Výsledky vyhledávání - Numerical approximation of solutions of functional-differential equations
-
1
Autoři:
Zdroj: SIAM Journal on Numerical Analysis. 63:641-660
Témata: Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.), Stability theory of functional-differential equations, necessary and sufficient stability condition, linear functional differential equation, Sensitivity, stability, well-posedness, Numerical approximation of solutions of functional-differential equations, Legendre polynomials approximation
Popis souboru: application/xml
-
2
Autoři:
Přispěvatelé:
Zdroj: Journal of Computational and Applied Mathematics. 161:259-282
Témata: delay differential equations, Runge-Kutta methods, convergence, Applied Mathematics, stability, Delay Differential Equations, Numerical approximation of solutions of functional-differential equations, abstract Cauchy problem, Numerical methods for initial value problems involving ordinary differential equations, 01 natural sciences, Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations, retarded functional differential equations, Computational Mathematics, linear system, 0101 mathematics, initial value problem, numerical experiments, Stability and convergence of numerical methods for ordinary differential equations
Popis souboru: application/xml
Přístupová URL adresa: http://hdl.handle.net/11368/1697479
https://core.ac.uk/display/53700142
https://dl.acm.org/doi/10.1016/j.cam.2003.03.001
http://ui.adsabs.harvard.edu/abs/2003JCoAM.161..259M/abstract
https://www.sciencedirect.com/science/article/pii/S0377042703007003
https://hdl.handle.net/11368/1697479 -
3
Autoři: V. G. Pimenov
Zdroj: Differential Equations. 37:116-127
Témata: delay differential equations, convergence, Runge-Kutta methods, consistency, linear discretization methods, stability, Numerical approximation of solutions of functional-differential equations, Numerical methods for initial value problems involving ordinary differential equations, 01 natural sciences, functional-differential equations, Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations, initial value problems, one-step method, 0101 mathematics, Stability and convergence of numerical methods for ordinary differential equations
Popis souboru: application/xml
-
4
Autoři: a další
Přispěvatelé: a další
Zdroj: Applied Mathematics and Computation. 131:253-270
Témata: small solutions, finite-dimensional approximations, 0103 physical sciences, numerical solutions, delay equations, General theory of functional-differential equations, 0101 mathematics, Numerical approximation of solutions of functional-differential equations, Numerical methods for initial value problems involving ordinary differential equations, 01 natural sciences, spectrum
Popis souboru: application/xml; YES
Přístupová URL adresa: https://chesterrep.openrepository.com/bitstream/10034/13244/8/ford%26lunel.pdf
https://dblp.uni-trier.de/db/journals/amc/amc131.html#FordL02
https://dl.acm.org/doi/10.5555/2618333.2618911
http://www.chester.ac.uk/sites/files/chester/rep381_1.pdf
https://chesterrep.openrepository.com/cdr/bitstream/10034/13244/8/ford%26lunel.pdf
https://chesterrep.openrepository.com/handle/10034/14553
https://doi.org/10.1016/S0096-3003(01)00144-8 -
5
Autoři: M.T Rashed
Zdroj: Applied Mathematics and Computation. 156:485-492
Témata: Integro-ordinary differential equations, numerical examples, Volterra integral equations, Functional integro-differential equations, Lagrange interpolation, Numerical methods for integral equations, Functional integral equations of the second kind, Chebyshev interpolation, 0101 mathematics, Numerical approximation of solutions of functional-differential equations, Functional differential equations of first or second order, Numerical methods for initial value problems involving ordinary differential equations, 01 natural sciences
Popis souboru: application/xml
-
6
Autoři:
Zdroj: Applied Numerical Mathematics. 9:461-474
Témata: functional equations, canonical polynomials, difference equations, Nonlinear ordinary differential equations and systems, General theory of functional-differential equations, Numerical methods for initial value problems involving ordinary differential equations, 01 natural sciences, functional differential equations, Functional equations for real functions, Numerical methods for functional equations, segmented Tau method, Tau method, 0101 mathematics, rational Tau approximations
Popis souboru: application/xml
Přístupová URL adresa: https://www.sciencedirect.com/science/article/pii/016892749290002U
-
7
Autoři: Barnabas M. Garay
Zdroj: International Journal of Bifurcation and Chaos. 15:729-742
Témata: invariant manifolds, hyperbolic periodic orbits, Attractors and repellers of smooth dynamical systems and their topological structure, saddle structure, Kamke monotonicity, Generic properties, structural stability of dynamical systems, Numerical methods for Hamiltonian systems including symplectic integrators, Numerical approximation of solutions of functional-differential equations, Stability theory for smooth dynamical systems, 01 natural sciences, Runge-Kutta discretizations, survey paper, Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations, compact attractors, hyperbolic equilibria, retarded functional differential equations, error estimates, Research exposition (monographs, survey articles) pertaining to numerical analysis, structural stability, Periodic orbits of vector fields and flows, inertial manifolds, delay equations, center-unstable manifolds, 0101 mathematics, Error bounds for numerical methods for ordinary differential equations
Popis souboru: application/xml
Přístupová URL adresa: http://www.math.bme.hu/~garay/gfarkas.pdf
https://ui.adsabs.harvard.edu/abs/2006mcds.book...33G/abstract
https://ui.adsabs.harvard.edu/abs/2005IJBC...15..729G/abstract
http://www.math.bme.hu/~garay/gfarkas.pdf
https://www.worldscientific.com/doi/abs/10.1142/S021812740501251X
https://dblp.uni-trier.de/db/journals/ijbc/ijbc15.html#Garay05 -
8
Autoři: Gyula Farkas
Zdroj: Journal of Computational and Applied Mathematics. 145:269-289
Témata: numerical examples, discretization by projection, Applied Mathematics, \(C^1\)-shadowing, Shadowing, General theory of functional-differential equations, Numerical approximation of solutions of functional-differential equations, Numerical methods for initial value problems involving ordinary differential equations, 01 natural sciences, retarded functional differential equations, Computational Mathematics, Functional differential equation, Theoretical approximation of solutions to functional-differential equations, 0101 mathematics, Stable manifolds
Popis souboru: application/xml
-
9
Autoři:
Zdroj: International Journal of Bifurcation and Chaos. :1889-1905
Témata: neutral functional-differential equations, Poincaré operator, numerical bifurcation analysis, periodic solutions, stability, 0101 mathematics, Numerical approximation of solutions of functional-differential equations, 01 natural sciences, Bifurcation theory of functional-differential equations, Periodic solutions to functional-differential equations
Popis souboru: application/xml
-
10
Autoři:
Zdroj: Applied Mathematics and Computation. 162:37-50
Témata: Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations, Numerical solution of boundary value problems involving ordinary differential equations, asymptotic stability, delay differential equation, piecewise continuous argument, Runge-Kutta method, 0101 mathematics, Numerical approximation of solutions of functional-differential equations, Stability and convergence of numerical methods for ordinary differential equations, 01 natural sciences
Popis souboru: application/xml
-
11
Autoři:
Zdroj: Journal of Computational and Applied Mathematics. 166:361-370
Témata: stability regions, asymptotic stability, Runge-Kutta methods, Asymptotic stability, Applied Mathematics, Piecewise continuous arguments, numerical results, Numerical approximation of solutions of functional-differential equations, piecewise continuous arguments, Numerical methods for initial value problems involving ordinary differential equations, 01 natural sciences, Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations, Delay differential equation, Computational Mathematics, delay differential equation, 0101 mathematics, Stability and convergence of numerical methods for ordinary differential equations
Popis souboru: application/xml
-
12
Autoři:
Zdroj: Applied Mathematics and Computation. 155:853-871
Témata: asymptotic stability, numerical examples, multi-pantograph equation, 0101 mathematics, Numerical approximation of solutions of functional-differential equations, Numerical methods for initial value problems involving ordinary differential equations, Stability and convergence of numerical methods for ordinary differential equations, 01 natural sciences, theta-method
Popis souboru: application/xml
Přístupová URL adresa: https://zbmath.org/2107384
https://doi.org/10.1016/j.amc.2003.07.017 -
13
Autoři:
Zdroj: Progress in Natural Science. 13:329-333
Témata: system of functional differential equations, general linear methods, stability, 0101 mathematics, Numerical approximation of solutions of functional-differential equations, Stability and convergence of numerical methods for ordinary differential equations, Numerical methods for initial value problems involving ordinary differential equations, 01 natural sciences, proportional delay
Popis souboru: application/xml
-
14
Autoři:
Zdroj: Journal of Applied Mathematics and Computing. 14:319-328
Témata: Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations, 0209 industrial biotechnology, delay differential equations, Runge Kutta methods, 0211 other engineering and technologies, Hopf bifurcation, linear multistep methods, 02 engineering and technology, Numerical approximation of solutions of functional-differential equations, Numerical methods for initial value problems involving ordinary differential equations, Stability and convergence of numerical methods for ordinary differential equations, Bifurcation theory of functional-differential equations
Popis souboru: application/xml
-
15
Autoři:
Zdroj: Computers & Mathematics with Applications. 44:717-729
Témata: neutral type, asymptotic stability, Hybrid systems, Runge-Kutta methods, multistep methods, One-leg methods, Numerical stability, Linear multistep methods, Functional equations, Numerical approximation of solutions of functional-differential equations, Linear, Numerical methods for initial value problems involving ordinary differential equations, 01 natural sciences, Neutral functional-differential equations, Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations, Computational Mathematics, Computational Theory and Mathematics, Modelling and Simulation, Functional-differential equations, Numerical methods for functional equations, 0101 mathematics, Stability and convergence of numerical methods for ordinary differential equations, linear stability, explicit and implicit methods
Popis souboru: application/xml
Přístupová URL adresa: https://www.sciencedirect.com/science/article/pii/S0898122102001852
-
16
Autoři:
Zdroj: Advances in Computational Mathematics. 10:271-289
Témata: Bifurcation theory for ordinary differential equations, delay differential equations, Growth, boundedness, comparison of solutions to functional-differential equations, bifurcation, steady state solutions, Numerical investigation of stability of solutions to ordinary differential equations, Numerical approximation of eigenvalues and of other parts of the spectrum of ordinary differential operators, Hopf bifurcations, stability, 0101 mathematics, Numerical solution of eigenvalue problems involving ordinary differential equations, Numerical approximation of solutions of functional-differential equations, 01 natural sciences
Popis souboru: application/xml
-
17
Autoři:
Zdroj: Chaos, Solitons & Fractals. 21:883-891
Témata: quasiperiodic solutions, finite-dimensional discrete dynamical system, limit cycles, Numerical bifurcation problems, Bifurcations of limit cycles and periodic orbits in dynamical systems, 0103 physical sciences, Computational methods for bifurcation problems in dynamical systems, Numerical approximation of solutions of functional-differential equations, 01 natural sciences, Strange attractors, chaotic dynamics of systems with hyperbolic behavior, Bifurcation problems for infinite-dimensional Hamiltonian and Lagrangian systems, periodic oscillations
Popis souboru: application/xml
-
18
Open issues in devising software for the numerical solution of implicit delay differential equations
Autoři: GUGLIELMI, NICOLA
Zdroj: Journal of Computational and Applied Mathematics. 185:261-277
Témata: RADAR5, pantograph equation, numerical examples, Applied Mathematics, Numerical code, 3-stage Radau IIA Runge-Kutta method, RADAR5, Implicit delay differential equations, Radau method, Numerical code, Error control, Numerical approximation of solutions of functional-differential equations, Error control, Numerical methods for initial value problems involving ordinary differential equations, 01 natural sciences, Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations, Computational Mathematics, Radau method, 0101 mathematics, Implicit delay differential equations, Error bounds for numerical methods for ordinary differential equations
Popis souboru: application/xml
Přístupová URL adresa: https://www.sciencedirect.com/science/article/abs/pii/S0377042705001147
https://ui.adsabs.harvard.edu/abs/2006JCoAM.185..261G/abstract
https://www.sciencedirect.com/science/article/pii/S0377042705001147
https://dialnet.unirioja.es/servlet/articulo?codigo=1276509
https://univaq.it/~guglielm/PAPERS/DDESoft.pdf
https://core.ac.uk/display/82776617 -
19
Autoři: Stefano Maset
Zdroj: Journal of Computational and Applied Mathematics. 111:163-172
Témata: asymptotic stability, delay differential equations, Asymptotic stability, Applied Mathematics, Numerical approximation of solutions of functional-differential equations, abstract Cauchy problem, Numerical methods for initial value problems involving ordinary differential equations, 01 natural sciences, Delay differential equation, Computational Mathematics, Linear functional-differential equations, discretization, Abstract Cauchy problem, 0101 mathematics, Stability and convergence of numerical methods for ordinary differential equations
Popis souboru: application/xml
-
20
Autoři:
Zdroj: IMA Journal of Numerical Analysis. 25:57-86
Témata: Numerical solutions to stochastic differential and integral equations, ddc:330, 330 Wirtschaft, Stochastic functional-differential equations, discrete time approximation, Stochastic delay equations, Theoretical approximation of solutions, Stochastic partial differential equations, Stochastic delay equations,Theoretical approximation of solutions,Stochastic partial differential equations,Stability and convergence of numerical approximations, Numerical approximation of solutions of functional-differential equations, 01 natural sciences, Stochastic ordinary differential equations (aspects of stochastic analysis), stochastic differential equations with time delay, forward Euler approximation, Stability and convergence of numerical approximations, weak convergence, 0101 mathematics, Computational methods for stochastic equations (aspects of stochastic analysis), Monte Carlo simulation
Popis souboru: application/xml; application/pdf
Přístupová URL adresa: https://edoc.hu-berlin.de/bitstream/18452/4297/1/88.pdf
https://researchportal.bath.ac.uk/en/publications/weak-approximation -of-stochastic-differential -delay-equations
https://academic.oup.com/imajna/article-abstract/25/1/57/731462
https://edoc.hu-berlin.de/bitstream/18452/4297/1/88.pdf
https://academic.oup.com/imajna/article-abstract/25/1/57/731462/Weak-approximation -of-stochastic-differential
https://edoc.hu-berlin.de/handle/18452/4297
http://hdl.handle.net/10419/62718
http://edoc.hu-berlin.de/18452/4297
https://doi.org/10.18452/3645
https://www.econstor.eu/bitstream/10419/62718/1/725952385.pdf
Nájsť tento článok vo Web of Science
Full Text Finder