product traceability in ceramic industry 4.0: A design approach and cloud-based MES prototype,” in Lecture Notes in Information Systems and Organisation, vol. 26, pp. 187–204, Springer Heidelberg, 2018; M. Ko, C. Lee, and Y. Cho, “Design and Implementation of Cloud-Based Collaborative Manufacturing Execution System in the Korean Fashion Industry,” Applied Sciences (Switzerland), vol. 12, 9 2022; X. Han, M. Li, and X. Zhang, “Design and key technology of MES for spacecraft assembly,” in Proceedings - 2016 6th International Conference on Instrumentation and Measurement, Computer, Communication and Control, IMCCC 2016, pp. 844–847, Institute of Electrical and Electronics Engineers Inc., 12 2016; D. F. Tosse, S. Araujo, and E. C´ordoba, “Plataforma para integraci´on de m´aquinas en laboratorio f´abrica experimental con enfoque de Industria 4.0,” in Innovar para educar (Corporaci´on Cimted© 2020, ed.), vol. 1, pp. 125–146, Medell´ın, Antioquia – Colombia: Corporaci´on Centro Internacional de Marketing Territorial para la Educaci´on y el Desarrollo, primera ed., 2020; R. Y. Zhong, G. Q. Huang, Q. Y. Dai, K. Zhou, T. Qu, and G. J. Hu, “RFID-enabled real-time manufacturing execution system for discrete manufacturing: Software design and implementation,” in 2011 International Conference on Networking, Sensing and Control, ICNSC 2011, pp. 311–316, 2011; Y. Wang, M. Wang, J. Wang, and Y. Zhou, “Design and implementation of device integration framework based on agent technology in MES,” in Procedia CIRP, vol. 83, pp. 485–489, Elsevier B.V., 2019; G. D’Antonio, F. Segonds, J. S. Bedolla, P. Chiabert, and N. Anwer, “A proposal of manufacturing execution system integration in design for additive manufacturing,” in IFIP Advances in Information and Communication Technology, vol. 467, pp. 761–770, Springer New York LLC, 2016; M. Naedele, H. M. Chen, R. Kazman, Y. Cai, L. Xiao, and C. V. Silva, “Manufacturing execution systems: A vision for managing software development,” Journal of Systems and Software, vol. 101, pp. 59–68, 3 2015; T. Masood and R. H. Weston, “Modelling framework to support decision-making in manufacturing enterprises,” Advances in Decision Sciences, vol. 2013, 2013; H. Habib, R. Menhas, and O. McDermott, “Managing Engineering Change within the Paradigm of Product Lifecycle Management,” Processes, vol. 10, 9 2022; M. Hayat and H. Winkler, “Exploring the Basic Features and Challenges of Traditional Product Lifecycle Management Systems,” in IEEE International Conference on Industrial Engineering and Engineering Management, vol. 2022-December, pp. 762–766, IEEE Computer Society, 2022; S. R¨adler and E. Rigger, “A Survey on the Challenges Hindering the Application of Data Science, Digital Twins and Design Automation in Engineering Practice,” in Proceedings of the Design Society, vol. 2, pp. 1699–1708, Cambridge University Press, 5 2022; S. Nzetchou, A. Durupt, S. Remy, and B. Eynard, “Semantic enrichment approach for low-level CAD models managed in PLM context: Literature review and research prospect,” Computers in Industry, vol. 135, 2 2022; M. Lennartsson, S. Andr´e, and F. Elgh, “PLM support for design platforms in industrialized house-building,” Construction Innovation, 2 2021; V. Kopei, O. Onysko, C. Barz, P. Daˇsi´c, and V. Panchuk, “Designing a Multi-Agent PLM System for Threaded Connections Using the Principle of Isomorphism of Regularities of Complex Systems,” Machines, vol. 11, 2 2023; Y. Liao, F. Deschamps, E. d. F. R. Loures, and L. F. P. Ramos, “Past, present and future of Industry 4.0 - a systematic literature review and research agenda proposal,” International Journal of Production Research, vol. 55, no. 12, pp. 3609–3629, 2017; J. W. Veile, D. Kiel, J. M. M¨uller, and K. I. Voigt, “Lessons learned from Industry 4.0 implementation in the German manufacturing industry,” Journal of Manufacturing Technology Management, 2019; “Status Report Reference Architecture Model Industrie 4.0 (RAMI4.0),” tech. rep., 2015; A. F. Cifuentes G´omez, Implementaci´on de sistemas de gesti´on de informaci´on del ciclo de vida de producto basado en el desarrollo de un molde de inyecci´on. PhD thesis, Universidad Nacional de Colombia, Bogot´a, Colombia, 2021; P. Andr´es and C. Parra, “Modelo e-Manufacturing bajo la arquitectura Cloud Manufacturing para el Laboratorio F´abrica Experimental UN,” tech. rep., 2015; M. K. Mohanty, P. Gahan, and S. Choudhury, “Why most of the supplier development programs fail in discrete manufacturing – findings from selected Indian discrete manufacturing industries,” 2014; T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and K. H. Johansson, “A survey of distributed optimization,” Annual Reviews in Control, vol. 47, pp. 278–305, 2019; A. K. Sethi and S. P. Sethi, “Flexibility in manufacturing: A survey,” International Journal of Flexible Manufacturing Systems, vol. 2, no. 4, pp. 289–328, 1990.; S. K. Saren and V. Tiberiu, “Review of Flexible Manufacturing System Based on Modeling and Simulation,” ANNALS OF THE ORADEA UNIVERSITY. Fascicle of Management and Technological Engineering., vol. Volume XXV, no. 1, 2016.; G. Kim, Y. Kwon, E. S. Suh, and J. Ahn, “Analysis of Architectural Complexity for Product Family and Platform,” Journal of Mechanical Design, Transactions of the ASME, vol. 138, no. 7, pp. 1–11, 2016; O. Asikoglu and T. W. Simpson, “A new method for evaluating design dependencies in product architectures,” 12th AIAA Aviation Technology, Integration and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, no. September, pp. 1–11, 2012; M. Lafou, L. Mathieu, S. Pois, and M. Alochet, “Manufacturing System Flexibility: Product Flexibility Assessment,” Procedia CIRP, vol. 41, pp. 99–104, 2016.; F. M. Kasie, G. Bright, and A. Walker, “Decision support systems in manufacturing: a survey and future trends,” Journal of Modelling in Management, vol. 12, no. 3, pp. 432– 454, 2017.; J. Igba, K. Alemzadeh, P. M. Gibbons, and K. Henningsen, “A framework for optimising product performance through feedback and reuse of in-service experience,” Robotics and Computer-Integrated Manufacturing, vol. 36, pp. 2–12, 2015; M. von Stietencron, K. A. Hribernik, C. C. Røstad, B. Henriksen, and K. D. Thoben, “Applying closed-loop product lifecycle management to enable fact based design of boats,” in IFIP Advances in Information and Communication Technology, vol. 517, pp. 522–531, Springer New York LLC, 2017; C. a. Coello Coello and G. B. Lamont, Applications Of Multi-Objective Evolutionary Algorithms. 2004; H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-objective optimization: A short review,” in 2008 IEEE Congress on Evolutionary Computation, CEC 2008, 2008.; G. Chiandussi, M. Codegone, S. Ferrero, and F. E. Varesio, “Comparison of multiobjective optimization methodologies for engineering applications,” Computers and Mathematics with Applications, vol. 63, no. 5, pp. 912–942, 2012.; G. Ortega, E. Filatovas, E. M. Garz´on, and L. G. Casado, “Non-dominated sorting procedure for Pareto dominance ranking on multicore CPU and/or GPU,” Journal of Global Optimization, vol. 69, pp. 607–627, 11 2017; L. B. De Oliveira, C. G. Marcelino, A. Milanes, P. E. Almeida, and L. M. Carvalho, “A successful parallel implementation of NSGA-II on GPU for the energy dispatch problem on hydroelectric power plants,” in 2016 IEEE Congress on Evolutionary Computation, CEC 2016, pp. 4305–4312, Institute of Electrical and Electronics Engineers Inc., 11 2016.; K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.; E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm,” Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100, 2001; P. K. Tripathi, S. Bandyopadhyay, and S. K. Pal, “Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients,” Information Sciences, vol. 177, pp. 5033–5049, 11 2007.; X. Li, “A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization,” Genetic and Evolutionary Computation — GECCO 2003, vol. 2723, pp. 37–48, 6 2003; R. Sedgewick and K. Wayne, “Algorithms,” tech. rep; J. J. Craig, P. Prentice, and P. P. Hall, “Introduction to Robotics Mechanics and Control Third Edition,” tech. rep., 2005.; I. Viana, J.-J. Orteu, N. Cornille, and F. Bugarin, “Inspection of aeronautical mechanical parts with a pan-tilt-zoom camera: an approach guided by the computer-aided design model,” Journal of Electronic Imaging, vol. 24, no. 6, p. 061118, 2015; H. Huang, J. Liu, S. Liu, T. Wu, and P. Jin, “A method for classifying tube structures based on shape descriptors and a random forest classifier,” Measurement: Journal of the International Measurement Confederation, vol. 158, p. 107705, 2020; F. Hui, P. Payeur, and A. M. Cretu, “Visual tracking of deformation and classification of non-rigid objects with robot hand probing,” Robotics, vol. 6, no. 1, 2017.; J. K. Oh, S. Lee, and C. H. Lee, “Stereo vision based automation for a bin-picking solution,” International Journal of Control, Automation and Systems, vol. 10, no. 2, pp. 362–373, 2012; E. Gunpinar and S. Khan, A multi-criteria based selection method using non-dominated sorting for genetic algorithm based design. No. 65, Springer US, 2019; https://repositorio.unal.edu.co/handle/unal/85019; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
12
Authors: et al.
Contributors: et al.
Source: https://inria.hal.science/inria-00105010 ; [Research Report] PI 1818, 2006, pp.22.
Subject Terms: Wcet, hard real-time system, compilation, software, hardware, memory, cache, ACM: C.: Computer Systems Organization/C.3: SPECIAL-PURPOSE AND APPLICATION-BASED SYSTEMS, ACM: D.: Software/D.4: OPERATING SYSTEMS, [INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR]
Relation: Report N°: PI 1818
-
13
Authors:
Source: Wouda, S, Joosten, S J C & Schmaltz, J 2015, Process algebra semantics & reachability analysis for micro-architectural models of communication fabrics. in 2015 ACM/IEEE International Conference on Formal Methods and Models for Codesign, MEMOCODE 2015., 7340487, Institute of Electrical and Electronics Engineers, pp. 198-207, ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE 2015), Austin, United States, 21/09/15. https://doi.org/10.1109/MEMCOD.2015.7340487
Subject Terms: Algebra, Computational modeling, Fabrics, Ports (Computers), Reachability analysis, Semantics, System recovery
Relation: info:eu-repo/semantics/altIdentifier/isbn/9781509002375; urn:ISBN:9781509002375
-
14
Authors: et al.
Contributors: et al.
Source: LCTES - ACM International Conference on Languages, Compilers, and Tools for Embedded Systems ; https://inria.hal.science/hal-00750870 ; LCTES - ACM International Conference on Languages, Compilers, and Tools for Embedded Systems, Jun 2008, Tucson, United States. pp.101-110, ⟨10.1145/1375657.1375672⟩
Subject Terms: synchronous programming, distribution, type systems, functional programming, ACM: D.: Software/D.1: PROGRAMMING TECHNIQUES/D.1.3: Concurrent Programming/D.1.3.0: Distributed programming, ACM: D.: Software/D.3: PROGRAMMING LANGUAGES/D.3.2: Language Classifications/D.3.2.1: Concurrent, distributed, and parallel languages, [INFO.INFO-PL]Computer Science [cs]/Programming Languages [cs.PL]
Subject Geographic: Tucson, United States
Relation: info:eu-repo/semantics/altIdentifier/arxiv/1211.2776; ARXIV: 1211.2776
-
15
Authors:
Source: ACM SIGARCH Computer Architecture News ; volume 25, issue 2, page 50-61 ; ISSN 0163-5964
Availability: https://doi.org/10.1145/384286.264129
https://dl.acm.org/doi/10.1145/384286.264129
https://dl.acm.org/doi/pdf/10.1145/384286.264129 -
16
Authors: Graham, Peter C. J.
Source: ACM SIGARCH Computer Architecture News ; volume 12, issue 5, page 12-18 ; ISSN 0163-5964
Availability: https://doi.org/10.1145/859576.859578
https://dl.acm.org/doi/10.1145/859576.859578
https://dl.acm.org/doi/pdf/10.1145/859576.859578 -
17
Authors: et al.
Contributors: et al.
Subject Terms: 000 - Ciencias de la computación, información y obras generales::003 - Sistemas, 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería, Radiation, Radiación, Métodos orientados a objetos (computadores), Object-oriented methods (computer), Diagnosis computer assisted, Diagnóstico por computación, Fault Tolerance, Approximate Computing, Reliability, Soft Errors, Tolerancia a fallos, Computación aproximada, Confiabilidad
File Description: xviii, 135 páginas; application/pdf
Relation: Aamodt, T. M. and Chow, P. (2008). Compile-time and instruction-set methods for improving floating-to fixed-point conversion accuracy. ACM Transactions on Embedded Computing Systems, 7(3):1–27.; AEC (2014). FAILURE MECHANISM BASED STRESS TEST QUALIFICATION FOR INTEGRATED CIRCUITS Automotive Electronics Council Rev-H.; Agarwal, A., Rinard, M., Sidiroglou, S., Misailovic, S., and Hoffmann, H. (2009). Using Code Perforation to Improve Performance, Reduce Energy Consumption, and Respond to Failures. Technical report, MIT.; Alaghi, A. and Hayes, J. P. (2015). STRAUSS: Spectral Transform Use in Stochastic Circuit Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(11):1770–1783.; Aponte-Moreno, A., Isaza-Gonzalez, J., Serrano-Cases, A., Martinez-Alvarez, A., Cuenca-Asensi, S., and Restrepo-Calle, F. (2020). An experimental comparison of fault injection tools for microprocessor-based systems. In 21st IEEE Latin-American Test Symposium, LATS 2020.; Aponte-Moreno, A., Isaza-González, J., Serrano-Cases, A., Martínez-Álvarez, A., Cuenca-Asensi, S., and Restrepo-Calle, F. (2023). Evaluation of fault injection tools for reliability estimation of microprocessor-based embedded systems. Microprocessors and Microsystems, 96:104723.; Aponte-Moreno, A., Moncada, A., Restrepo-Calle, F., and Pedraza, C. (2018). A review of approximate computing techniques towards fault mitigation in HW/SW systems. In 2018 IEEE 19th Latin- American Test Symposium (LATS), pages 1–6. IEEE.; Aponte-Moreno, A., Pedraza, C., and Restrepo-Calle, F. (2019a). Reducing overheads in software-based fault tolerant systems using approximate computing. In LATS 2019 - 20th IEEE Latin American Test Symposium.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2019b). A Low-Overhead Radiation Hardening Approach using Approximate Computing and Selective Fault Tolerance Techniques at the Software Level. In 2019 19th European Conference on Radiation and Its Effects on Components and Systems (RADECS), pages 1–4. IEEE.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2019c). MiFIT: A fault injection tool to validate the reliability of microprocessors. In LATS 2019 - 20th IEEE Latin American Test Symposium.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2019d). Using approximate computing and selective hardening for the reduction of overheads in the design of radiation-induced fault-tolerant systems. Electronics (Switzerland), 8.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2021a). A Low-cost Fault Tolerance Method for ARM and RISC-V Microprocessor-based Systems using Temporal Redundancy and Approximate Computing through Simplified Iterations. Journal of Integrated Circuits and Systems, 16(3):1–14.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2021b). Reliability Evaluation of RISC-V and ARM Microprocessors Through a New Fault Injection Tool. In 2021 IEEE 22nd Latin American Test Symposium (LATS), pages 1–6. IEEE.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. A. (2021c). FTxAC: Leveraging the Approximate Computing Paradigm in the Design of Fault-Tolerant Embedded Systems to Reduce Overheads. IEEE Transactions on Emerging Topics in Computing, 9(2):797–810.; Arifeen, T., Hassan, A. S., Moradian, H., and Lee, J. A. (2016). Probing Approximate TMR in Error Resilient Applications for Better Design Tradeoffs. In Proceedings - 19th Euromicro Conference on Digital System Design, DSD 2016, pages 637–640.; ARM (2023). Arm ref. manual.; Augustin, M., Gossel, M., and Kraemer, R. (2011). Implementation of Selective Fault Tolerance with conventional synthesis tools. In 14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems, pages 213–218. IEEE.; Avizienis, A. (1985). The N-Version Approach to Fault-Tolerant Software. IEEE Transactions on Software Engineering, SE-11(12):1491–1501.; Azambuja, J. R., Lapolli, Â., Rosa, L., and Kastensmidt, F. L. (2011a). Detecting SEEs in microprocessors through a non-intrusive hybrid technique. IEEE Transactions on Nuclear Science, 58(3 PART 2):993–1000.; Azambuja, J. R., Pagliarini, S., Rosa, L., and Kastensmidt, F. L. (2011b). Exploring the Limitations of Software-based Techniques in SEE Fault Coverage. Journal of Electronic Testing, 27(4):541–550.; Baek, W. and Chilimbi, T. M. (2010). Green: A Framework for Supporting Energy-Conscious Programming using Controlled Approximation. ACM SIGPLAN Notices, 45(6):198–209.; Baharvand, F. and Miremadi, S. G. (2020). Lexact: Low energy n-modular redundancy using approximate computing for real-time multicore processors. IEEE Transactions on Emerging Topics in Computing, 8(2):431–441.; Barr, M. and Massa, A. (2006). Programming embedded systems: with C and GNU development tools. O’Reilly Media, 2 edition.; Bellard, F. (2005). QEMU, a Fast and Portable Dynamic Translator. In USENIX Annual Technical Conf, pages 41–46.; Benso, A., Di Carlo, S., Di Natale, G., Prinetto, P., and Tagliaferri, L. (2001). Control-flow checking via regular expressions. In Proceedings 10th Asian Test Symposium, pages 299–303. IEEE.; Bernardi, P., Bolzani Poehls, L., Grosso, M., and Sonza Reorda, M. (2010). A Hybrid Approach for Detection and Correction of Transient Faults in SoCs. IEEE Transactions on Dependable and Secure Computing, 7(4):439–445.; Bohman, M., James, B., Wirthlin, M. J., Quinn, H., and Goeders, J. (2019). Microcontroller compiler-assisted software fault tolerance. IEEE Transactions on Nuclear Science, 66(1):223–232.; Boston, B., Sampson, A., Grossman, D., and Ceze, L. (2015). Probability type inference for flexible approximate programming. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, pages 470–487, New York, NY, USA. ACM.; Carbin, M., Misailovic, S., and Rinard, M. C. (2013). Verifying quantitative reliability for programs that execute on unreliable hardware. In Proceedings of the 2013 ACM SIGPLAN international conference on Object oriented programming systems languages & applications, pages 33–52, New York, NY, USA. ACM.; Chang, I. J., Mohapatra, D., and Roy, K. (2011). A Priority-Based 6T/8T Hybrid SRAM Architecture for Aggressive Voltage Scaling in Video Applications. IEEE Transactions on Circuits and Systems for Video Technology, 21(2):101–112.; Chang, J., Reis, G., and August, D. (2006). Automatic instruction-level software-only recovery. In International Conference on Dependable Systems and Networks (DSN’06), pages 83–92. IEEE.; Chen, K., Han, J., and Lombardi, F. (2017). Two approximate voting schemes for reliable computing. IEEE Transactions on Computers, 66(7):1227–1239.; Chielle, E., Azambuja, J. R., Barth, R. S., Almeida, F., and Kastensmidt, F. L. (2013). Evaluating selective redundancy in data-flow software-based techniques. IEEE Transactions on Nuclear Science, 60(4):2768–2775.; Chippa, V. K., Mohapatra, D., Roy, K., Chakradhar, S. T., and Raghunathan, A. (2014). Scalable Effort Hardware Design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(9):2004–2016.; Chippa, V. K., Roy, K., Chakradhar, S. T., and Raghunathan, A. (2013a). Managing the Quality vs. Efficiency Trade-off Using Dynamic Effort Scaling. ACM Transactions on Embedded Computing Systems, 12(2s):1–23.; Chippa, V. K., Venkataramani, S., Chakradhar, S. T., Roy, K., and Raghunathan, A. (2013b). Approximate computing: An integrated hardware approach. In 2013 Asilomar Conference on Signals, Systems and Computers, pages 111–117. IEEE.; Cho, H., Leem, L., and Mitra, S. (2012). ERSA: Error Resilient System Architecture for Probabilistic Applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 31(4):546–558.; Choudhury, M. R. and Mohanram, K. (2008). Approximate logic circuits for low overhead, non-intrusive concurrent error detection. In 2008 Design, Automation and Test in Europe, pages 903–908. IEEE.; Clark, L. T., Patterson, D. W., Hindman, N. D., Holbert, K. E., Maurya, S., and Guertin, S. M. (2011). A Dual Mode Redundant Approach for Microprocessor Soft Error Hardness. IEEE Transactions on Nuclear Science, 58(6):3018–3025.; Creswell, J. W. (2014). Research design : qualitative, quantitative, and mixed methods approaches. SAGE Publications, 4 edition.; Deveautour, B., Traiola, M., Virazel, A., and Girard, P. (2020). Qamr: An approximation-based fully reliable tmr alternative for area overhead reduction. Proceedings of the European Test Workshop, 2020-May.; Deveautour, B., Traiola, M., Virazel, A., and Girard, P. (2021). Reducing Overprovision of Triple Modular Reduncancy Owing to Approximate Computing. In 2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS), pages 1–7. IEEE.; Di Mascio, S., Menicucci, A., Furano, G., Monteleone, C., and Ottavi, M. (2019). The case for risc-v in space. In Saponara, S. and De Gloria, A., editors, Applications in Electronics Pervading Industry, Environment and Society, pages 319–325, Cham. Springer International Publishing.; Doochul Shin and Gupta, S. K. (2011). A new circuit simplification method for error tolerant applications. In 2011 Design, Automation & Test in Europe, pages 1–6. IEEE.; Dubrova, E. (2013). Fault-Tolerant Design. Springer New York, New York, NY.; ECSS (2016). Techniques for radiation effects mitigation in ASICs and FPGAs handbook (1 September 2016) %7C European Cooperation for Space Standardization. ESA Requirements and Standards Division.; Esmaeilzadeh, H., Sampson, A., Ceze, L., and Burger, D. (2012a). Architecture support for disciplined approximate programming. In Proceedings of the 17th international conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS ’12, page 301, New York, New York, USA. ACM Press.; Esmaeilzadeh, H., Sampson, A., Ceze, L., and Burger, D. (2012b). Neural Acceleration for General-Purpose Approximate Programs. In Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM International Symposium. IEEE.; Fulton, R. and Vandermolen, R. (2014). Airborne electronic hardware design assurance : a practitioner’s guide to RTCA/DO-254. CRC Press.; Gala, N., Venkataramani, S., Raghunathan, A., and Kamakoti, V. (2017). Approximate Error Detection With Stochastic Checkers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(8):2258–2270.; Gao, M. and Qu, G. (2017). A novel approximate computing based security primitive for the Internet of Things. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–4. IEEE.; Garcia-Astudillo, L. A., Entrena, L., Lindoso, A., and Martin, H. (2022). Reduced resolution redundancy: A novel approximate error mitigation technique. IEEE Access, 10:20643–20651.; Goloubeva, O., Rebaudengo, M., Sonza Reorda, M., and Violante, M. (2003). Soft-error detection using control flow assertions. In Proceedings. 16th IEEE Symposium on Computer Arithmetic, pages 581–588. IEEE Comput. Soc.; Gomes, I. A. C. and Kastensmidt, F. G. L. (2013). Reducing TMR overhead by combining approximate circuit, transistor topology and input permutation approaches. Chip in Curitiba 2013 - SBCCI 2013: 26th Symposium on Integrated Circuits and Systems Design.; Gomes, I. A. C., Martins, M., Reis, A., and Kastensmidt, F. L. (2015). Using only redundant modules with approximate logic to reduce drastically area overhead in TMR. In 2015 16th Latin-American Test Symposium (LATS), pages 1–6. IEEE.; Gupta, V., Mohapatra, D., Raghunathan, A., and Roy, K. (2013). Low-Power Digital Signal Processing Using Approximate Adders. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(1):124–137.; Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T., and Brown, R. B. (2001). MiBench: A free, commercially representative embedded benchmark suite. Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop, pages 3–14.; Han, J. and Orshansky, M. (2013). Approximate computing: An emerging paradigm for energy-efficient design. Proceedings - 2013 18th IEEE European Test Symposium, ETS 2013.; He, X., Yan, G., Han, Y., and Li, X. (2016). ACR: Enabling computation reuse for approximate computing. Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC, 25-28-Janu:643–648.; Hegde, R. and Shanbhag, N. (2001). Soft digital signal processing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(6):813–823.; Herrera-Alzu, I. and Lopez-Vallejo, M. (2013). Design Techniques for Xilinx Virtex FPGA Configuration Memory Scrubbers. IEEE Transactions on Nuclear Science, 60(1):376–385.; Ho, N.-M., Manogaran, E., Wong, W.-F., and Anoosheh, A. (2017). Efficient floating point precision tuning for approximate computing. In 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), pages 63–68. IEEE.; Huang, Q. and Jiang, J. (2019). An overview of radiation effects on electronic devices under severe accident conditions in NPPs, rad-hardened design techniques and simulation tools. Progress in Nuclear Energy, 114(November 2018):105–120.; IEC (2012). INTERNATIONAL STANDARD Process management for avionics – Atmospheric radiation effects – Part 1: Accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment.; ISO (2018). ISO 26262 Functional Safety Sandards for Road Vehicles.; James, B., Quinn, H., Wirthlin, M., and Goeders, J. (2020). Applying Compiler-Automated Software Fault Tolerance to Multiple Processor Platforms. IEEE Transactions on Nuclear Science, 67(1):321–327.; Karnik, T., Hazucha, P., and Patel, J. (2004). Characterization of soft errors caused by single event upsets in CMOS processes. IEEE Transactions on Dependable and Secure Computing, 1(2):128–143.; Keramidas, G., Kokkala, C., and Stamoulis, I. (2015). Clumsy Value Cache: An Approximate Memoization Technique for Mobile GPU Fragment Shaders. In Workshop on Approximate Computing (WAPCO’15).; Kooli, M. and Di Natale, G. (2014). A survey on simulation-based fault injection tools for complex systems. 9th IEEE Int Conf on Design and Technology of Integrated Systems in Nanoscale Era, DTIS 2014, pages 1–6.; Leveugle, R., Calvez, A., Maistri, P., and Vanhauwaert, P. (2009). Statistical fault injection: Quantified error and confidence. In Design, Automation & Test in Europe Conf, pages 502–506. IEEE.; Liu, K., Li, Y., and Ouyang, L. (2021). Fast recoverable heterogeneous quad-core lockstep architecture. 2021 International Conference on Advanced Computing and Endogenous Security, ICACES 2021.; LLVM (2023). The llvm compiler infrastructure.; Lotfi, A., Rahimi, A., Yazdanbakhsh, A., Esmaeilzadeh, H., and Gupta, R. K. (2016). GRATER: An Approximation Workflow for Exploiting Data-Level Parallelism in FPGA Acceleration. Design, Automation and Test in Europe (DATE). Design, Automation & Test in Europe (DATE), March 14-18, Dresden, Germany, pages 1393–1398.; Mahdiani, H. R., Ahmadi, A., Fakhraie, S. M., and Lucas, C. (2010). Bio-Inspired Imprecise Computational Blocks for Efficient VLSI Implementation of Soft-Computing Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(4):850–862.; Mahmood, A. and McCluskey, E. (1988). Concurrent error detection using watchdog processors-a survey. IEEE Transactions on Computers, 37(2):160–174.; Martínez-Álvarez, A., Cuenca-Asensi, S., and Restrepo-Calle, F. (2016). Soft Error Mitigation in Soft-Core Processors. In Kastensmidt, F. and Rech, P., editors, FPGAs and Parallel Architectures for Aerospace Applications, chapter 16, pages 239–258. Springer International Publishing, Cham.; Martinez-Alvarez, A., Cuenca-Asensi, S., Restrepo-Calle, F., Pinto, F. R. P., Guzman-Miranda, H., and Aguirre, M. A. (2012). Compiler-Directed Soft Error Mitigation for Embedded Systems. IEEE Transactions on Dependable and Secure Computing, 9(2):159–172.; Martinez-Alvarez, A., Restrepo-Calle, F., Cuenca-Asensi, S., Reyneri, L. M., Lindoso, A., and Entrena, L. (2016). A Hardware-Software Approach for On-Line Soft Error Mitigation in Interrupt-Driven Applications. IEEE Transactions on Dependable and Secure Computing, 13(4):502–508.; McAfee, L. and Olukotun, K. (2015). EMEURO: A framework for generating multi-purpose accelerators via deep learning. In 2015 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), pages 125–135. IEEE.; Menard, D., Chillet, D., and Sentieys, O. (2006). Floating-to-Fixed-Point Conversion for Digital Signal Processors. EURASIP Journal on Advances in Signal Processing, 2006(1):096421.; Miao, J., Gerstlauer, A., and Orshansky, M. (2013). Approximate logic synthesis under general error magnitude and frequency constraints. In 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 779–786. IEEE.; Misailovic, S., Carbin, M., Achour, S., Qi, Z., and Rinard, M. C. (2014). Chisel: reliability- and accuracy-aware optimization of approximate computational kernels. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications - OOPSLA ’14, pages 309–328, New York, New York, USA. ACM Press.; Misailovic, S., Sidiroglou, S., Hoffmann, H., and Rinard, M. (2010). Quality of service profiling. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - ICSE ’10, volume 1, page 25, New York, New York, USA. ACM Press.; Mishra, A. K., Barik, R., and Paul, S. (2014). iACT: A Software-Hardware Framework for Understanding the Scope of Approximate Computing. In Wacas.; Mittal, S. (2016). A Survey of Techniques for Approximate Computing. ACM Computing Surveys, 48(4):1–33.; Mohanram, K. and Touba, N. (2003). Partial error masking to reduce soft error failure rate in logic circuits. In Proceedings 18th IEEE Symposium on Defect and Fault Tolerance in VLSI Systems, pages 433–440. IEEE Comput. Soc.; Mohapatra, D., Chippa, V. K., Raghunathan, A., and Roy, K. (2011). Design of voltage-scalable meta-functions for approximate computing. In 2011 Design, Automation & Test in Europe, pages 1–6. IEEE.; Mukherjee, S., Kontz, M., and Reinhardt, S. (2002). Detailed design and evaluation of redundant multi-threading alternatives. In Proceedings 29th Annual International Symposium on Computer Architecture, pages 99–110. IEEE Comput. Soc.; Mukherjee, S., Weaver, C., Emer, J., Reinhardt, S., and Austin, T. (2003). A systematic methodology to compute the architectural vulnerability factors for a high-performance microprocessor. In 22nd Digital Avionics Systems Conference. Proceedings (Cat. No.03CH37449), pages 29–40. IEEE Comput. Soc.; Nicolaidis, M. (2005). Design for soft error mitigation. IEEE Transactions on Device and Materials Reliability, 5(3):405–418.; Nicolaidis, M., editor (2011). Soft Errors in Modern Electronic Systems, volume 41 of Frontiers in Electronic Testing. Springer US, Boston, MA.; Oh, N. and McCluskey, E. J. (2002). Error detection by selective procedure call duplication for low energy consumption. IEEE Transactions on Reliability, 51(4):392–402.; Omar, H., Shi, Q., Ahmad, M., Dogan, H., and Khan, O. (2018). Declarative Resilience. ACM Transactions on Embedded Computing Systems, 17(4):1–27.; Parr, T. (2013). The Definite ANTLR 4 Reference. The Pragmatic Bookshelf, Dallas.; Patterson, D. and Waterman, A. (2017). The RISC-V Reader: An Open Architecture Atlas. Strawberry Canyon.; Qian Zhang, Yuan, F., Ye, R., and Xu, Q. (2014). ApproxIt: An approximate computing framework for iterative methods. In 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6. IEEE.; Quinn, H., Black, D., Robinson, W., and Buchner, S. (2013). Fault simulation and emulation tools to augment radiation-hardness assurance testing. IEEE Trans Nuclear Science, 60(3):2119–2142.; Ragel, R. G. and Parameswaran, S. (2011). A hybrid hardware–software technique to improve reliability in embedded processors. ACM Transactions on Embedded Computing Systems, 10(3):1–16.; Rajesh Venkatasubramanian, Hayes, J., and Murray, B. (2003). Low-cost on-line fault detection using control flow assertions. In 9th IEEE On-Line Testing Symposium, 2003. IOLTS 2003., pages 137–143. IEEE Comput. Soc.; Ranjan, A., Raha, A., Venkataramani, S., Roy, K., and Raghunathan, A. (2014). ASLAN: Synthesis of approximate sequential circuits. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014, pages 1–6, New Jersey. IEEE Conference Publications.; Reddy, V. K., Rotenberg, E., and Parthasarathy, S. (2006). Understanding prediction-based partial redundant threading for low-overhead, high- coverage fault tolerance. ACM SIGARCH Computer Architecture News, 34(5):83.; Reis, G., Chang, J., Vachharajani, N., Rangan, R., August, D., and Mukherjee, S. (2005). Design and Evaluation of Hybrid Fault-Detection Systems. In 32nd International Symposium on Computer Architecture (ISCA’05), pages 148–159. IEEE.; Renganarayana, L., Srinivasan, V., Nair, R., and Prener, D. (2012). Programming with relaxed synchronization. In Proceedings of the 2012 ACM workshop on Relaxing synchronization for multicore and manycore scalability - RACES ’12, page 41, New York, New York, USA. ACM Press.; Restrepo-Calle, F., Martínez-Álvarez, A., Cuenca-Asensi, S., and Jimeno-Morenilla, A. (2013). Selective SWIFT-R. A Flexible Software-Based Technique for Soft Error Mitigation in Low-Cost Embedded Systems. Journal of Electronic Testing, 29(6):825–838.; Rodrigues, C., Marques, I., Pinto, S., Gomes, T., and Tavares, A. (2019). Towards a heterogeneous fault-tolerance architecture based on arm and risc-v processors. IECON Proceedings (Industrial Electronics Conference), 2019-October:3112–3117.; Rodrigues, G. S., Barros de Oliveira, A., Bosio, A., Kastensmidt, F. L., and Pignaton de Freitas, E. (2018). ARFT: An Approximative Redundant Technique for Fault Tolerance. In 2018 Conference on Design of Circuits and Integrated Systems (DCIS), pages 1–6. IEEE.; Roy, D. B., Fritzmann, T., and Sigl, G. (2020). Efficient hardware/software co-design for post-quantum crypto algorithm sike on arm and risc-v based microcontrollers. In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pages 1–9.; Rubio-González, C., Nguyen, C., Nguyen, H. D., Demmel, J., Kahan, W., Sen, K., Bailey, D. H., Iancu, C., and Hough, D. (2013). Precimonious. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on - SC ’13, pages 1–12, New York, New York, USA. ACM Press.; Salehi, M., Tavana, M. K., Rehman, S., Kriebel, F., Shafique, M., Ejlali, A., and Henkel, J. (2015). DRVS: Power-efficient reliability management through Dynamic Redundancy and Voltage Scaling under variations. In 2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pages 225–230. IEEE.; Samadi, M., Lee, J., Jamshidi, D. A., Hormati, A., and Mahlke, S. (2013). SAGE: Self-tuning approximation for graphics engines. MICRO 2013 - Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, pages 13–24.; Sampson, A. (2015). Hardware and Software for Approximate Computing. PhD thesis, University of Washington.; Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., and Grossman, D. (2011). EnerJ: approximate data types for safe and general low-power computation. In Proceedings of the 32nd ACM SIGPLAN conference on Programming language design and implementation - PLDI ’11, page 164, New York, New York, USA. ACM Press.; Sampson, A., Nelson, J., Strauss, K., and Ceze, L. (2014). Approximate Storage in Solid-State Memories. ACM Transactions on Computer Systems, 32(3):1–23.; Sampson, A., Ransford, B., and Ceze, L. (2015). ACCEPT: A Programmer-Guided Compiler Framework for Practical Approximate Computing. University of Washington Technical Report UW-CSE-15-01.; Sanchez, A., Entrena, L., and Kastensmidt, F. (2018). Approximate TMR for selective error mitigation in FPGAs based on testability analysis. In 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pages 112–119. IEEE.; Sanchez-Clemente, A. J., Entrena, L., and Garcia-Valderas, M. (2016). Partial TMR in FPGAs Using Approximate Logic Circuits. IEEE Transactions on Nuclear Science, 63(4):2233–2240.; Shi, Q., Hoffmann, H., and Khan, O. (2015). A Cross-Layer Multicore Architecture to Tradeoff Program Accuracy and Resilience Overheads. IEEE Computer Architecture Letters, 14(2):85–89.; Shivakumar, P., Kistler, M. D., Keckler, S. W., Burger, D. C., and Alvisi, L. (2002). Modeling the effect of technology trends on the soft error rate of combinational logic. Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on, pages 389–398.; Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., and Rinard, M. (2011). Managing performance vs. accuracy trade-offs with loop perforation. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software engineering - SIGSOFT/FSE ’11, page 124, New York, New York, USA. ACM Press.; Stanley-Marbell, P., Alaghi, A., Carbin, M., Darulova, E., Dolecek, L., Gerstlauer, A., Gillani, G., Jevdjic, D., Moreau, T., Cacciotti, M., Daglis, A., Jerger, N. E., Falsafi, B., Misailovic, S., Sampson, A., and Zufferey, D. (2018). Exploiting errors for efficiency: A survey from circuits to algorithms.; Taher, F. N., Callenes-Sloan, J., and Schafer, B. C. (2018). A Machine Learning based Hard Fault Recuperation Model for Approximate Hardware Accelerators. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6. IEEE.; Texas Instruments, I. (2023). Msp430 ultra-low-power mcus.; Tiwari, V., Malik, S., and Wolfe, A. (1994). Power analysis of embedded software: a first step towards software power minimization. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2(4):437–445.; Tofallis, C. (2015). A better measure of relative prediction accuracy for model selection and model estimation. Journal of the Operational Research Society, 66(8):1352–1362.; Traiola, M., Echavarria, J., Bosio, A., Teich, J., and O’Connor, I. (2021). Design Space Exploration of Approximation-Based Quadruple Modular Redundancy Circuits. In IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD, volume 2021-November, pages 1–9. IEEE.; Tsuchiya, T., Ootsu, K., Yokota, T., and Kojima, S. (2022). Assembly code translation from arm64 to risc-v. Proceedings - 2022 23rd ACIS International Summer Virtual Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD-Summer 2022, pages 68–73.; Van Leussen, M., Huisken, J., Wang, L., Jiao, H., and Pineda De Gyvez, J. (2017). Reconfigurable Support Vector Machine Classifier with Approximate Computing. In 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 13–18. IEEE.; Venkataramani, S., Chippa, V. K., Chakradhar, S. T., Roy, K., and Raghunathan, A. (2013). Quality programmable vector processors for approximate computing. In 2013 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1–12.; Venkataramani, S., Sabne, A., Kozhikkottu, V., Roy, K., and Raghunathan, A. (2012). SALSA: Systematic logic synthesis of approximate circuits. In Proceedings of the 49th Annual Design Automation Conference on - DAC ’12, page 796, New York, New York, USA. ACM Press.; Vera, X., Abella, J., Carretero, J., and González, A. (2009). Selective replication. ACM Transactions on Computer Systems, 27(4):1–30.; Wang, Y., Dong, J., Xu, Q., and Qu, G. (2021). Ftapprox: A fault-tolerant approximate arithmetic computing data format. Proceedings -Design, Automation and Test in Europe, DATE, 2021-February:1548–1551.; Xu, Q., Mytkowicz, T., and Kim, N. S. (2016). Approximate Computing: A Survey. IEEE Design and Test, 33(1):8–22.; Yang, Z., Jain, A., Liang, J., Han, J., and Lombardi, F. (2013). Approximate XOR/XNOR-based adders for inexact computing. In 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), pages 690–693. IEEE.; Yanmei Li, Dongmei Li, and Zhihua Wang (2000). A new approach to detect-mitigate-correct radiation-induced faults for SRAM-based FPGAs in aerospace application. In Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093), volume 1, pages 588–594. IEEE.; Yazdanbakhsh, A., Mahajan, D., Esmaeilzadeh, H., and Lotfi-Kamran, P. (2017). AxBench: A Multiplatform Benchmark Suite for Approximate Computing. IEEE Design & Test, 34(2):60–68.; Yen-Kuang Chen, Chhugani, J., Dubey, P., Hughes, C., Daehyun Kim, Kumar, S., Lee, V., Nguyen, A., and Smelyanskiy, M. (2008). Convergence of Recognition, Mining, and Synthesis Workloads and Its Implications. Proceedings of the IEEE, 96(5):790–807.; Zhang, Q., Wang, T., Tian, Y., Yuan, F., and Xu, Q. (2015). ApproxANN: An Approximate Computing Framework for Artificial Neural Network. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015, pages 701–706, New Jersey. IEEE Conference Publications.; https://repositorio.unal.edu.co/handle/unal/85008; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
18
Authors:
Contributors:
Source: DTIC AND NTIS
Subject Terms: Computer Programming and Software, Computer Systems, DATA BASES, SOFTWARE ENGINEERING, INTEGRATION, PARALLEL PROCESSING, REQUIREMENTS, ENVIRONMENTS, DISTRIBUTED DATA PROCESSING, PROTOTYPES, WINDOWS, BENEFITS, LIFE CYCLES, LABORATORIES, MACHINES, FEASIBILITY STUDIES, PHASE, PREDICTIONS, TOOLS, COMPUTERS, COMPARISON, COMPUTER ARCHITECTURE, PAWS(PARALLEL ASSESSMENT WINDOW SYSTEM), PPROTO(PARALLEL PROTO), PE63728F, WURL252703PA
File Description: text/html
-
19
Authors: et al.
Contributors: et al.
Subject Terms: 000 - Ciencias de la computación, información y obras generales, Software Architecture, Architectures Evolution, Service-Oriented Architectures, Microservices Architectures, Architectural Style, Architectural View, Architecture Description Language, Model-Driven Engineering, Arquitectura de Software, Evolución de Arquitecturas, Arquitecturas Orientadas a Servicios, Arquitecturas de Microservicios, Estilo Arquitectónico, Vista Arquitectónica, Lenguaje de Descripción de Arquitecturas, Ingeniería de Software Dirigida por Modelos, Procesamiento de datos, Data processing, Programación informática, Computer programming
File Description: 103 páginas; application/pdf
Relation: Eclipse Modeling Framework. https://www.eclipse.org/modeling/emf/; Xtend. https://www.eclipse.org/xtend/; Xtext. https://www.eclipse.org/Xtext/; ACEVEDO, Cesar Augusto J.; GOMEZ Y JORGE, Juan P.; PATINO, Ivan R.: Methodology to transform a monolithic software into a microservice architecture. In: 2017 6th International Conference on Software Process Improvement (CIMPS), IEEE, oct 2017. – ISBN 978–1–5386–3230–7, 1–6; ALSHUQAYRAN, Nuha; ALI, Nour; EVANS, Roger: A Systematic Mapping Study in Microservice Architecture. In: 2016 IEEE 9th International Conference on Service-Oriented Computing and Applications (SOCA), IEEE, nov 2016. – ISBN 978–1–5090–4781–9, 44–51; BALALAIE, Armin; HEYDARNOORI, Abbas; JAMSHIDI, Pooyan: Microservices Architecture Enables DevOps: Migration to a Cloud-Native Architecture. In: IEEE Software 33 (2016), may, Nr. 3, 42–52. http://dx.doi.org/10.1109/MS.2016.64. – DOI 10.1109/MS.2016.64; BARAIS, Olivier; LE MEUR, Anne F.; DUCHIEN, Laurence; LAWALL, Julia: Software Architecture Evolution. Version: 2008. http://dx.doi.org/10.1007/978-3-540-76440-3_10. In: Software Evolution. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. – DOI 10.1007/978–3–540–76440–3_10, 233–262; BARNES, Jeffrey M.; GARLAN, David; SCHMERL, Bradley: Evolution styles: foundations and models for software architecture evolution. In: Software & Systems Modeling 13 (2014), may, Nr. 2, S. 649–678. http://dx.doi.org/10.1007/s10270-012-0301-9. – DOI 10.1007/s10270–012–0301–9; BASS, Len.; CLEMENTS, Paul; KAZMAN, Rick.: Software architecture in practice. Addison-Wesley, 2013. – 589 S. – ISBN 9780321815736; BENGURIA, Gorka; LARRUCEA, Xabier; ELVESÆTER, Brian; NEPLE, Tor; BEARDSMORE, Anthony; FRIESS, Michael: A Platform Independent Model for Service Oriented Architectures. In: Enterprise Interoperability (2007), S. 23–32. http://dx.doi.org/10.1007/978-1-84628-714-5_3. – DOI 10.1007/978–1–84628–714–5_3; BERRIO-CHARRY, Eduardo; VERGARA-VARGAS, Jeisson; UMANA-ACOSTA, Henry: A Component-Based Evolution Model for Service-Based Software Architectures. In: 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS), IEEE, oct 2020. – ISBN 978–1–7281–6578–3, 111–115; BETTINI, Lorenzo: Implementing Domain-Specific Languages with Xtext and Xtend. 2nd Editio. Packt Publishing, 2016. – ISBN 978–1–78646–496–5; BRAMBILLA, Marco; CABOT, Jordi; WIMMER, Manuel: Model-Driven Software Engineering in Practice. Second. 2017. http://dx.doi.org/10.2200/S00751ED2V01Y201701SWE004. – ISBN 9781627059886; BREIVOLD, Hongyu P.; CRNKOVIC, Ivica; ERIKSSON, Peter J.: Analyzing Software Evolvability. In: 2008 32nd Annual IEEE International Computer Software and Applications Conference, IEEE, 2008. – ISBN 978–0–7695–3262–2, 327–330; LARSSON, Magnus: A systematic review of software architecture evolution research. In: Information and Software Technology 54 (2012), jan, Nr. 1, 16–40. http://dx.doi.org/10.1016/j.infsof.2011.06.002. – DOI 10.1016/j.infsof.2011.06.002; BRITTO, Ricardo; SMITE, Darja; DAMM, Lars-Ola: Software Architects in Large-Scale Distributed Projects: An Ericsson Case Study. In: IEEE Software 33 (2016), nov, Nr. 6, 48–55. http://dx.doi.org/10.1109/MS.2016.146. – DOI 10.1109/MS.2016.146. – ISSN 0740–7459; BUCCHIARONE, Antonio; DRAGONI, Nicola; DUSTDAR, Schahram; LARSEN, Stephan T.; MAZZARA, Manuel: From Monolithic to Microservices: An Experience Report from the Banking Domain. In: IEEE Software 35 (2018), may, Nr. 3, 50–55. http://dx.doi.org/10.1109/MS.2018.2141026. – DOI 10.1109/MS.2018.2141026. – ISSN 0740–7459; CHEN, Rui; LI, Shanshan; LI, Zheng: From Monolith to Microservices: A Dataflow-Driven Approach. In: 2017 24th Asia-Pacific Software Engineering Conference (APSEC), IEEE, dec 2017. – ISBN 978–1–5386–3681–7, 466–475; CLEMENTS, P.; BACHMANN, F.; BASS, L.; GARLAN, D.; IVERS, J.; LITTLE, R.; NORD, R.; STAFFORD, J.: Documenting software architectures: views and beyond. Addison-Wesley, 2011. – 582 S. http://dx.doi.org/10.1109/icse.2003.1201264. http://dx.doi.org/10.1109/icse.2003.1201264. – ISBN 0321552687; DI FRANCESCO, P.; MALAVOLTA, I.; LAGO, P.: Research on Architecting Microservices: Trends, Focus, and Potential for Industrial Adoption. In: Proceedings - 2017 IEEE International Conference on Software Architecture, ICSA 2017, 2017. – ISBN 9781509057290, S. 21–30; DI FRANCESCO, Paolo; LAGO, Patricia; MALAVOLTA, Ivano: Architecting with microservices: A systematic mapping study. In: Journal of Systems and Software 150 (2019), apr, S. 77–97. http://dx.doi.org/10.1016/j.jss.2019.01.001. – DOI 10.1016/j.jss.2019.01.001. – ISSN 01641212; ERL, Thomas.: Service-oriented architecture : concepts, technology, and design. Prentice Hall Professional Technical Reference, 2005. – 760 S. https://www.oreilly.com/library/view/service-oriented-architecture-concepts/0131858580/. – ISBN 0131858580; FAN, Chen-Yuan; MA, Shang-Pin: Migrating Monolithic Mobile Application to Microservice Architecture: An Experiment Report. In: 2017 IEEE International Conference on AI & Mobile Services (AIMS), IEEE, jun 2017. – ISBN 978–1–5386–1999–5, 109–112; FERNANDO, Erick; TOURIANO, Derist; RICO: Impact of Service-Oriented Architecture adoption in information system. In: 2015 2nd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), IEEE, oct 2015. – ISBN 978–1–4799–9861–6, 52–55; FOWLER, Martin; PARSONS, Rebecca: Domain-Specific Languages. Addison-Wesley Professional, 2010. – ISBN 978–0321712943; FRANCESCO, Paolo D.: Architecting Microservices. In: 2017 IEEE International Conference on Software Architecture Workshops (ICSAW), IEEE, apr 2017. – ISBN 978–1–5090–4793–2, 224–229; FURDA, Andrei; FIDGE, Colin; ZIMMERMANN, Olaf; KELLY, Wayne; BARROS, Alistair: Migrating Enterprise Legacy Source Code to Microservices: On Multitenancy, Statefulness, and Data Consistency. In: IEEE Software 35 (2018), may, Nr. 3, 63–72. http://dx.doi.org/10.1109/MS.2017.440134612. – DOI 10.1109/MS.2017.440134612. – ISSN 0740–7459; GODFREY, Michael W.; GERMAN, Daniel M.: The past, present, and future of software evolution. In: 2008 Frontiers of Software Maintenance, IEEE, sep 2008. – ISBN 978–1–4244–2654–6, 129–138; GOUIGOUX, Jean-Philippe; TAMZALIT, Dalila: From Monolith to Microservices: Lessons Learned on an Industrial Migration to a Web Oriented Architecture. In: 2017 IEEE International Conference on Software Architecture Workshops (ICSAW), IEEE, apr 2017. – ISBN 978–1–5090–4793–2, 62–65; GRANCHELLI, Giona; CARDARELLI, Mario; FRANCESCO, Paolo D.; MALAVOLTA, Ivano; IOVINO, Ludovico; SALLE, Amleto D.: Towards recovering the software architecture of microservice-based systems. In: Proceedings - 2017 IEEE International Conference on Software Architecture Workshops, ICSAW 2017: Side Track Proceedings, Institute of Electrical and Electronics Engineers Inc., jun 2017. – ISBN 9781509047932, S. 46–53; HASSAN, Adel; OUSSALAH, Mourad: Meta-Evolution Style for Software Architecture Evolution. Version: 2016. http://dx.doi.org/10.1007/978-3-662-49192-8_39. 2016. – DOI 10.1007/978–3–662–49192–8_39, S. 478–489; HASSAN, Sara; BAHSOON, Rami: Microservice Ambients: An Architectural Meta-Modelling Approach for Microservice Granularity. In: 2017 IEEE International Conference on Software Architecture (ICSA), IEEE, apr 2017. – ISBN 978–1–5090–5729–0, S. 1–10; IEEE COMPUTER SOCIETY. SOFTWARE ENGINEERING STANDARDS COMMITTEE.; INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS.; IEEE-SA STANDARDS BOARD.: IEEE recommended practice for architectural description of software-intensive systems. Institute of Electrical and Electronics Engineers, 2000. – 23 S. https://ieeexplore-ieee-org.ezproxy.unal.edu.co/document/875998. – ISBN 0738125180; INDRASIRI, Kasun; SIRIWARDENA, Prabath: Microservices for the Enterprise. 1st Editio. Berkeley, CA : Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3858-5. http://dx.doi.org/10.1007/978-1-4842-3858-5. – ISBN 978–1–4842–3857–8; JAMMES, F.; SMIT, H.: Service-Oriented Paradigms in Industrial Automation. In: IEEE Transactions on Industrial Informatics 1 (2005), feb, Nr. 1, 62–70. http://dx.doi.org/10.1109/TII.2005.844419. – DOI 10.1109/TII.2005.844419. – ISSN 1551–3203; JIA, Xiangyang; YING, Shi; ZHANG, Tao; CAO, Honghua; XIE, Dan: A new architecture description language for service-oriented architecture. In: Proceedings of the 6th International Conference on Grid and Cooperative Computing, GCC 2007, 2007. – ISBN 0769528716, S. 96–103; SANTAMARIA, Izaskun; COLOMO-PALACIOS, Ricardo; EBERT, Christof: Microservices. In: IEEE Software 35 (2018), may, Nr. 3, 96–100. http://dx.doi.org/10.1109/MS.2018.2141030. – DOI 10.1109/MS.2018.2141030. – ISSN 0740–7459; LEWIS, James; FOWLER, Martin: Microservices. https://martinfowler.com/articles/microservices.html. Version: 2014; LIN, Jyhjong; LIN, Lendy C.; HUANG, Shiche: Migrating web applications to clouds with microservice architectures. In: 2016 International Conference on Applied System Innovation (ICASI), IEEE, may 2016. – ISBN 978–1–4673–9888–6, 1–4; MAZLAMI, G.; CITO, J.; LEITNER, P.: Extraction of Microservices from Monolithic Software Architectures. In: Proceedings - 2017 IEEE 24th International Conference on Web Services, ICWS 2017, 2017. – ISBN 9781538607527, S. 524–531; MAZZARA, Manuel; GIARETTA, Alberto; DUSTDAR, Schahram: Microservices: Migration of a Mission Critical System. In: IEEE Transactions on Services Computing (2018), 1–1. http://dx.doi.org/10.1109/TSC. 2018.2889087. – DOI 10.1109/TSC.2018.2889087. – ISSN 1939–1374; MEDVIDOVIC, N.; TAYLOR, R.N.: A classification and comparison framework for software architecture description languages. In: IEEE Transactions on Software Engineering 26 (2000), Nr. 1, 70–93. http://dx.doi.org/10.1109/32.825767. – DOI 10.1109/32.825767; NEWMAN, Sam: Building microservices : designing fine-grained systems. 2015. – ISBN 9781491950357; NEWMAN, Sam; O’REILLY MEDIA (Hrsg.): Monolith to Microservices: Evolutionary Patterns to Transform Your Monolith. 1st Editio. 2019. – 272 S. – ISBN 978–1492047841; OMG: Service oriented architecture Modeling Language (SoaML) Specification. In: Language (2012), Nr. March, S. 1–144; OQUENDO, Flavio: ð-ADL: An Architecture Description Language based on the Higher-Order Typed ð-Calculus for Specifying Dynamic and Mobile Software Architectures. In: ACM SIGSOFT Software Engineering Notes 29 (2004), Nr. 3, S. 1. http://dx.doi.org/10.1145/986710.986728. – DOI 10.1145/986710.986728. – ISSN 01635948; OQUENDO, Flavio: Formal approach for the development of business processes in terms of Service-Oriented Architectures using ð-ADL. In: Proceedings of the 4th IEEE International Symposium on Service-Oriented System Engineering (2008), Nr. i, S. 154–159. http://dx.doi.org/10.1109/SOSE.2008.38. – DOI 10.1109/SOSE.2008.38. ISBN 9780769534992; PAPAPOSTOLU, Anastasios; BIROV, Dimitar: Structured component and connector communication. In: ACM International Conference Proceeding Series Part F1309 (2017). http://dx.doi.org/10.1145/3136273.3136291. – DOI 10.1145/3136273.3136291. ISBN 9781450352857; PAPAPOSTOLU, Tasos: ìóADL: An Architecture Description Language for MicroServices. In: TAIAR R., COLSON S., CHOPLIN A., Ahram T. (Hrsg.): 1st International Conference on Human Interaction and Emerging Technologies, IHIET 2019, Springer Verlag, 2020. – ISBN 978–303025628–9, S. 885–889; PAPAPOSTOLU, Tasos; BIROV, Dimitar: Towards a Methodology for Designing Microservice Architectures Using ìóADL. In: Lecture Notes in Business Information Processing Bd. 319, Springer Verlag, 2018. – ISBN 9783319942131, S. 421–431; PAUTASSO, Cesare; AMUNDSEN, Mike; JOSUTTIS, Nicolai: Microservices in Practice, Part 1: Reality Check and Service Design. In: IEEE Software 34 (2017), jan, Nr. 1, 91–98. http://dx.doi.org/10.1109/MS.2017.24. – DOI 10.1109/MS.2017.24. – ISSN 0740–7459; PERRY, Dewayne E.; WOLF, Alexander L.: Foundations for the study of software architecture. In: ACM SIGSOFT Software Engineering Notes 17 (1992), oct, Nr. 4, 40–52. http://dx.doi.org/10.1145/141874.141884. – DOI 10.1145/141874.141884; RADEMACHER, Florian; SACHWEH, Sabine; ZUNDORF, Albert: Differences between Model-Driven Development of Service-Oriented and Microservice Architecture. In: 2017 IEEE International Conference on Software Architecture Workshops (ICSAW), IEEE, apr 2017. – ISBN 978–1–5090–4793–2, 38–45; RICHARDS, Mark.: Microservices vs. Service-Oriented Architecture. First Edit. O’Reilly Media, Inc, 2016. – 57 S. – ISBN 9781491975657; RICHARDS, Mark; FORD, Neal; MEDIA, O’Reilly (Hrsg.): Fundamentals of Software Architecture: An Engineering Approach. 1st Editio. 2020. – 432 S. – ISBN 978–1492043454; RICHARDSON, Chris: Microservices Patterns. Manning, 2019. – ISBN 9781617294549; ROZANSKI, Nick.; WOODS, Eoin.: Software systems architecture : working with stakeholders using viewpoints and perspectives. Addison-Wesley, 2005. – 546 S. – ISBN 0321112296; SADOU, N.; TAMZALIT, D.; OUSSALAH, M.: A unified Approach for Software Architecture Evolution at different abstraction levels. In: Eighth International Workshop on Principles of Software Evolution (IWPSE’05), IEEE. – ISBN 0–7695–2349–8, 65–70; SCHALLES, Christian: Usability evaluation of modeling languages: An empirical research study, Diss., 2013. http://dx.doi.org/10.1007/978-3-658-00051-6. – DOI 10.1007/978–3–658–00051–6. – 1–181 S; SCHMIDT, Roger A.; THIRY, Marcello: Microservices identification strategies : A review focused on Model-Driven Engineering and Domain Driven Design approaches. In: Iberian Conference on Information Systems and Technologies, CISTI Bd. 2020-June, IEEE Computer Society, jun 2020. – ISBN 9789895465903; TAIBI, Davide; LENARDUZZI, Valentina; PAHL, Claus: Continuous architecting with microservices and DevOps: A systematic mapping study. In: Communications in Computer and Information Science Bd. 1073, Springer Verlag, 2019. – ISBN 9783030291921, S. 126–151; TAYLOR, Richard N.; MEDVIDOVIÇ, Nenad.; DASHOFY, Eric M. (Eric M.: Software architecture : foundations, theory, and practice. Wiley, 2010. – 712 S. – ISBN 0470167742; TERZIÇ, Branko; DIMITRIESKI, Vladimir; KORDIÇ, Slavica; MILOSAVLJEVIÇ, Gordana; LUKOVIÇ, Ivan: Development and evaluation of MicroBuilder: a Model-Driven tool for the specification of REST Microservice Software Architectures. In: Enterprise Information Systems 12 (2018), oct, Nr. 8-9, S. 1034–1057. http://dx.doi.org/10.1080/17517575.2018.1460766. – DOI 10.1080/17517575.2018.1460766. – ISSN 17517583; THE OPEN GROUP: Microservices Architecture – SOA and MSA. http://www.opengroup.org/soa/source-book/msawp/p3.htm; UMANA-ACOSTA, Henry: A model-driven deployment approach for scaling distributed software architectures on a cloud computing platform. In: Proceedings of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS Bd. 2017-Novem, IEEE Computer Society, apr 2018. – ISBN 9781538645703, S. 99–103; VERGARA-VARGAS, Jeisson A.: A model-driven deployment approach for applying the performance and scalability perspective from a set of software architecture styles, Universidad Nacional de Colombia, Diss., 2017. http://bdigital.unal.edu.co/61128/; WANG, Quanyu; LV, Guobin; SHUAI, Yun: SOADL-EH: Service-oriented architecture description language supporting exception handling. In: Advanced Materials Research 433-440 (2012), S. 3500–3509. http://dx.doi.org/10.4028/www.scientific.net/AMR.433-440.3500. – DOI 10.4028/www.scientific.net/AMR.433–440.3500. – ISBN 9783037853191; WASEEM, Muhammad; LIANG, Peng: Microservices Architecture in DevOps. In: 2017 24th Asia-Pacific Software Engineering Conference Workshops (APSECW), IEEE, dec 2017. – ISBN 978–1–5386–2649–8, S. 13–14; LIANG, Peng; SHAHIN, Mojtaba: A Systematic Mapping Study on Microservices Architecture in DevOps. In: Journal of Systems and Software 170 (2020), dec. http://dx.doi.org/10.1016/j.jss.2020.110798. – DOI 10.1016/j.jss.2020.110798. – ISSN 01641212; WILLIAMS, Byron J.; CARVER, Jeffrey C.: Characterizing software architecture changes: A systematic review. In: Information and Software Technology 52 (2010), jan, Nr. 1, 31–51. http://dx.doi.org/10.1016/j.infsof.2009.07.002. – DOI 10.1016/j.infsof.2009.07.002; YUGOPUSPITO, Pujianto; PANDUWINATA, Frans; SUTRISNO, Sutrisno: Microservices architecture: Case on the migration of reservation-based parking system. In: 2017 IEEE 17th International Conference on Communication Technology (ICCT), IEEE, oct 2017. – ISBN 978–1–5090–3944–9, 1827–1831; https://repositorio.unal.edu.co/handle/unal/79794; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
20
Authors: et al.
Contributors: et al.
Subject Terms: MQW MODULATORS, COMPUTER VISION, SILICON CMOS, IMPLEMENTATION, SYSTEMS, ISSUES
Time: 45
Relation: Applied Optics, Optical Society of America, Volume 38, Issue 11,1999, Pages 2270-2281; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/71858
Nájsť tento článok vo Web of Science
Full Text Finder