Search Results - Sparse network coding

Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Source: IEEE 27th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2016, Valencia, 2145-2150
    UCrea Repositorio Abierto de la Universidad de Cantabria
    Universidad de Cantabria (UC)
    Garrido, P, Sørensen, C W, Roetter, D E L & Aguero, R 2016, Performance and Complexity of Tunable Sparse Network Coding with Gradual Growing Tuning Functions over Wireless Networks. in Personal, Indoor, and Mobile Radio Communications (PIMRC), 2016 IEEE 27th Annual International Symposium on. IEEE (Institute of Electrical and Electronics Engineers), I E E E International Symposium Personal, Indoor and Mobile Radio Communications, IEEE 27th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications-(PIMRC), Valencia, Spain, 04/09/2016. https://doi.org/10.1109/PIMRC.2016.7794915
    Garrido, P, Sørensen, C W, Roetter, D E L & Aguero, R 2016, Performance and Complexity of Tunable Sparse Network Coding with Gradual Growing Tuning Functions over Wireless Networks . in Personal, Indoor, and Mobile Radio Communications (PIMRC), 2016 IEEE 27th Annual International Symposium on . IEEE (Institute of Electrical and Electronics Engineers), I E E E International Symposium Personal, Indoor and Mobile Radio Communications, IEEE 27th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications-(PIMRC), Valencia, Spain, 04/09/2016 . https://doi.org/10.1109/PIMRC.2016.7794915

  9. 9

    Source: IEEE Transactions on Communications, 2017, 65(4), 1675-1685
    UCrea Repositorio Abierto de la Universidad de Cantabria
    Universidad de Cantabria (UC)
    Garrido, P, Roetter, D E L & Aguero, R 2017, 'Markov Chain Model for the Decoding Probability of Sparse Network Coding', I E E E Transactions on Communications, vol. 65, no. 4, pp. 1675-1685. https://doi.org/10.1109/TCOMM.2017.2657621
    Garrido, P, Roetter, D E L & Aguero, R 2017, ' Markov Chain Model for the Decoding Probability of Sparse Network Coding ', I E E E Transactions on Communications, vol. 65, no. 4, pp. 1675-1685 . https://doi.org/10.1109/TCOMM.2017.2657621

  10. 10

    Source: Tassi, A, Chatzigeorgiou, I & Roetter, D E L 2016, 'Analysis and Optimization of Sparse Random Linear Network Coding for Reliable Multicast Services', I E E E Transactions on Communications, vol. 64, no. 1, pp. 285-299. https://doi.org/10.1109/TCOMM.2015.2503398
    Tassi, A, Chatzigeorgiou, I & Lucani, D 2016, 'Analysis and Optimization of Sparse Random Linear Network Coding for Reliable Multicast Services', IEEE Transactions on Communications, vol. 64, no. 1, pp. 285-299. https://doi.org/10.1109/TCOMM.2015.2503398

    File Description: application/pdf

  11. 11
  12. 12
  13. 13

    Source: Journal of Neuroscience Methods. 282

    Subject Terms: 32 Biomedical and Clinical Sciences (for-2020), 3209 Neurosciences (for-2020), Clinical Research (rcdc), Machine Learning and Artificial Intelligence (rcdc), Neurosciences (rcdc), Biomedical Imaging (rcdc), Bioengineering (rcdc), Algorithms (mesh), Auditory Perception (mesh), Brain (mesh), Brain Mapping (mesh), Cerebrovascular Circulation (mesh), Humans (mesh), Magnetic Resonance Imaging (mesh), Motion Perception (mesh), Neural Pathways (mesh), Neuropsychological Tests (mesh), Oxygen (mesh), Rest (mesh), FMRI, Classification, ICA, NMF, K-SVD, L1 Regularized Learning, Independent component analysis, Brain (mesh), Neural Pathways (mesh), Humans (mesh), Oxygen (mesh), Magnetic Resonance Imaging (mesh), Brain Mapping (mesh), Auditory Perception (mesh), Motion Perception (mesh), Neuropsychological Tests (mesh), Cerebrovascular Circulation (mesh), Algorithms (mesh), Rest (mesh), Artifacts, Classification, FMRI, ICA, Image processing, Independent component analysis, K-SVD, L1 Regularized Learning, Machine learning, NMF, Negative BOLD signal, Non-negative matrix factorization, Pattern recognition, Random forests, Sparsity, Support vector machines, Algorithms (mesh), Auditory Perception (mesh), Brain (mesh), Brain Mapping (mesh), Cerebrovascular Circulation (mesh), Humans (mesh), Magnetic Resonance Imaging (mesh), Motion Perception (mesh), Neural Pathways (mesh), Neuropsychological Tests (mesh), Oxygen (mesh), Rest (mesh), 1109 Neurosciences (for), 1701 Psychology (for), 1702 Cognitive Sciences (for), Neurology & Neurosurgery (science-metrix), 3209 Neurosciences (for-2020)

    File Description: application/pdf

  14. 14

    Source: Zarei, A, Pahlevani, P & Lucani, D E 2020, 'An Analytical Model for Sparse Network Codes : Field Size Considerations', IEEE Communications Letters, vol. 24, no. 4, 8957070, pp. 729-733. https://doi.org/10.1109/LCOMM.2020.2965928
    Zarei, A, Pahlevani, P & Lucani, D E 2020, ' An Analytical Model for Sparse Network Codes : Field Size Considerations ', IEEE Communications Letters, vol. 24, no. 4, 8957070, pp. 729-733 . https://doi.org/10.1109/LCOMM.2020.2965928
    Zarei, A, Pahlevani, P & Lucani Rötter, D E 2020, 'An Analytical Model for Sparse Network Codes : Field Size Considerations', I E E E Communications Letters, vol. 24, no. 4, 8957070, pp. 729-733. https://doi.org/10.1109/LCOMM.2020.2965928

  15. 15
  16. 16
  17. 17
  18. 18

    Alternate Title: Research on robustness maintenance for sparse network coding based mobile edge caching network. (English)

    Authors: 殷俊 夏欣然 张登银 et al.

    Source: Chinese Journal on Internet of Things / Wulianwang Xuebao; Jun2025, Vol. 9 Issue 2, p214-222, 9p

  19. 19
  20. 20