Výsledky vyhledávání - Newton-like method to approximate implicit functions in a Banach space*
-
1
Autoři: Argyros, Ioannis K.
Témata: Newton-like method to approximate implicit functions in a Banach space, Extrapolation to the limit, deferred corrections, Derivatives of functions in infinite-dimensional spaces, Iterative procedures involving nonlinear operators, approximate implicit functions in a Banach space, Numerical solutions to equations with nonlinear operators, error bounds, Linear spaces of operators, linear algebraic system of finite order, Newton-like method
Popis souboru: application/xml
Přístupová URL adresa: https://zbmath.org/1657752
https://zbmath.org/90609 -
2
Autoři: Argyros, Ioannis K.
Témata: Banach space, implicit function, convergence, Iterative procedures involving nonlinear operators, Numerical solutions to equations with nonlinear operators, operator equation, error bounds, Newton-like method
Popis souboru: application/xml
Přístupová URL adresa: https://zbmath.org/569314
-
3
Autoři: a další
Zdroj: Entropy; May2025, Vol. 27 Issue 5, p518, 46p
-
4
Autoři: Argyros, Ioannis K.
Popis souboru: application/pdf
Relation: mr:MR1182964; zbl:Zbl 0771.47035; reference:[1] ARGYROS I. K : Newton-like methods under mild differentiability conditions with error analysis.Bull. Austral. Math. Soc. 37 (1987), 131-147. MR 0926985; reference:[2] BALAZS, M, GOLDNER G.: On the method of the cord and on a modification of it for the solution of nonlinear operator equations.Stud. Cere. Mat. 20 (1968), 981-990. MR 0261778; reference:[3] CHEN X., YAMAMOTO T.: Convergence domains of certain iterative methods for solving nonlinear equations.Numer. Funct. Anal. Optim. 10 (1989), 37-48. Zbl 0645.65028, MR 0978801; reference:[4] DENNIS J. E.: Toward a unified convergence theory for Newton-like methods.In: Nonlinear Functional Analysis and Applications (L. B. Rail, ed.), Academic Press, New York, 1971, pp. 425-472. Zbl 0276.65029, MR 0278556; reference:[5] KANTOROVICH L. V., AKILOV G. P.: Functional Analysis in Normed Spaces.Pergamon Press, New York, 1964. Zbl 0127.06104, MR 0213845; reference:[6] KRASNOLESKII M. A., VAINIKKO G. M., ZABREJKO P. P., al.: The Approximate Solution of Operator Equations.(Russian), Nauka, Moscow, 1969. MR 0259635; reference:[7] POTRA F. A., PTÁK V.: Sharp error bounds for Newton's process.Numer. Math. 34 (1980), 63-72. Zbl 0434.65034, MR 0560794; reference:[8] RALL L. B.: A note on the convergence theory of Newton's method.SIAM J. Numer. Anal. 1 (1974), 34-36. MR 0343599; reference:[9] RHEINBOLDT W. C.: A unified convergence theory for a class of iterative processes.SIAM J. Numer. Anal. 5 (1968), 42-63. Zbl 0155.46701, MR 0225468; reference:[10] RHEINBOLDT W. C.: An adaptive continuation process for solving systems of nonlinear equations.In: Mathematical Models and Numerical Methods. (A. N. Tikhonov and others, eds.) Banach Center Publications 3, PWN-Polish Scientific Publishers, Warszawa, 1978, pp. 129-142. Zbl 0378.65029, MR 0514377; reference:[11] YAMAMOTO T.: A convergence theorem for Newton-like methods in Banach spaces.Numer. Math. 51 (1987), 545-557. Zbl 0633.65049, MR 0910864; reference:[12] ZABREJKO P. P., NGUEN D. F.: The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates.Numer. Funct. Anal. Optim. 9 (1987), 671-684. Zbl 0627.65069, MR 0895991; reference:[13] ZINCENKO A. I.: Some approximate methods of solving equations with nondifferentiable operators.(Ukrainian), Dopovïdï Akad. Nauk Ukraïn. RSR Ser. A (1963), 156-161. MR 0160096
Dostupnost: http://hdl.handle.net/10338.dmlcz/132917
-
5
Autoři: a další
Zdroj: Optimization Methods & Software; Aug-Dec2018, Vol. 33 Issue 4-6, p1030-1072, 43p
-
6
Autoři:
Zdroj: Journal of Applied Mathematics & Computing; Oct2025, Vol. 71 Issue 5, p7205-7223, 19p
-
7
Autoři:
Zdroj: Journal of Nonlinear & Variational Analysis; 2025, Vol. 9 Issue 4, p523-538, 16p
-
8
Autoři:
Zdroj: Numerical Algorithms; Dec2021, Vol. 88 Issue 4, p1811-1829, 19p
-
9
Autoři:
Zdroj: Applicable Analysis; 2022, Vol. 101 Issue 1, p14-34, 21p
-
10
Autoři: DE MARCHI, ALBERTO
Zdroj: Journal of Applied & Numerical Optimization; 2024, Vol. 6 Issue 2, p291-320, 30p
-
11
Autoři: a další
Zdroj: Axioms (2075-1680); Jun2024, Vol. 13 Issue 6, p358, 13p
-
12
Autoři:
Zdroj: Computational & Applied Mathematics; Sep2018, Vol. 37 Issue 4, p5082-5097, 16p
-
13
Autoři:
Zdroj: Journal of Dynamics & Differential Equations; Dec2021, Vol. 33 Issue 4, p1959-1988, 30p
-
14
Autoři:
Zdroj: Journal of Optimization Theory & Applications; Oct2008, Vol. 139 Issue 1, p85-107, 23p, 4 Diagrams, 4 Charts, 1 Graph
-
15
Autoři:
Zdroj: SeMA Journal; Jun2018, Vol. 75 Issue 2, p215-227, 13p
-
16
Autoři: Chuong, Thai
Zdroj: Computational Optimization & Applications; Apr2013, Vol. 54 Issue 3, p495-516, 22p
-
17
Autoři: a další
Zdroj: AIMS Mathematics; 2024, Vol. 9 Issue 12, p1-37, 37p
-
18
Autoři:
Zdroj: Results in Nonlinear Analysis; 2024, Vol. 7 Issue 3, p1-18, 18p
Témata: FRACTALS, ALGORITHMS, SIN, MANUSCRIPTS, COLOR
-
19
Autoři:
Zdroj: Journal of Optimization Theory & Applications; Jun2012, Vol. 153 Issue 3, p779-793, 15p
-
20
Autoři:
Zdroj: Journal of Optimization Theory & Applications; Sep2006, Vol. 130 Issue 3, p409-428, 20p, 2 Charts
Nájsť tento článok vo Web of Science
Full Text Finder