Suchergebnisse - Softmax and Sparse Autoencoder~
-
1
Autoren: et al.
Quelle: IEEE Transactions on Instrumentation and Measurement. 71:1-9
-
2
Autoren:
Quelle: International Journal of Intelligent Engineering and Systems. 13:268-279
-
3
Autoren: et al.
Quelle: Information Sciences. 428:49-61
Schlagwörter: 0209 industrial biotechnology, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
4
Autoren: et al.
Quelle: 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). :246-251
Schlagwörter: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
5
Autoren:
Quelle: International Journal of Machine Learning and Computing. 7:13-17
Schlagwörter: 03 medical and health sciences, 0302 clinical medicine, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
6
Autoren:
Quelle: Electronics
Volume 9
Issue 11Schlagwörter: Softmax regression, medical diagnosis, machine learning, sparse autoencoder, 0202 electrical engineering, electronic engineering, information engineering, e-health, 02 engineering and technology, unsupervised learning, 10. No inequality, Unsupervised learning, artificial neural network, Sparse autoencoder, 3. Good health
Dateibeschreibung: application/pdf
-
7
Autoren: et al.
Quelle: Sensors, Vol 19, Iss 4, p 826 (2019)
Schlagwörter: marine current turbine, blade attachment, sparse autoencoder, softmax regression, Chemical technology, TP1-1185
Dateibeschreibung: electronic resource
-
8
-
9
Autoren:
Quelle: Signal, Image and Video Processing. 19
Schlagwörter: autoencoder, semi-supervised learning, convolutional sparse autoencoder, facial expression recognition, feature representation, unsupervised learning
Zugangs-URL: https://bura.brunel.ac.uk/handle/2438/31141
-
10
Improved Heart Disease Prediction Using Particle Swarm Optimization Based Stacked Sparse Autoencoder
Autoren:
Quelle: Electronics, Vol 10, Iss 2347, p 2347 (2021)
Schlagwörter: deep learning, heart disease, particle swarm optimization, softmax regression, stacked sparse autoencoder, Electronics, TK7800-8360
Relation: https://www.mdpi.com/2079-9292/10/19/2347; https://doaj.org/toc/2079-9292; https://doaj.org/article/d151bef155304f508d8020b791b53a27
-
11
Autoren:
Quelle: Signal, Image & Video Processing; May2025, Vol. 19 Issue 5, p1-18, 18p
-
12
Alternate Title: Plant leaf classification based on Softmax regression and K* deep sparse autoencoder network.
Autoren:
Quelle: Journal of Nanchang University (Natural Science). Dec2019, Vol. 43 Issue 6, p606-610. 5p.
-
13
Autoren: et al.
Quelle: Computer Systems Science & Engineering. 2023, Vol. 44 Issue 2, p1517-1529. 13p.
-
14
Autoren:
Quelle: Sensors (14248220); Oct2025, Vol. 25 Issue 20, p6439, 22p
-
15
Autoren: et al.
Quelle: Oil Shale; 2025, Vol. 42 Issue 1, p79-114, 36p
Schlagwörter: SHALE oils, SUPERVISED learning, PETROLEUM prospecting, AUTOENCODERS, MACHINE learning
-
16
Autoren: et al.
Quelle: Scientific Reports; 10/21/2025, Vol. 15 Issue 1, p1-22, 22p
-
17
Autoren:
Schlagwörter: Deep learning, Heart disease, Softmax regression
Relation: http://hdl.handle.net/10210/487565; uj:44388; Citation: Mienye, I.D. & Sun, Y. 2021. Improved heart disease prediction using stacked sparse autoencoder and softmax regression.
Verfügbarkeit: http://hdl.handle.net/10210/487565
-
18
Autoren:
Quelle: Computer Systems Science & Engineering. 2023, Vol. 47 Issue 1, p593-611. 19p.
Schlagwörter: Collective behavior, Image segmentation, Deep learning, Data analysis, Accuracy
-
19
Autoren:
Quelle: IET Communications. 14:4089-4100
Schlagwörter: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Zugangs-URL: http://digital-library.hnpme.com/content/journals/10.1049/iet-com.2020.0477
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-com.2020.0477
https://doi.org/10.1049/iet-com.2020.0477
https://dblp.uni-trier.de/db/journals/iet-com/iet-com14.html#PolatTP20
https://digital-library.theiet.org/content/journals/10.1049/iet-com.2020.0477
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-com.2020.0477
http://digital-library.hnpme.com/content/journals/10.1049/iet-com.2020.0477;fmt=download -
20
Autoren: et al.
Quelle: Computers, Materials & Continua; 2025, Vol. 83 Issue 2, p3493-3517, 25p
Full Text Finder
Nájsť tento článok vo Web of Science