Výsledky vyhledávání - Mathematical program with linear complementary constraints

Upřesnit hledání
  1. 1
  2. 2
  3. 3

    Přispěvatelé: University/Department: Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa

    Thesis Advisors: Nabona, Narcís

    Zdroj: TDX (Tesis Doctorals en Xarxa)

    Popis souboru: application/pdf

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

    Zdroj: Integration of Household-Based Interventions With Early Childhood Programming: A Randomized Controlled Trial in the Philippines
    Bryan G, Choi JJ, Karlan D. Randomizing religion: the impact of Protestant evangelism on economic outcomes. The Quarterly Journal of Economics. 2021 Feb;136(1):293-380.
    "Angrist, N., Kabay, S., Karlan, D., Lau, L., & Wong, K. (2025). Human Capital at Home: Evidence from a Randomized Evaluation in the Philippines (No. w33574). National Bureau of Economic Research.

  14. 14
  15. 15
  16. 16

    Popis souboru: application/pdf

    Relation: mr:MR3501157; zbl:Zbl 1357.49124; reference:[1] Anitescu, M.: Global convergence of an elastic mode approach for a class of mathematical programs with complementarity constraints.SIAM J. Optim. 16 (2005), 120-145. Zbl 1099.65050, MR 2177772, 10.1137/040606855; reference:[2] Anitescu, M.: On using the elastic mode in nonlinear programming approaches to mathematical programs with complementarity constraints.SIAM J. Optim. 15 (2005), 1203-1236. Zbl 1097.90050, MR 2178496, 10.1137/s1052623402401221; reference:[3] Biegler, L. T., Raghunathan, A. U.: An interior point method for mathematical programs with complementarity constraints (MPCCs).SIAM J. Optim. 15 (2005), 720-750. Zbl 1077.90079, MR 2142858, 10.1137/s1052623403429081; reference:[4] DeMiguel, V., Friedlander, M. P., Nogales, F. J., Scholtes, S.: A two-sided relaxation scheme for mathematical programs with equilibrium constraints.SIAM J. Optim. 16 (2005), 587-609. Zbl 1122.90060, MR 2197997, 10.1137/04060754x; reference:[5] Facchinei, F., Jiang, H., Qi, L.: A smoothing method for mathematical programs with equilibrium constraints.Math. Programming 85 (1999), 107-134. Zbl 0959.65079, MR 1689366, 10.1007/s101070050048; reference:[6] Fletcher, R.: Practical Methods of Optimization 2: Constrained Optimization.John Wiley and Sons, Chichester 1981. MR 0633058; reference:[7] Fletcher, R., Leyffer, S.: Solving mathematical programs with complementary constraints as nonlinear programs. Zbl 1074.90044; reference:[8] Fletcher, R., Leyffer, S., Ralph, D., Scholtes, S.: Local convergence of SQP methods for mathematical programs with equilibrium constraints.SIAM J. Optim. 17 (2006), 259-286. Zbl 1112.90098, MR 2219153, 10.1137/s1052623402407382; reference:[9] Fukushima, M., Tseng, P.: An implementable active-set algorithm for computing a b-stationary point of a mathematical program with linear complementarity constraints.SIAM J. Optim. 12 (2002), 724-739. Zbl 1127.65034, MR 1884914, 10.1137/s1052623499363232; reference:[10] Gfrerer, H.: Optimality conditions for disjunctive programs based on generalized differentiation with application to mathematical programs with equilibrium constraints.SIAM J. Optim. 24 (2014), 898-931. Zbl 1298.49021, MR 3217222, 10.1137/130914449; reference:[11] Giallombardo, G., Ralph, D.: Multiplier convergence in trust region methods with application to convergence of decomposition methods for MPECs.Math. Programming 112 (2008), 335-369. Zbl 1145.90073, MR 2361928, 10.1007/s10107-006-0020-5; reference:[12] Hu, X. M., Ralph, D.: Convergence of a penalty method for mathematical programming with complementarity constraints.J. Optim. Theory Appl. 123 (2004), 365-390. MR 2101411, 10.1007/s10957-004-5154-0; reference:[13] Izmailov, A. F., Pogosyan, A. L., Solodov, M. V.: Semismooth Newton method for the lifted reformulation of mathematical programs with complementarity constraints.Computational Optim. Appl. 51 (2012), 199-221. Zbl 1245.90124, MR 2872496, 10.1007/s10589-010-9341-7; reference:[14] Jiang, H., Ralph, D.: QPECgen, a MATLAB generator for mathematical programs with quadratic objectives and affine variational inequality constraints.Comput. Optim. Appl. 13 (1999), 25-59. MR 1704113, 10.1023/A:1008696504163; reference:[15] Jiang, H., Ralph, D.: Extension of quasi-newton methods to mathematical programs with complementarity constraints.Comput. Optim. Appl. 25 (2002), 123-150. Zbl 1038.90100, MR 1996665, 10.1023/A:1022945316191; reference:[16] Kadrani, A., Dussault, J. P., Benchakroun, A.: A new regularization scheme for mathematical programs with complementarity constraints.SIAM J. Optim. 20 (2009), 78-103. Zbl 1187.65064, MR 2496894, 10.1137/070705490; reference:[17] Kanzow, C., Schwartz, A.: A new regularization method for mathematical programs with complementarity constraints with strong convergence properties.SIAM J. Optim. 23 (2013), 770-798. Zbl 1282.65069, MR 3045664, 10.1137/100802487; reference:[18] Kanzow, C., Schwartz, A.: The price of inexactness: convergence properties of relaxation methods for mathematical programs with equilibrium constraints revisited.Math. Oper. Res. 40 (2015), 2, 253-275. MR 3320430, 10.1287/moor.2014.0667; reference:[19] Leyffer, S.: MacMPEC: AMPL collection of MPECs, 2000.; reference:[20] Leyffer, S., López-Calva, G., Nocedal, J.: Interior methods for mathematical programs with complementarity constraints.SIAM J. Optim. 17 (2006), 52-77. Zbl 1112.90095, MR 2219144, 10.1137/040621065; reference:[21] Lin, G. H., Fukushima, M.: A modified relaxation scheme for mathematical programs with complementarity constraints.Ann. Oper. Res. 133 (2005), 63-84. Zbl 1119.90058, MR 2119313, 10.1007/s10479-004-5024-z; reference:[22] Luo, Z. Q., Pang, J. S., Ralph, D.: Mathematical Programs with Equilibrium Constraints.Cambridge University Press, Cambridge, New York, Melbourne 1996. Zbl 1139.90003, MR 1419501, 10.1017/cbo9780511983658; reference:[23] Luo, Z. Q., Pang, J. S., Ralph, D.: Piecewise sequential quadratic programming for mathematical programs with nonlinear complementarity constraints.In: Multilevel Optimization: Algorithms, Complexity, and Applications (A. Migdalas, P. Pardalos, and P. Värbrand, eds.), Kluwer Academic Publishers, Dordrecht 1998, pp. 209-229. Zbl 0897.90184, MR 1605239, 10.1007/978-1-4613-0307-7_9; reference:[24] Luo, Z. Q., Pang, J. S., Ralph, D., Wu, S. Q.: Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints.Math. Programming 75 (1996), 19-76. Zbl 0870.90092, MR 1415093, 10.1007/bf02592205; reference:[25] Outrata, J. V., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, Nonconvex Optimization and its Applications.Kluwer Academic Publishers, Dordrecht 1998. MR 1641213, 10.1007/978-1-4757-2825-5; reference:[26] Powell, M. J. D.: A fast algorithm for nonlinearly constrained optimization calculations.In: Numerical Analysis Dundee 1977 (G. A. Watson, ed.), Lecture Notes in Mathematics 630, Springer, Berlin, 1978, pp. 144-157. Zbl 0374.65032, MR 0483447, 10.1007/bfb0067703; reference:[27] Ralph, D., Wright, S. J.: Some properties of regularization and penalization schemes for MPECs.Optim. Methods Software 19 (2004), 527-556. Zbl 1097.90054, MR 2095351, 10.1080/10556780410001709439; reference:[28] Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity.Math. Oper. Res. 25 (2000), 1-22. Zbl 1073.90557, MR 1854317, 10.1287/moor.25.1.1.15213; reference:[29] Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints.SIAM J. Optim. 11 (2001), 918-936. Zbl 1010.90086, MR 1855214, 10.1137/s1052623499361233; reference:[30] Scholtes, S., Stöhr, M.: Exact penalization of mathematical programs with equilibrium constraints.SIAM J. Control Optim. 37 (1999), 617-652. Zbl 0922.90128, MR 1670641, 10.1137/s0363012996306121; reference:[31] Steffensen, S., Ulbrich, M.: A new regularization scheme for mathematical programs with equilibrium constraints.SIAM J. Optim. 20 (2010), 2504-2539. MR 2678403, 10.1137/090748883; reference:[32] Stein, O.: Lifting mathematical programs with complementarity constraints.Math. Programming 131 (2012), 71-94. Zbl 1250.90094, MR 2886141, 10.1007/s10107-010-0345-y; reference:[33] Stöhr, M.: Nonsmooth Trust Region Methods and their Applications to Mathematical Programs with Equilibrium Constraints.Shaker-Verlag, Aachen 1999.; reference:[34] Zhang, J., Liu, G.: A new extreme point algorithm and its application in psqp algorithms for solving mathematical programs with linear complementarity constraints.J. Glob. Optim. 19 (2001), 335-361. Zbl 1049.90125, MR 1824769, 10.1023/A:1011226232107

  17. 17
  18. 18
  19. 19
  20. 20