Výsledky vyhledávání - Newton-like method to approximate implicit functions in a Banach space*

  1. 1
  2. 2
  3. 3
  4. 4

    Popis souboru: application/pdf

    Relation: mr:MR1182964; zbl:Zbl 0771.47035; reference:[1] ARGYROS I. K : Newton-like methods under mild differentiability conditions with error analysis.Bull. Austral. Math. Soc. 37 (1987), 131-147. MR 0926985; reference:[2] BALAZS, M, GOLDNER G.: On the method of the cord and on a modification of it for the solution of nonlinear operator equations.Stud. Cere. Mat. 20 (1968), 981-990. MR 0261778; reference:[3] CHEN X., YAMAMOTO T.: Convergence domains of certain iterative methods for solving nonlinear equations.Numer. Funct. Anal. Optim. 10 (1989), 37-48. Zbl 0645.65028, MR 0978801; reference:[4] DENNIS J. E.: Toward a unified convergence theory for Newton-like methods.In: Nonlinear Functional Analysis and Applications (L. B. Rail, ed.), Academic Press, New York, 1971, pp. 425-472. Zbl 0276.65029, MR 0278556; reference:[5] KANTOROVICH L. V., AKILOV G. P.: Functional Analysis in Normed Spaces.Pergamon Press, New York, 1964. Zbl 0127.06104, MR 0213845; reference:[6] KRASNOLESKII M. A., VAINIKKO G. M., ZABREJKO P. P., al.: The Approximate Solution of Operator Equations.(Russian), Nauka, Moscow, 1969. MR 0259635; reference:[7] POTRA F. A., PTÁK V.: Sharp error bounds for Newton's process.Numer. Math. 34 (1980), 63-72. Zbl 0434.65034, MR 0560794; reference:[8] RALL L. B.: A note on the convergence theory of Newton's method.SIAM J. Numer. Anal. 1 (1974), 34-36. MR 0343599; reference:[9] RHEINBOLDT W. C.: A unified convergence theory for a class of iterative processes.SIAM J. Numer. Anal. 5 (1968), 42-63. Zbl 0155.46701, MR 0225468; reference:[10] RHEINBOLDT W. C.: An adaptive continuation process for solving systems of nonlinear equations.In: Mathematical Models and Numerical Methods. (A. N. Tikhonov and others, eds.) Banach Center Publications 3, PWN-Polish Scientific Publishers, Warszawa, 1978, pp. 129-142. Zbl 0378.65029, MR 0514377; reference:[11] YAMAMOTO T.: A convergence theorem for Newton-like methods in Banach spaces.Numer. Math. 51 (1987), 545-557. Zbl 0633.65049, MR 0910864; reference:[12] ZABREJKO P. P., NGUEN D. F.: The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates.Numer. Funct. Anal. Optim. 9 (1987), 671-684. Zbl 0627.65069, MR 0895991; reference:[13] ZINCENKO A. I.: Some approximate methods of solving equations with nondifferentiable operators.(Ukrainian), Dopovïdï Akad. Nauk Ukraïn. RSR Ser. A (1963), 156-161. MR 0160096

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20