Suchergebnisse - Variation Graph Autoencoder (VGAE)
-
1
Autoren:
Quelle: Network Modeling & Analysis in Health Informatics & Bioinformatics; 11/4/2025, Vol. 14 Issue 1, p1-18, 18p
-
2
Autoren: et al.
Quelle: Complex & Intelligent Systems; Jan2026, Vol. 12 Issue 1, p1-16, 16p
-
3
Autoren: et al.
Quelle: Applied Sciences (2076-3417); Apr2025, Vol. 15 Issue 8, p4490, 23p
Schlagwörter: GRAPH neural networks, AUTOENCODERS, FLOOR design & construction, IMPLICIT learning
-
4
Autoren: et al.
Quelle: Biomolecules
Biomolecules, Vol 13, Iss 5, p 767 (2023)
Biomolecules; Volume 13; Issue 5; Pages: 767Schlagwörter: copy number alteration, DNA Copy Number Variations, Gene Dosage, spatial transcriptome, Microbiology, QR1-502, Article, HMM, variational graph convolutional autoencoder, Neoplasms, Mutation, Humans, Transcriptome
Dateibeschreibung: application/pdf
-
5
Autoren: et al.
Quelle: BMC Biology; 8/11/2025, Vol. 23 Issue 1, p1-24, 24p
-
6
Autoren:
Quelle: Applied Sciences (2076-3417); Aug2025, Vol. 15 Issue 16, p8935, 14p
-
7
Autoren: et al.
Quelle: BMC Bioinformatics. 10/15/2025, Vol. 26 Issue 1, p1-27. 27p.
-
8
Autoren: et al.
Quelle: Scientific Reports; 6/22/2024, Vol. 14 Issue 1, p1-18, 18p
Schlagwörter: RECEIVER operating characteristic curves, ARTIFICIAL intelligence, RANDOM forest algorithms, URBAN growth, EMERGENCY management
Geografische Kategorien: BEIJING (China)
-
9
Autoren: et al.
Quelle: Heritage Science; 3/6/2024, Vol. 12 Issue 1, p1-10, 10p
Schlagwörter: X-ray fluorescence, FLUORESCENCE spectroscopy, ELEMENTAL diet, POTTERY, THERMOLUMINESCENCE dating, GRAPH neural networks, PORCELAIN
Geografische Kategorien: JINGDEZHEN (China)
-
10
Autoren:
Quelle: Scientific Reports; 1/14/2025, Vol. 15 Issue 1, p1-11, 11p
Schlagwörter: APOPTOSIS, K-means clustering, AUTOENCODERS, PERIODONTAL disease, PORPHYROMONAS gingivalis
-
11
Alternate Title: Autocodificadores de grafos isomorfos versus firmados para la reconstrucción de redes de polimorfismos de un solo nucleótido de microARN en paisajes osteogenómicos periodontales. (Spanish)
Autoren:
Quelle: Gaceta Médica de Caracas; jul-sep2025, Vol. 133 Issue 3, p675-685, 11p
-
12
Autoren: et al.
Quelle: Computer Methods in Biomechanics & Biomedical Engineering; May2025, Vol. 28 Issue 7, p1098-1110, 13p
Schlagwörter: DRUG interactions, AUTOENCODERS, ARTIFICIAL intelligence, DRUG administration, POLYPHARMACY
-
13
Autoren: et al.
Quelle: Information Technology & Control; 2024, Vol. 53 Issue 2, p570-583, 14p
-
14
Autoren: et al.
Quelle: AI; Sep2024, Vol. 5 Issue 3, p1695-1708, 14p
Schlagwörter: HUMAN activity recognition, DEEP learning, PATIENT monitoring, ALGORITHMS, SKELETON, AUTOENCODERS
-
15
Autoren: et al.
Quelle: Briefings in Bioinformatics; May2024, Vol. 25 Issue 3, p1-15, 15p
Schlagwörter: TRANSCRIPTOMES, GRAPH neural networks, PHENOMENOLOGICAL biology, GENE expression, HETEROGENEITY
-
16
scVGATAE: A Variational Graph Attentional Autoencoder Model for Clustering Single-Cell RNA-seq Data.
Autoren: et al.
Quelle: Biology (2079-7737); Sep2024, Vol. 13 Issue 9, p713, 15p
Schlagwörter: ARTIFICIAL neural networks, RNA sequencing, SCALABILITY, HETEROGENEITY
-
17
Autoren: et al.
Quelle: Entropy; Apr2023, Vol. 25 Issue 4, p567, 22p
-
18
Autoren: et al.
Quelle: Journal of Fungi; Oct2023, Vol. 9 Issue 10, p1007, 16p
Schlagwörter: MULTIOMICS, PYRICULARIA oryzae, RICE, GENE regulatory networks, DATA integration, NON-coding RNA, GENE expression
-
19
Autoren: et al.
Quelle: Network Modeling & Analysis in Health Informatics & Bioinformatics; 12/4/2025, Vol. 14 Issue 1, p1-21, 21p
-
20
Autoren: et al.
Quelle: Bioinformatics; Jan2024, Vol. 40 Issue 1, p1-12, 12p
Schlagwörter: DEEP learning, TRANSCRIPTOMES, GENE expression profiling, LEARNING modules, SOURCE code
Full Text Finder
Nájsť tento článok vo Web of Science