Suchergebnisse - Numerical algorithms for specific classes of architectures

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    Weitere Verfasser: Robert Anderson Julian Andrej Andrew Barker et al.

    Quelle: Computers & Mathematics with Applications. 81:42-74

    Schlagwörter: Finite element methods, FOS: Computer and information sciences, Multigrid methods, domain decomposition for boundary value problems involving PDEs, Finite element methods applied to problems in solid mechanics, Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs, Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs, 01 natural sciences, Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations, High-order methods, Numerical algorithms for specific classes of architectures, Finite difference methods for initial value and initial-boundary value problems involving PDEs, 0103 physical sciences, FOS: Mathematics, finite element methods, numerical PDEs, Mathematics - Numerical Analysis, 0101 mathematics, High-performance computing, Numerical methods for eigenvalue problems for boundary value problems involving PDEs, Open-source scientific software, matrix-free algorithms, high-performance computing, Parallel numerical computation, Numerical Analysis (math.NA), Software, source code, etc. for problems pertaining to numerical analysis, Matrix-free algorithms, high-order methods, Computer Science - Mathematical Software, Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs, open-source scientific software, Numerical PDEs, Mathematical Software (cs.MS), Finite element methods applied to problems in fluid mechanics

    Dateibeschreibung: application/xml; application/pdf

  7. 7
  8. 8
  9. 9

    Quelle: Dongarra, J, Grigori, L & Higham, N 2020, 'Numerical Algorithms for High-Performance Computational Science', Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, vol. 378, no. 2166. https://doi.org/10.1098/rsta.2019.0066
    Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences

    Dateibeschreibung: application/xml; application/pdf; text

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20