Search Results - Variational Autoencoder, The Cancer Genome Atlas

Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Source: Unravelling Tumour Biology In Ovarian Cancer With Precision Imaging
    Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018 Jul;68(4):284-296. doi: 10.3322/caac.21456. Epub 2018 May 29.
    Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, Copeland LJ, Walker JL, Burger RA; Gynecologic Oncology Group. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 2006 Jan 5;354(1):34-43. doi: 10.1056/NEJMoa052985.
    Vergote I, Trope CG, Amant F, Kristensen GB, Ehlen T, Johnson N, Verheijen RH, van der Burg ME, Lacave AJ, Panici PB, Kenter GG, Casado A, Mendiola C, Coens C, Verleye L, Stuart GC, Pecorelli S, Reed NS; European Organization for Research and Treatment of Cancer-Gynaecological Cancer Group; NCIC Clinical Trials Group. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N Engl J Med. 2010 Sep 2;363(10):943-53. doi: 10.1056/NEJMoa0908806.
    van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM, de Hingh IHJT, van der Velden J, Arts HJ, Massuger LFAG, Aalbers AGJ, Verwaal VJ, Kieffer JM, Van de Vijver KK, van Tinteren H, Aaronson NK, Sonke GS. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. N Engl J Med. 2018 Jan 18;378(3):230-240. doi: 10.1056/NEJMoa1708618.
    Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014 Oct 11;384(9951):1376-88. doi: 10.1016/S0140-6736(13)62146-7. Epub 2014 Apr 21.
    Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011 Jun 29;474(7353):609-15. doi: 10.1038/nature10166.
    Cooke SL, Brenton JD. Evolution of platinum resistance in high-grade serous ovarian cancer. Lancet Oncol. 2011 Nov;12(12):1169-74. doi: 10.1016/S1470-2045(11)70123-1.
    McPherson A, Roth A, Laks E, Masud T, Bashashati A, Zhang AW, Ha G, Biele J, Yap D, Wan A, Prentice LM, Khattra J, Smith MA, Nielsen CB, Mullaly SC, Kalloger S, Karnezis A, Shumansky K, Siu C, Rosner J, Chan HL, Ho J, Melnyk N, Senz J, Yang W, Moore R, Mungall AJ, Marra MA, Bouchard-Cote A, Gilks CB, Huntsman DG, McAlpine JN, Aparicio S, Shah SP. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat Genet. 2016 Jul;48(7):758-67. doi: 10.1038/ng.3573. Epub 2016 May 16.
    Burrell RA, Swanton C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol Oncol. 2014 Sep 12;8(6):1095-111. doi: 10.1016/j.molonc.2014.06.005. Epub 2014 Jul 10.
    Hoogstraat M, de Pagter MS, Cirkel GA, van Roosmalen MJ, Harkins TT, Duran K, Kreeftmeijer J, Renkens I, Witteveen PO, Lee CC, Nijman IJ, Guy T, van 't Slot R, Jonges TN, Lolkema MP, Koudijs MJ, Zweemer RP, Voest EE, Cuppen E, Kloosterman WP. Genomic and transcriptomic plasticity in treatment-naive ovarian cancer. Genome Res. 2014 Feb;24(2):200-11. doi: 10.1101/gr.161026.113. Epub 2013 Nov 12.
    Lee JY, Yoon JK, Kim B, Kim S, Kim MA, Lim H, Bang D, Song YS. Tumor evolution and intratumor heterogeneity of an epithelial ovarian cancer investigated using next-generation sequencing. BMC Cancer. 2015 Feb 26;15:85. doi: 10.1186/s12885-015-1077-4.
    Schwarz RF, Ng CK, Cooke SL, Newman S, Temple J, Piskorz AM, Gale D, Sayal K, Murtaza M, Baldwin PJ, Rosenfeld N, Earl HM, Sala E, Jimenez-Linan M, Parkinson CA, Markowetz F, Brenton JD. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med. 2015 Feb 24;12(2):e1001789. doi: 10.1371/journal.pmed.1001789. eCollection 2015 Feb.
    Bashashati A, Ha G, Tone A, Ding J, Prentice LM, Roth A, Rosner J, Shumansky K, Kalloger S, Senz J, Yang W, McConechy M, Melnyk N, Anglesio M, Luk MT, Tse K, Zeng T, Moore R, Zhao Y, Marra MA, Gilks B, Yip S, Huntsman DG, McAlpine JN, Shah SP. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J Pathol. 2013 Sep;231(1):21-34. doi: 10.1002/path.4230.
    Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012 Jan 18;481(7381):306-13. doi: 10.1038/nature10762.
    Zhang AW, McPherson A, Milne K, Kroeger DR, Hamilton PT, Miranda A, Funnell T, Little N, de Souza CPE, Laan S, LeDoux S, Cochrane DR, Lim JLP, Yang W, Roth A, Smith MA, Ho J, Tse K, Zeng T, Shlafman I, Mayo MR, Moore R, Failmezger H, Heindl A, Wang YK, Bashashati A, Grewal DS, Brown SD, Lai D, Wan ANC, Nielsen CB, Huebner C, Tessier-Cloutier B, Anglesio MS, Bouchard-Cote A, Yuan Y, Wasserman WW, Gilks CB, Karnezis AN, Aparicio S, McAlpine JN, Huntsman DG, Holt RA, Nelson BH, Shah SP. Interfaces of Malignant and Immunologic Clonal Dynamics in Ovarian Cancer. Cell. 2018 Jun 14;173(7):1755-1769.e22. doi: 10.1016/j.cell.2018.03.073. Epub 2018 May 10.
    Jimenez-Sanchez A, Memon D, Pourpe S, Veeraraghavan H, Li Y, Vargas HA, Gill MB, Park KJ, Zivanovic O, Konner J, Ricca J, Zamarin D, Walther T, Aghajanian C, Wolchok JD, Sala E, Merghoub T, Snyder A, Miller ML. Heterogeneous Tumor-Immune Microenvironments among Differentially Growing Metastases in an Ovarian Cancer Patient. Cell. 2017 Aug 24;170(5):927-938.e20. doi: 10.1016/j.cell.2017.07.025.
    Jimenez-Sanchez A, Cybulska P, Mager KL, Koplev S, Cast O, Couturier DL, Memon D, Selenica P, Nikolovski I, Mazaheri Y, Bykov Y, Geyer FC, Macintyre G, Gavarro LM, Drews RM, Gill MB, Papanastasiou AD, Sosa RE, Soslow RA, Walther T, Shen R, Chi DS, Park KJ, Hollmann T, Reis-Filho JS, Markowetz F, Beltrao P, Vargas HA, Zamarin D, Brenton JD, Snyder A, Weigelt B, Sala E, Miller ML. Unraveling tumor-immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nat Genet. 2020 Jun;52(6):582-593. doi: 10.1038/s41588-020-0630-5. Epub 2020 Jun 1.
    Frey MK, Pothuri B. Homologous recombination deficiency (HRD) testing in ovarian cancer clinical practice: a review of the literature. Gynecol Oncol Res Pract. 2017 Feb 22;4:4. doi: 10.1186/s40661-017-0039-8. eCollection 2017.
    Yildirim N, Akman L, Acar K, Demir S, Ozkan S, Alan N, Zekioglu O, Terek MC, Ozdemir N, Ozsaran A. Do tumor-infiltrating lymphocytes really indicate favorable prognosis in epithelial ovarian cancer? Eur J Obstet Gynecol Reprod Biol. 2017 Aug;215:55-61. doi: 10.1016/j.ejogrb.2017.06.005. Epub 2017 Jun 4.
    Ovarian Tumor Tissue Analysis (OTTA) Consortium; Goode EL, Block MS, Kalli KR, Vierkant RA, Chen W, Fogarty ZC, Gentry-Maharaj A, Toloczko A, Hein A, Bouligny AL, Jensen A, Osorio A, Hartkopf A, Ryan A, Chudecka-Glaz A, Magliocco AM, Hartmann A, Jung AY, Gao B, Hernandez BY, Fridley BL, McCauley BM, Kennedy CJ, Wang C, Karpinskyj C, de Sousa CB, Tiezzi DG, Wachter DL, Herpel E, Taran FA, Modugno F, Nelson G, Lubinski J, Menkiszak J, Alsop J, Lester J, Garcia-Donas J, Nation J, Hung J, Palacios J, Rothstein JH, Kelley JL, de Andrade JM, Robles-Diaz L, Intermaggio MP, Widschwendter M, Beckmann MW, Ruebner M, Jimenez-Linan M, Singh N, Oszurek O, Harnett PR, Rambau PF, Sinn P, Wagner P, Ghatage P, Sharma R, Edwards RP, Ness RB, Orsulic S, Brucker SY, Johnatty SE, Longacre TA, Ursula E, McGuire V, Sieh W, Natanzon Y, Li Z, Whittemore AS, Anna A, Staebler A, Karlan BY, Gilks B, Bowtell DD, Hogdall E, Candido dos Reis FJ, Steed H, Campbell IG, Gronwald J, Benitez J, Koziak JM, Chang-Claude J, Moysich KB, Kelemen LE, Cook LS, Goodman MT, Garcia MJ, Fasching PA, Kommoss S, Deen S, Kjaer SK, Menon U, Brenton JD, Pharoah PDP, Chenevix-Trench G, Huntsman DG, Winham SJ, Kobel M, Ramus SJ. Dose-Response Association of CD8+ Tumor-Infiltrating Lymphocytes and Survival Time in High-Grade Serous Ovarian Cancer. JAMA Oncol. 2017 Dec 1;3(12):e173290. doi: 10.1001/jamaoncol.2017.3290.
    Dai D, Liu L, Huang H, Chen S, Chen B, Cao J, Luo X, Wang F, Luo R, Liu J. Nomograms to Predict the Density of Tumor-Infiltrating Lymphocytes in Patients With High-Grade Serous Ovarian Cancer. Front Oncol. 2021 Feb 25;11:590414. doi: 10.3389/fonc.2021.590414. eCollection 2021.
    Lou E, Vogel RI, Hoostal S, Klein M, Linden MA, Teoh D, Geller MA. Tumor-Stroma Proportion as a Predictive Biomarker of Resistance to Platinum-Based Chemotherapy in Patients With Ovarian Cancer. JAMA Oncol. 2019 Aug 1;5(8):1222-1224. doi: 10.1001/jamaoncol.2019.1943.
    Qayyum A, Coakley FV, Westphalen AC, Hricak H, Okuno WT, Powell B. Role of CT and MR imaging in predicting optimal cytoreduction of newly diagnosed primary epithelial ovarian cancer. Gynecol Oncol. 2005 Feb;96(2):301-6. doi: 10.1016/j.ygyno.2004.06.054.
    Pannu HK, Bristow RE, Montz FJ, Fishman EK. Multidetector CT of peritoneal carcinomatosis from ovarian cancer. Radiographics. 2003 May-Jun;23(3):687-701. doi: 10.1148/rg.233025105.
    Avesani G, Arshad M, Lu H, Fotopoulou C, Cannone F, Melotti R, Aboagye E, Rockall A. Radiological assessment of Peritoneal Cancer Index on preoperative CT in ovarian cancer is related to surgical outcome and survival. Radiol Med. 2020 Aug;125(8):770-776. doi: 10.1007/s11547-020-01170-6. Epub 2020 Apr 1.
    Engbersen MP, Van' T Sant I, Lok C, Lambregts DMJ, Sonke GS, Beets-Tan RGH, van Driel WJ, Lahaye MJ. MRI with diffusion-weighted imaging to predict feasibility of complete cytoreduction with the peritoneal cancer index (PCI) in advanced stage ovarian cancer patients. Eur J Radiol. 2019 May;114:146-151. doi: 10.1016/j.ejrad.2019.03.007. Epub 2019 Mar 15.
    Tardieu M, Lakhman Y, Khellaf L, Cardoso M, Sgarbura O, Colombo PE, Crispin-Ortuzar M, Sala E, Goze-Bac C, Nougaret S. Assessing Histology Structures by Ex Vivo MR Microscopy and Exploring the Link Between MRM-Derived Radiomic Features and Histopathology in Ovarian Cancer. Front Oncol. 2022 Jan 19;11:771848. doi: 10.3389/fonc.2021.771848. eCollection 2021.
    Michielsen K, Vergote I, Op de Beeck K, Amant F, Leunen K, Moerman P, Deroose C, Souverijns G, Dymarkowski S, De Keyzer F, Vandecaveye V. Whole-body MRI with diffusion-weighted sequence for staging of patients with suspected ovarian cancer: a clinical feasibility study in comparison to CT and FDG-PET/CT. Eur Radiol. 2014 Apr;24(4):889-901. doi: 10.1007/s00330-013-3083-8. Epub 2013 Dec 11.
    Zwanenburg A, Vallieres M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit MC, Dinapoli N, Dinh CV, Echegaray S, El Naqa I, Fedorov AY, Gatta R, Gillies RJ, Goh V, Gotz M, Guckenberger M, Ha SM, Hatt M, Isensee F, Lambin P, Leger S, Leijenaar RTH, Lenkowicz J, Lippert F, Losnegard A, Maier-Hein KH, Morin O, Muller H, Napel S, Nioche C, Orlhac F, Pati S, Pfaehler EAG, Rahmim A, Rao AUK, Scherer J, Siddique MM, Sijtsema NM, Socarras Fernandez J, Spezi E, Steenbakkers RJHM, Tanadini-Lang S, Thorwarth D, Troost EGC, Upadhaya T, Valentini V, van Dijk LV, van Griethuysen J, van Velden FHP, Whybra P, Richter C, Lock S. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020 May;295(2):328-338. doi: 10.1148/radiol.2020191145. Epub 2020 Mar 10.
    Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017 Dec;14(12):749-762. doi: 10.1038/nrclinonc.2017.141. Epub 2017 Oct 4.
    van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts HJWL. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017 Nov 1;77(21):e104-e107. doi: 10.1158/0008-5472.CAN-17-0339.
    Himoto Y, Veeraraghavan H, Zheng J, Zamarin D, Snyder A, Capanu M, Nougaret S, Vargas HA, Shitano F, Callahan M, Wang W, Sala E, Lakhman Y. Computed Tomography-Derived Radiomic Metrics Can Identify Responders to Immunotherapy in Ovarian Cancer. JCO Precis Oncol. 2019 Aug 15;3:PO.19.00038. doi: 10.1200/PO.19.00038. eCollection 2019.
    Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, James JA, Salto-Tellez M, Hamilton PW. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017 Dec 4;7(1):16878. doi: 10.1038/s41598-017-17204-5.
    Simidjievski N, Bodnar C, Tariq I, Scherer P, Andres Terre H, Shams Z, Jamnik M, Lio P. Variational Autoencoders for Cancer Data Integration: Design Principles and Computational Practice. Front Genet. 2019 Dec 11;10:1205. doi: 10.3389/fgene.2019.01205. eCollection 2019.
    Weigelt B, Vargas HA, Selenica P, Geyer FC, Mazaheri Y, Blecua P, Conlon N, Hoang LN, Jungbluth AA, Snyder A, Ng CKY, Papanastasiou AD, Sosa RE, Soslow RA, Chi DS, Gardner GJ, Shen R, Reis-Filho JS, Sala E. Radiogenomics Analysis of Intratumor Heterogeneity in a Patient With High-Grade Serous Ovarian Cancer. JCO Precis Oncol. 2019 Jun 6;3:PO.18.00410. doi: 10.1200/PO.18.00410. eCollection 2019. No abstract available.

  9. 9

    Authors: Jung, Sungwon1,2 (AUTHOR) sjung@gachon.ac.kr

    Source: Animal Cells & Systems. Dec2025, Vol. 29 Issue 1, p72-83. 12p.

    HTML Full Text PDF Full Text
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17

    File Description: xv, 46 páginas; application/pdf

    Relation: V. Moctezuma and Z. Patiño, “Cáncer de pulmón,” Anales de Radiología México, vol. 8, pp. 33–45, 2009.; E. Bender, “Epidemiology: The dominant malignancy,” Nature, vol. 513, pp. 52–53, 2014.; E. Kuhn, P. Morbini, and et. al., “Adenocarcinoma classification: patterns and prognosis,” Pathologica, vol. 110, pp. 5–11, 2018.; C. Underwood, A. Musick, and C. Glass, “Adenocarcinoma overview.” https://www.pathologyoutlines.com/topic/lungtumoradenocarcinoma.html, 2019. Online; accessed Jun 2022.; J. Rocca, “Understanding variational autoencoders (vaes).” https://towardsdatascience.com/understanding-variational-autoencoders-vaes- f70510919f73, 2019. Online; accessed Nov 2022.; A. Moreira, P. Ocampo, Y. Xia, and et. al., “A grading system for invasive pulmonary adenocarcinoma: A proposal from the international association for the study of lung cancer pathology committee,” J Thorac Oncol, vol. 15(10), pp. 1599–1610, 2020.; M. Amin and et. al., AJCC Cancer Staging Manual. 8th ed. New York, NY.: Springer, 2017.; H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, “Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.,” CA: a cancer journal for clinicians, vol. 71(3), p. 209–249, 2021.; M. Sˇuti ́c, A. Vuki ́c, J. Baranaˇsi ́c, A. Fo ̈rsti, F. Dˇzubur, M. Samarˇzija, and et al., “Diagnostic, predictive, and prognostic biomarkers in non-small cell lung cancer (nsclc) management,” J Pers Med., vol. 11, p. 1102, 2021.; R. Wilson, A. Ryerson, K. Zhang, and D. X., “Relative survival analysis using the centers for disease control and prevention’s national program of cancer registries surveil- lance system data, 2000-2007,” Journal of registry management, vol. 41, p. 72, 2014.; S. Blandin Knight, P. Crosbie, and et. al., “Progress and prospects of early detection in lung cancer,” Open biology, vol. 7, 2017.; Z. Wang, M. Li, and et. al., “Clinical and radiological characteristics of central pulmonary adenocarcinoma: a comparison with central squamous cell carcinoma and small cell lung cancer and the impact on treatment response,” OncoTargets and therapy 2018, vol. 11, 2018.; L. Osmani, F. Askin, E. Gabrielson, and Q. Li, “Current who guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (nsclc): Moving from targeted therapy to immunotherapy,” Semin Cancer Biol, vol. 52, p. 103–9, 2018.; N. Coudray and et. al., “Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning,” Nature Medicine, vol. 24, pp. 1559– 1567, 2018.; V. S. Viswanathan, P. Toro, and et. al., “The state of the art for artificial intelligence in lung digital pathology,” The Journal of pathology, vol. Advance online publication, 2022.; C. Zappa and S. A. Mousa, “Non-small cell lung cancer: current treatment and future advances,” Translational lung cancer research, vol. 5, pp. 288–300, 2016.; P. Bolaños and C. Chacón, “Escala patológica de gleason para el cáncer de prostata y sus modificaciones,” Medicina Legal de Costa Rica, vol. 34, pp. 237–243, 2017.; W. Travis, E. Brambilla, and K. Geisinger, “Histological grading in lung cancer: one system for all or separate systems for each histological type?,” European Respiratory Journal, vol. 47, pp. 720–723, 2016.; A. Gertych, Z. Swiderska-Chadaj, and et. al., “Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides,” Sci Rep, vol. 9, p. 1483, 2019.; J. Wei, L. Tafe, and Y. e. a. Linnik, “Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks,” Sci Rep, vol. 9, p. 3358, 2019.; M. Davidson, A. Gazdar, and B. Clarke, “The pivotal role of pathology in the management of lung cancer,” J Thorac Dis, vol. 5, 2013.; P. Russell, Z. Wainer, G. Wright, M. Daniels, M. Conron, and R. Williams, “Does lung adenocarcinoma subtype predict patient survival?: A clinicopathologic study based on the new international association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary lung adenocarcinoma classification,” J Thorac Oncol, vol. 6, pp. 1496–1504, 2011.; S. Wang, A. Chen, L. Yang, and et. al., “Comprehensive analysis of lung cancer pathology images to discover tumor shape and boundary features that predict survival out- come,” Sci Rep, vol. 8, p. 10393, 2018.; M. Van Bockstal, M. Berlière, F. Duhoux, and C. Galant, “Interobserver variability in ductal carcinoma in situ of the breast,” J Clin Pathol, vol. 154, pp. 596–609, 2020.; S. Zachara-Szczakowski, T. Verdun, and A. Churg, “Accuracy of classifying poorly differentiated non–small cell lung carcinoma biopsies with commonly used lung carcinoma markers,” Hum Pathol, vol. 46, pp. 776–782, 2015.; M. Connor, G. Canal, and C. Rozell, “Classification and pathology of lung cancer,” Surgical Oncology Clinics, vol. 25, pp. 447–468, 2016.; E. Ruffini, O. Rena, and et. al., “Lung tumors with mixed histologic pattern. clinicopathologic characteristics and prognostic significance,” European Journal of Cardio- Thoracic Surgery, vol. 22, p. 701–707, 2002.; J. Qin and H. Lu, “Combined small-cell lung carcinoma,” OncoTargets and therapy, vol. 11, p. 3505–3511, 2018.; W. D. Travis, E. Brambilla, M. Noguchi, A. G. Nicholson, K. R. Geisinger, Y. Yatabe, D. G. Beer, C. A. Powell, G. J. Riely, P. E. Van Schil, K. Garg, J. H. Austin, H. Asamura, V. W. Rusch, F. R. Hirsch, G. Scagliotti, T. Mitsudomi, R. M. Huber, Y. Ishikawa, J. Jett, and D. Yankelewitz, “International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma,” Journal of thoracic oncology: of- ficial publication of the International Association for the Study of Lung Cancer, vol. 6, pp. 244–285, 2011.; L. Gengpeng, L. Hui, K. Jianyi, T. Kejing, G. Yubiao, H. Anjia, and X. Canmao, “Acinar-predominant pattern correlates with poorer prognosis in invasive mucinous adenocarcinoma of the lung,” American Journal of Clinical Pathology, vol. 149, p. 373–378, 2018.; K. Kadota, Y. C. Yeh, C. S. Sima, V. W. Rusch, A. L. Moreira, P. S. Adusumilli, and W. D. Travis, “The cribriform pattern identifies a subset of acinar predominant tumors with poor prognosis in patients with stage i lung adenocarcinoma: a conceptual proposal to classify cribriform predominant tumors as a distinct histologic subtype,” Modern pathology : an official journal of the United States and Canadian Academy of Pathology, vol. 27, p. 690–700, 2014.; T. Kinno, K. Tsuta, K. Shiraishi, T. Mizukami, M. Suzuki, A. Yoshida, K. Suzuki, H. Asamura, K. Furuta, T. Kohno, and R. Kushima, “Clinicopathological features of nonsmall cell lung carcinomas with braf mutations,” Ann Oncol, vol. 25, p. 138–42, 2014.; K. Bera, K. Schalper, and et. al., “Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology,” Nat Rev Clin Oncol, vol. 16, pp. 703–715, 2019.; M. Gurcan, L. Boucheron, A. Can, A. Madabhushi, N. Rajpoot, and B. Yener, “Histopathological image analysis: A review,” IEEE Rev Biomed Eng, vol. 2, pp. 147– 171, 2009.; L. Pantanowitz, D. Hartman, Y. Qi, E. Cho, B. Suh, K. Paeng, R. Dhir, P. Michelow, S. Hazelhurst, S. Song, and S. Cho, “Accuracy and efficiency of an artificial intelligence tool when counting breast mitoses,” Diagn Pathol, vol. 15, p. 80, 2020.; R. Ding, P. Prasanna, G. Corredor, and et al., “Image analysis reveals molecularly distinct patterns of tils in nsclc associated with treatment outcome,” npj Precis. Onc, vol. 6, p. 33, 2022.; A. Ibrahim, P. Gamble, R. Jaroensri, M. Abdelsamea, C. Mermel, P.-H. Chen, and E. Rakha, “Artificial intelligence in digital breast pathology: Techniques and applications,” The Breast, vol. 49, pp. 267–273, 2020.; M. Yousif, P. van Diest, A. Laurinavicius, D. Rimm, J. van der Laak, A. Madabhushi, S. Schnitt, and L. Pantanowitz, “Artificial intelligence applied to breast pathology,” Virchows Arch, 2021.; D. Van Booven, M. Kuchakulla, R. Pai, F. Frech, R. Ramasahayam, P. Reddy, M. Parmar, R. Ramasamy, and H. Arora, “A systematic review of artificial intelligence in prostate cancer,” Res Rep Urol, vol. 13, pp. 31–39, 2021.; O. Tataru, M. Vartolomei, J. Rassweiler, O. Virgil, G. Lucarelli, F. Porpiglia, D. Amparore, M. Manfredi, G. Carrieri, U. Falagario, D. Terracciano, O. de Cobelli, G. Busetto, F. Giudice, and M. Ferro, “Artificial intelligence and machine learning in prostate cancer patient management—current trends and future perspectives,” Res Rep Urol, vol. 11, p. 354, 2021.; G. Litjens, C. Sanchez, N. Timofeeva, M. Hermsen, I. Nagtegaal, I. Kovacs, and et al, “Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis,” Scientific Reports, vol. 6, 2016.; B. Veeling, J. Linmans, J. Winkens, T. Cohen, and M. Welling, “Rotation equivariant cnns for digital pathology,” Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, vol. 11071, 2018.; S. Mukhopadhyay, M. Feldman, E. Abels, R. Ashfaq, S. Beltaifa, N. Cacciabeve, H. Cathro, L. Cheng, K. Cooper, G. Dickey, R. Gill, R. Heaton, R. Kerstens, G. Lind- berg, R. Malhotra, J. Mandell, E. Manlucu, A. Mills, S. Mills, C. Moskaluk, M. Nelis, D. Patil, C. Przybycin, J. Reynolds, B. Rubin, M. Saboorian, M. Salicru, M. Samols, C. Sturgis, K. Turner, M. Wick, J. Yoon, P. Zhao, and C. Taylor, “Whole slide imaging versus microscopy for primary diagnosis in surgical pathology: A multicenter blinded randomized noninferiority study of 1992 cases (pivotal study),” Am J Surg Pathol, vol. 42, pp. 39–52, 2018.; Z. Ahmad, S. Rahim, M. Zubair, and J. Abdul-Ghafar, “Artificial intelligence (ai) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: present and future impact, obstacles including costs and acceptance among pathologists, practical and philosophical considerations. a comprehensive review,” Diagn Pathol, vol. 16, p. 24, 2021.; A. Le Page, E. Ballot, C. Truntzer, V. Derang`ere, A. Ilie, D. Rageot, F. Bibeau, and F. Ghiringhelli, “Using a convolutional neural network for classification of squamous and non-squamous non-small cell lung cancer based on diagnostic histopathology hes images,” Sci Rep, vol. 11, p. 23912, 2021.; O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 2015.; N. Punn and S. Agarwal, “Modality specific u-net variants for biomedical image segmentation: a survey,” Artif Intell Rev, 2022.; H. Tizhoosh and L. Pantanowitz, “Artificial intelligence and digital pathology: Challenges and opportunities,” J Pathol Inform, vol. 9, p. 38, 2022.; R. Baeza-Yates and Z. Liaghat, “Quality-efficiency trade-offs in machine learning for text processing,” IEEE International Conference on Big Data (Big Data), pp. 897–904, 2017.; K. Huang, L. Yang, Y. Wang, L. Huang, X. Zhou, and W. Zhang, “Identification of non-small-cell lung cancer subtypes by unsupervised clustering of ct image features with distinct prognoses and gene pathway activities,” Biomedical Signal Processing and Control, vol. 76, 2022.; C. Weis, K. Weihrauch, K. Kriegsmann, and M. Kriegsmann, “Unsupervised segmentation in nsclc: How to map the output of unsupervised segmentation to meaningful histological labels by linear combination?,” Appl. Sci., vol. 12, p. 3718, 2022.; C. Lynch, V. van Berkel, and H. Frieboes, “Application of unsupervised analysis techniques to lung cancer patient data,” PloS one, vol. 12, p. 9, 2017.; Y. Gao, Y. Ding, W. Xiao, Z. Yao, X. Zhou, X. Sui, Y. Zhao, and Y. Zheng, “A semi-supervised learning framework for micropapillary adenocarcinoma detection,” International journal of computer assisted radiology and surgery, vol. 17, pp. 639–648, 2022.; K. Shak, M. Al-Shabi, A. Liew, B. Lan, W. Leong, N. Kh, and M. Tan, “A new semi- supervised self-training method for lung cancer prediction,” arXiv:2012.09472, 2020.; R. Chen, C. Chen, Y. Li, T. Chen, A. Trister, R. Krishnan, and F. Mahmood, “Scaling vision transformers to gigapixel images via hierarchical self-supervised learning,” arXiv:2206.02647, 2022.; V. Thanh-Hung, L. Guee-Samg, Y. Hyung-Jeong, K. Sae-Ryung, O. In-Jae, , and K. Soo-Hyung, “Multi-task with variational autoencoder for lung cancer prognosis on clinical data,” In The 9th International Conference on Smart Media and Applications (SMA 2020), pp. 234–237, 2020.; S. Wang, M. Zhou, Z. Liu, Z. Liu, D. Gu, Y. Zang, D. Dong, O. Gevaert, and J. Tian, “Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation,” Medical image analysis, vol. 40, pp. 172–183, 2017.; K.-H. Yu, F. Wang, G. Berry, C. R ́e, R. Altman, M. Snyder, and I. Kohane, “Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks,” J Am Med Inform Assoc, vol. 27, pp. 757–769, 2020.; C. Han and et. al., “Wsss4luad: Grand challenge on weakly-supervised tissue semantic segmentation for lung adenocarcinoma,” in arXiv, 2022.; M. for Primary Industries, “University of louisville health adopts paige ai-enabled cancer detection software for enhanced cancer detection.” https://www.businesswire.com/news/home/20211215005218/en/University-of- Louisville-Health-Adopts-Paige-AI-enabled-Cancer-Detection-Software-for-Enhanced- Cancer-Detection, 2021. Online; accessed May 2022.; J. Amann, A. Blasimme, E. Vayena, D. Frey, and V. Madai, “Explainability for artificial intelligence in healthcare: a multidisciplinary perspective,” BMC Med Inform Decis Mak, vol. 20, p. 310, 2020.; A. Madabhushi and G. Lee, “Image analysis and machine learning in digital pathology: Challenges and opportunities,” Medical image analysis, vol. 33, pp. 170–175, 2016.; U. Michelucci, “An introduction to autoencoders,” 2022.; A. Fuxjaeger and V. Belle, “Logical interpretations of autoencoders,” 2019.; D. Kingma and M. Welling, “An introduction to variational autoencoders,” Foundations and Trends in Machine Learning, vol. 12, no. 4, pp. 307–392, 2019.; I. Higgins, L. Matthey, and et. al., “beta-VAE: Learning basic visual concepts with a constrained variational framework,” in International Conference on Learning Represen- tations, 2017.; D. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.; F. Cano, C. Alvarez-Jimenez, D. Becerra, A. Siabatto, A. Cruz-Roa, and E. Romero, “A supervised subtype differentiation learning for building invariant features of non-small cell lung cancer in a latent space of a variational autoencoder,” in Proc. SPIE 12088, 17th International Symposium on Medical Information Processing and Analysis, 2021.; F. Bray, J. Ferlay, I. Soerjomataram, and et. al., “Global cancer statistics 2018: Globo- can estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: a cancer journal for clinicians 2018, vol. 68, pp. 394–424, 2018.; W. Wu, C. Parmar, P. Grossmann, J. Quackenbush, P. Lambin, J. Bussink, R. Mak, and H. Aerts, “Exploratory study to identify radiomics classifiers for lung cancer histology,” Front Oncol., vol. 6, p. 71, 2016.; S. Norouzi, D. Fleet, and M. Norouzi, “Exemplar vae: Linking generative models, near- est neighbor retrieval, and data augmentation,” 34th Conference on Neural Information Processing Systems (NeurIPS 2018), vol. -, 2020.; J. Yoo, H. Lee, and N. wak, “Density estimation and incremental learning of latent vector for generative autoencoders,” Mathematics, Computer Science, vol. -, 2019.; L. Ternes, M. Dane, M. Labrie, G. Mills, J. Gray, L. Heiser, and Y. Chang, “Me-vae: Multi-encoder variational autoencoder for controlling multiple transformational features in single cell image analysis,” bioRxiv, vol. -, pp. –, 2021.; N. Simidjievski, C. Bodnar, I. Tariq, P. Scherer, A. T., and et. al., “Variational autoencoders for cancer data integration: Design principles and computational practice,” Frontiers in Genetics, vol. 10, p. 1205, 2019.; N. C. Institute, “The cancer genome atlas program,” 2022. Last accessed: 10 November 2022.; J. Klys, J. Snell, and R. Zemel, “Learning latent subspaces in variational autoencoders,” 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), vol. -, 2018.; M. Connor, G. Canal, and C. Rozell, “Variational autoencoder with learned latent structure,” 24th International Conference on Artificial Intelligence and Statistics (AIS- TATS), vol. -, 2021.; E. Parzen, “On estimation of a probability density function and mode,” Ann. Math. Statist, vol. 33, pp. 1065–1076, 1962.; W. C. of Tumours, Thoracic Tumours, vol. 5. Lyon (France): International Agency for Research on Cancer: Editorial Board, 2021.; D. L. Rimm, G. Han, and et. al., “A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for pd-l1 expression in non-small cell lung cancer,” JAMA oncology, vol. 3(8), p. 1051–1058, 2017.; L. McInnes and et. al., “Umap: Uniform manifold approximation and projection for dimension reduction,” 2018.; D. Blei, A. Kucukelbir, and J. McAuliffe, “Variational inference: A review for statisticians.,” Journal of the American Statistical Association, vol. 112, no. 518, pp. 859–877, 2017.; https://repositorio.unal.edu.co/handle/unal/84587; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  18. 18
  19. 19

    Source: The journal of gene medicine [J Gene Med] 2024 Jan; Vol. 26 (1), pp. e3629. Date of Electronic Publication: 2023 Nov 08.

    Publication Type: Journal Article; Review

    Journal Info: Publisher: John Wiley & Sons Country of Publication: England NLM ID: 9815764 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-2254 (Electronic) Linking ISSN: 1099498X NLM ISO Abbreviation: J Gene Med Subsets: MEDLINE

  20. 20