Search Results - Multi-Objective Modified Directional Bat Algorithm

Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    Alternate Title: Current research status of path planning algorithms of guide robots for the blind. (English)

    Authors: 郭玉力 杨文帆 张 焕 et al.

    Source: Chinese Medical Equipment Journal; Feb2025, Vol. 46 Issue 2, p92-101, 10p

  6. 6

    File Description: application/pdf

    Relation: zbl:Zbl 07177918; reference:[1] Abdelaziz, A. Y., Ali, E. S., Elazim, S. M. A.: Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems.Energy 101 (2016), 506-518. 10.1016/j.energy.2016.02.041; reference:[2] Chakri, A., Khelif, R., Benouaret, M., al., et: New directional bat algorithm for continuous optimization problems.Expert Systems Appl. 69 (2017), 159-175. 10.1016/j.eswa.2016.10.050; reference:[3] Chen, C. L., Vempati, V. S., Aljaber, N.: An application of genetic algorithms for flow shop problems.Europ. J. Oper. Res. 80 (1995), 389-396. 10.1016/0377-2217(93)e0228-p; reference:[4] Cheng, C. T., Liao, S. L., Tang, Z. T., al., et: Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch.Energy Conversion Management 50 (2009), 3007-3014. 10.1016/j.enconman.2009.07.020; reference:[5] Chen, F., Zhou, J., Wang, C., al., et: A modified gravitational search algorithm based on a non-dominated sorting genetic approach for hydro-thermal-wind economic emission dispatching.Energy 121 (2017), 276-291. 10.1016/j.energy.2017.01.010; reference:[6] Das, S., Suganthan, P. N.: Differential evolution: a Survey of the State-of-the-art.IEEE Trans. Evolutionary Comput. 15 (2011), 4-31. MR 3032010, 10.1109/tevc.2010.2059031; reference:[7] Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents.IEEE Trans. Systems, Man, Cybernetics, Part B (Cybernetics) 26 (1996), 29-41. 10.1109/3477.484436; reference:[8] Fahrioglu, M., Alvarado, F. L.: Designing incentive compatible contracts for effective demand management.IEEE Trans. Power Systems 15 (2000), 1255-1260. 10.1109/59.898098; reference:[9] Fahrioglu, M., Alvarado, F. L.: Using utility information to calibrate customer demand management behavior models.IEEE Trans. Power Systems 16 (2001), 317-322. 10.1109/59.918305; reference:[10] Gan, C., Cao, W., Wu, M., al., et: A new bat algorithm based on iterative local search and stochastic inertia weight.Expert Systems Appl. 104 (2018), 202-212. 10.1016/j.eswa.2018.03.015; reference:[11] Gandomi, A. H., Yang, X. S.: Chaotic bat algorithm.J. Comput. Sci. 5 (2014), 224-232. MR 3173261, 10.1016/j.jocs.2013.10.002; reference:[12] Gandomi, A. H., Yang, X. S., Alavi, A. H., al., et: Bat algorithm for constrained optimization tasks.Neural Computing Appl. 22 (2013), 1239-1255. 10.1007/s00521-012-1028-9; reference:[13] Ghasemi, M., Ghavidel, S., Ghanbarian, M. M., al., et: Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm.Energy 78 (2014), 276-289. 10.1016/j.energy.2014.10.007; reference:[14] Guo, Y., Tong, L., Wu, W., al., et: Coordinated Multi-area Economic Dispatch via Critical Region Projection.IEEE Trans. Power Systems 32 (2017), 3736-3746. 10.1109/tpwrs.2017.2655442; reference:[15] Guo, F., Wen, C., Mao, J., al., et: Distributed economic dispatch for dmart grids with random wind power.IEEE Trans. Smart Grid 7 (2016), 1572-1583. 10.1109/tsg.2015.2434831; reference:[16] He, X. S., Ding, W. J., Yang, X. S.: Bat algorithm based on simulated annealing and Gaussian perturbations.Neural Comput. Appl. 25 (2014), 459-468. 10.1007/s00521-013-1518-4; reference:[17] Hetzer, J., Yu, D. C., Bhattarai, K.: An economic dispatch model incorporating wind power.IEEE Trans. Energy Conversion 23 (2008), 603-611. 10.1109/tec.2007.914171; reference:[18] Jabr, R., Coonick, A. H., Cory, B. J.: A homogeneous linear programming algorithm for the security constrained economic dispatch problem.IEEE Trans. Power Syst. 15 (2000), 930-936. 10.1109/59.871715; reference:[19] Jeddi, B., Vahidinasab, V.: A modified harmony search method for environmental/economic load dispatch of real-world power systems.Energy Conversion Management 78 (2014), 661-675. 10.1016/j.enconman.2013.11.027; reference:[20] Ji, M., Tang, H.: Application of chaos in simulated annealing.Chaos Solitons Fractals 21 (2004), 933-941. MR 2076025, 10.1016/j.chaos.2003.12.032; reference:[21] Kennedy, J., Eberhart, R.: Particle swarm optimization.In: Proc. ICNN'95 - International Conference on Neural Networks, Perth 1995, 4, pp. 1942-1948. 10.1109/icnn.1995.488968; reference:[22] Lee, K. Y., Park, Y. M., Ortiz, J. L.: Fuel-cost minimisation for both real-and reactive-power dispatches.IEE Proceedings. Part C: Generation, Transmission and Distribution. 131 (1984), 85-93. 10.1049/ip-c.1984.0012; reference:[23] Li, M., Hou, J., Niu, Y., al., et: Economic dispatch of wind-thermal power system by using aggregated output characteristics of virtual power plants.In: International Conference on Control and Automation, IEEE 2016, pp. 830-835. 10.1109/icca.2016.7505381; reference:[24] Liang, H., Liu, Y., Shen, Y., al., et: A hybrid bat algorithm for economic dispatch with random wind power.IEEE Trans. Power Syst. 33 (2018), 5052-5061. 10.1109/tpwrs.2018.2812711; reference:[25] Liu, X., Xu, W.: Minimum emission dispatch constrained by stochastic wind power availability and cost.IEEE Trans. Power Systems 25 (2010), 1705-1713. 10.1109/tpwrs.2010.2042085; reference:[26] al., I. Mazhoud et: Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism.Engrg. Appl. Artif. Intell. 26 (2013), 1263-1273. 10.1016/j.engappai.2013.02.002; reference:[27] Nwulu, N. I., Fahrioglu, M.: A neural network model for optimal demand management contract design.In: International Conference on Environment and Electrical Engineering, IEEE 2011, pp. 1-4. 10.1109/eeeic.2011.5874776; reference:[28] Nwulu, N. I., Fahrioglu, M.: Power system demand management contract design: A comparison between game theory and artificial neural networks.Int. Rev. Modell. Simul. 4 (2011), 104-112.; reference:[29] Nwulu, N. I., Xia, X.: Optimal dispatch for a microgrid incorporating renewables and demand response.Renewable Energy 101 (2017), 16-28. 10.1016/j.renene.2016.08.026; reference:[30] Park, J. B., Lee, K. S., Shin, J. R., al., et: A particle swarm optimization for economic dispatch with nonsmooth cost functions.IEEE Trans. Power Syst. 20 (2005), 34-42. 10.1109/tpwrs.2004.831275; reference:[31] Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing.J. Comput. Physics 226 (2007), 1830-1844. MR 2356396, 10.1109/tpwrs.2004.831275; reference:[32] Sen, T., Mathur, H. D.: A new approach to solve Economic Dispatch problem using a Hybrid ACO/ABC/HS optimization algorithm.Int. J. Electr. Power Energy Systems 78 (2016), 735-744. 10.1016/j.ijepes.2015.11.121; reference:[33] Walters, D. C., Sheble, G. B.: Genetic algorithm solution of economic dispatch with valve point loading.IEEE Trans. Power Systems 8 (1993), 1325-1332. 10.1109/59.260861; reference:[34] Wood, A. J., Wollenberg, B. F.: Power generation operation and control. Second edition.Fuel Energy Abstracts 37 (1996), 195. 10.1016/0140-6701(96)88715-7; reference:[35] Yang, X. S.: A new metaheuristic bat-inspired algorithm.Comput. Knowledge Technol. 284 (2010), 65-74. 10.1007/978-3-642-12538-6_6; reference:[36] Yang, X. S., Deb, S.: Engineering optimisation by cuckoo search.Int. J. Math. Modell. Numer. Optim. 1 (2010), 330-343. 10.1504/ijmmno.2010.035430; reference:[37] Yang, X., Gandomi, A. H.: Bat algorithm: a novel approach for global engineering optimization.Engrg. Computations 29 (2012), 464-483. MR 3206205, 10.1108/02644401211235834; reference:[38] Yang, H., Yi, J., Zhao, J., al., et: Extreme learning machine based genetic algorithm and its application in power system economic dispatch.Neurocomputing 102 (2013), 154-162. 10.1016/j.neucom.2011.12.054; reference:[39] Yao, F., Dong, Z. Y., Meng, K., al., et: Quantum-inspired particle swarm optimization for power system operations considering wind power uncertainty and carbon tax in Australia.IEEE Trans. Industr. Inform. 8 (2012), 880-888. 10.1109/tii.2012.2210431

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20