Search Results - Reduced Convolutional Autoencoder~
-
1
Authors:
Source: Advanced Modeling and Simulation in Engineering Sciences, Vol 12, Iss 1, Pp 1-23 (2025)
Subject Terms: Reduced-order model, Convolutional autoencoder, Additive manufacturing, Deep learning, Proper orthogonal decomposition, Mechanics of engineering. Applied mechanics, TA349-359, Systems engineering, TA168
File Description: electronic resource
Relation: https://doaj.org/toc/2213-7467
-
2
Authors: et al.
Source: Xibei Gongye Daxue Xuebao, Vol 43, Iss 1, Pp 149-153 (2025)
Subject Terms: reduced-order model, non-interpolated convolutional autoencoder, reduced-dimensional reconstruction, Motor vehicles. Aeronautics. Astronautics, TL1-4050
File Description: electronic resource
-
3
Authors: et al.
Index Terms: Physics - Fluid Dynamics, Computer Science - Machine Learning, text
-
4
Authors:
Source: Expert Systems with Applications. 290:128444
-
5
Authors:
Source: Advanced Modeling and Simulation in Engineering Sciences, Vol 10, Iss 1, Pp 1-27 (2023)
Subject Terms: Uncertainty propagation, Reduced-order modeling, Deep learning, Convolutional autoencoders, Mechanics of engineering. Applied mechanics, TA349-359, Systems engineering, TA168
File Description: electronic resource
Relation: https://doaj.org/toc/2213-7467
-
6
Authors: et al.
Source: Physics of Fluids. 37
-
7
Authors: et al.
Source: APL Machine Learning, Vol 3, Iss 1, Pp 016112-016112-15 (2025)
Subject Terms: FOS: Computer and information sciences, Computer Science - Machine Learning, Physics, QC1-999, Electronic computers. Computer science, Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, QA75.5-76.95, Physics - Fluid Dynamics, Machine Learning (cs.LG)
-
8
Authors:
Source: Drones, Vol 9, Iss 11, p 802 (2025)
Subject Terms: urban wind fields, urban boundary layer, convolutional autoencoders, Reduced-Order Modeling (ROM), Non-Intrusive ROM, Large-Eddy Simulation (LES), Motor vehicles. Aeronautics. Astronautics, TL1-4050
File Description: electronic resource
-
9
Authors: et al.
Source: Combustion and Flame. 274:113981
-
10
Authors: et al.
Source: Information. Nov2024, Vol. 15 Issue 11, p733. 20p.
Subject Terms: *Artificial neural networks, Gas well drilling, Coalbed methane, Gas extraction, Reduced-order models
-
11
Authors:
Source: Journal of Computational Fluids Engineering. 27:9-19
-
12
Authors: et al.
Contributors: et al.
Subject Terms: nanophotonique, nanophotonics électromagnétisme computationnel, réseaux de neurones, nonlinear phenomena, graph neural networks, computational electromagnetics, [MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA], phénomènes non linéaires, modélisation d'ordre réduit, reduced order modeling
File Description: application/pdf
Access URL: https://hal.science/hal-04867474v1
-
13
Authors:
Source: IEEE Signal Processing Letters. 28:1205-1209
Subject Terms: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
14
-
15
Authors:
Source: Journal of Computational Fluids Engineering. 26:44-51
-
16
Authors:
Source: Advanced Modeling and Simulation in Engineering Sciences. 12
-
17
Authors: Eiximeno Franch, Benet
Contributors: University/Department: Universitat Politècnica de Catalunya. Departament de Física
Thesis Advisors: Rodríguez Pérez, Ivette María, Lehmkuhl Barba, Oriol
Source: TDX (Tesis Doctorals en Xarxa)
Subject Terms: reduced order models, high performance computing, deep learning, singular value decomposition, variational autoencoders, Àrees temàtiques de la UPC::Física, Àrees temàtiques de la UPC::Informàtica, 531/534 - Mecànica. Vibracions. Acústica, 004 - Informàtica
File Description: application/pdf
-
18
Authors: et al.
Index Terms: Data-driven, Deep convolutional autoencoder, Finite element, Non-intrusive, Nonlinear problem, Reduced order modeling, Settore MAT/08 - ANALISI NUMERICA, info:eu-repo/semantics/article
URL:
https://hdl.handle.net/10807/202829
info:eu-repo/semantics/altIdentifier/wos/WOS:000803685400003
volume:160
issue:NA
firstpage:104098
lastpage:N/A
issueyear:2022
journal:ADVANCES IN WATER RESOURCES -
19
-
20
Authors: et al.
Contributors: et al.
Source: Lecture Notes in Computer Science ISBN: 9783031360268
Lecture Notes in Computer Science
Lecture Notes in Computer Science-Computational Science – ICCS 2023Subject Terms: FOS: Computer and information sciences, Computer Science - Machine Learning, 0103 physical sciences, Chaotic System, Convolutional Autoencoder, Reduced Order Modelling, Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, Physics - Fluid Dynamics, Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics, 01 natural sciences, Machine Learning (cs.LG)
File Description: application/pdf
Full Text Finder
Nájsť tento článok vo Web of Science