Suchergebnisse - Predicting the arrest using Random forest Algorithm~
-
1
Autoren: et al.
Quelle: World Journal of Advanced Research and Reviews. 25:498-506
-
2
Autoren: et al.
Quelle: Procedia Computer Science. 2025, Vol. 258, p1123-1130. 8p.
Schlagwörter: Coronary artery disease, Random forest algorithms, Decision trees, Heart failure, Cardiac arrest
-
3
Autoren: et al.
Quelle: Acute & Critical Care; Aug2018, Vol. 33 Issue 3, p117-120, 4p
-
4
Autoren:
Quelle: Advances in Engineering & Intelligence Systems; Sep2025, Vol. 4 Issue 3, p57-70, 14p
-
5
Weitere Verfasser: Muhammed Cagatay Engin, associate professor doctor
Quelle: Predicting the Development of Bone Cement Implantation Syndrome in Arthroplasty Operations Using Artificial Intelligence Methods
-
6
Autoren:
Quelle: Proyecto "trIAje": evaluación y optimización Del Triaje telefónico Mediante Modelos de Inteligencia Artificial (IA) Para la detección de Demandas Por patología Tiempo-dependiente en el Centro Coordinador de Urgencias y Emergencias (CCUE).
-
7
Autoren: et al.
Quelle: Medical & Biological Engineering & Computing; Feb2019, Vol. 57 Issue 2, p453-462, 10p, 4 Charts, 4 Graphs
-
8
Autoren: et al.
Quelle: Eastern-European Journal of Enterprise Technologies; 2021, Vol. 113 Issue 7, p59-65, 7p
-
9
Autoren: et al.
Quelle: AIP Conference Proceedings; 2024, Vol. 2971 Issue 1, p1-9, 9p
-
10
Autoren: et al.
Quelle: Mathematics (2227-7390); Jun2022, Vol. 10 Issue 12, p2049-N.PAG, 17p
-
11
Autoren: et al.
Quelle: 2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI). :1-4
Schlagwörter: 03 medical and health sciences, 0302 clinical medicine, 3. Good health
-
12
Autoren: et al.
Quelle: Resuscitation Plus, Vol 4, Iss , Pp 100046- (2020)
Schlagwörter: Emergency medical services, Prehospital, Cardiac arrest prevention, Early warning score, National Early Warning Score, NEWS, Specialties of internal medicine, RC581-951
Dateibeschreibung: electronic resource
-
13
Autoren: et al.
Quelle: Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, Vol 7, Iss 13 (2018)
Schlagwörter: artificial intelligence, cardiac arrest, deep learning, machine learning, rapid response system, resuscitation, Diseases of the circulatory (Cardiovascular) system, RC666-701
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2047-9980
-
14
Autoren: et al.
Quelle: Diagnostics (2075-4418); Jul2021, Vol. 11 Issue 7, p1255, 1p
-
15
Autoren: et al.
Index Begriffe: Journal Article
-
16
Autoren: et al.
Quelle: Pharmaceuticals (14248247); Jan2023, Vol. 16 Issue 1, p42, 19p
-
17
Autoren: et al.
Quelle: Cancer Cell International; 6/17/2020, Vol. 20 Issue 1, p1-12, 12p
Schlagwörter: HEPATOCELLULAR carcinoma, IMMUNOSTAINING, SUPERVISED learning, RNA sequencing, DIGESTIVE organs
-
18
Autoren: et al.
Quelle: Oncology Letters; Aug2019, Vol. 18 Issue 2, p1597-1606, 10p
Schlagwörter: GENE expression, ADENOCARCINOMA, LOG-rank test, PROGNOSIS, RNA sequencing
Firma/Körperschaft: PEKING University (Beijing, China)
-
19
Autoren: et al.
Quelle: Journal of Medical Internet Research. Jul2021, Vol. 23 Issue 7, pN.PAG-N.PAG. 1p. 2 Charts.
Schlagwörter: *Artificial neural networks, Prediction models, Cardiac arrest, Receiver operating characteristic curves, Random forest algorithms, Medical personnel
Geografische Kategorien: South Korea
-
20
Nájsť tento článok vo Web of Science
Full Text Finder