Search Results - Local sparse coding
-
1
Authors: et al.
Contributors: et al.
Source: IEEE Transactions on Image Processing. 27:3857-3869
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, local sparse coding, spatial structure information, 0202 electrical engineering, electronic engineering, information engineering, template update, 02 engineering and technology, Visual tracking
File Description: application/pdf
Access URL: https://pubmed.ncbi.nlm.nih.gov/29727271
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8268563
https://dblp.uni-trier.de/db/journals/tip/tip27.html#QiQZZHY18
https://repository.kaust.edu.sa/handle/10754/627018
https://yonsei.pure.elsevier.com/en/publications/structure-aware-local -sparse -coding -for-visual-tracking
https://ieeexplore.ieee.org/document/8268563
http://ui.adsabs.harvard.edu/abs/2018ITIP...27.3857Q/abstract -
2
Authors:
Source: Dyna, Vol 86, Iss 209, Pp 238-247 (2019)
DYNA, Volume: 86, Issue: 209, Pages: 238-247, Published: JUN 2019Subject Terms: Technology, Mining engineering. Metallurgy, sparse coding, saliency, código disperso, TN1-997, 02 engineering and technology, minimum description length, nubes de puntos, longitud de descripción mínima, point clouds, 0202 electrical engineering, electronic engineering, information engineering, salencia
File Description: text/html
Access URL: https://revistas.unal.edu.co/index.php/dyna/article/download/75958/71151
https://doaj.org/article/f291637ba2ff4baf933afc54e155fda7
http://www.scielo.org.co/pdf/dyna/v86n209/0012-7353-dyna-86-209-238.pdf
https://dialnet.unirioja.es/servlet/articulo?codigo=7029928
https://dialnet.unirioja.es/descarga/articulo/7029928.pdf
https://revistas.unal.edu.co/index.php/dyna/article/view/75958
https://paperity.org/p/219984480/point-cloud-saliency-detection-via-local -sparse -coding
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532019000200238
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532019000200238&lng=en&tlng=en -
3
Authors: et al.
Source: IEEE Access, Vol 7, Pp 10653-10662 (2019)
Subject Terms: sparse representation based classification (SRC), 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, regularization parameters, Electrical engineering. Electronics. Nuclear engineering, 02 engineering and technology, Face recognition, TK1-9971
-
4
Authors: et al.
Source: Multimedia Tools and Applications. 79:785-804
Subject Terms: 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Access URL: https://dblp.uni-trier.de/db/journals/mta/mta79.html#ZhaoXMWCWZ20
https://link.springer.com/content/pdf/10.1007/s11042-019-08139-2.pdf
http://dblp.uni-trier.de/db/journals/mta/mta79.html#ZhaoXMWCWZ20
https://doi.org/10.1007/s11042-019-08139-2
https://link.springer.com/article/10.1007%2Fs11042-019-08139-2 -
5
Authors: et al.
Source: Information Sciences. 486:88-100
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
6
Authors:
Source: 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC). :865-868
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
7
Authors: et al.
Source: Lecture Notes in Computer Science ISBN: 9783030017675
Subject Terms: FOS: Computer and information sciences, Computer Science - Machine Learning, Subspace Clustering, Sparse Coding, Machine Learning (stat.ML), 02 engineering and technology, Machine Learning (cs.LG), Machine Learning, 03 medical and health sciences, 0302 clinical medicine, Statistics - Machine Learning, Computer Science - Data Structures and Algorithms, 0202 electrical engineering, electronic engineering, information engineering, Data Mining, Data Structures and Algorithms (cs.DS)
File Description: application/vnd.openxmlformats-officedocument.presentationml.presentation
Access URL: http://arxiv.org/pdf/1903.05239
http://arxiv.org/abs/1903.05239
https://rd.springer.com/chapter/10.1007/978-3-030-01768-2_12
https://pub.uni-bielefeld.de/download/2921209/2931846/IDA2018_last.pptx
https://doi.org/10.1007/978-3-030-01768-2_12
https://pub.uni-bielefeld.de/record/2921209
http://dblp.uni-trier.de/db/journals/corr/corr1903.html#abs-1903-05239
https://dblp.uni-trier.de/db/journals/corr/corr1903.html#abs-1903-05239
https://arxiv.org/pdf/1903.05239
http://ui.adsabs.harvard.edu/abs/2019arXiv190305239H/abstract
https://arxiv.org/abs/1903.05239
https://pub.uni-bielefeld.de/record/2921209 -
8
Authors: et al.
Source: Neurocomputing. 184:36-42
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
9
-
10
Additional Titles: Detección de prominencia de nubes de puntos por medio de codificación dispersa local
Authors:
Source: DYNA; Vol. 86 Núm. 209 (2019): April-June, 2019; 238-247; DYNA; Vol. 86 No. 209 (2019): April-June, 2019; 238-247; 2346-2183; 0012-7353
Index Terms: point clouds, sparse coding, saliency, minimum description length, nubes de puntos, código disperso, salencia, longitud de descripción mínima, info:eu-repo/semantics/article, info:eu-repo/semantics/publishedVersion
URL:
https://revistas.unal.edu.co/index.php/dyna/article/view/75958/71151 https://revistas.unal.edu.co/index.php/dyna/article/view/75958/71151
*ref*/Jia S., Zhang C., Li X., and Zhou Y., Mesh resizing based on hierarchical saliency detection, Graph. Models, 76 (5), pp. 355–362, Sep. 2014.
*ref*/Wolfe J. M., Guided Search 2.0 A revised model of visual search, Psychon. Bull. Rev., 1(2), pp. 202–238, Jun. 1994.
*ref*/Koch C., and Poggio T., Predicting the visual world: silence is golden, Nat. Neurosci., 2 (1), pp. 9–10, Jan. 1999.
*ref*/Somasundaram G., Cherian A., Morellas V., and Papanikolopoulos N., Action recognition using global spatio-temporal features derived from sparse representations, Comput. Vis. Image Underst., 123(1), pp. 1–13, Jun. 2014.
*ref*/Kalboussi R., Abdellaoui M., and Douik A., A spatiotemporal model for video saliency detection, in 2016 International Image Processing, Applications and Systems (IPAS), 2016, pp. 1–6.
*ref*/Kim Y., Varshney A., Jacobs D. W., and Guimbretière F., Mesh Saliency and Human Eye Fixations, ACM Trans Appl Percept, 7 (2), pp. 1–13, Feb. 2010.
*ref*/Lau M., Dev K., Shi W., Dorsey J., and Rushmeier H., Tactile Mesh Saliency, ACM Trans Graph, 35(4), pp. 1–11, Jul. 2016.
*ref*/Limper M., Kuijper A., and Fellner D. W., Mesh Saliency Analysis via Local Curvature Entropy, in Proceedings of the 37th Annual Conference of the European Association for Computer Graphics: Short Papers, Goslar Germany, Germany, 2016, pp. 13–16. Jia S., Zhang C., Li X., and Zhou Y., Mesh resizing based on hierarchical saliency detection, Graph. Models, 76 (5), pp. 355–362, Sep. 2014. [2] Wolfe J. M., Guided Search 2.0 A revised model of visual search, Psychon. Bull. Rev., 1(2), pp. 202–238, Jun. 1994. [3] Koch C., and Poggio T., Predicting the visual world: silence is golden, Nat. Neurosci., 2 (1), pp. 9–10, Jan. 1999. [4] Somasundaram G., Cherian A., Morellas V., and Papanikolopoulos N., Action recognition using global spatio-temporal features derived from sparse representations, Comput. Vis. Image Underst., 123(1), pp. 1–13, Jun. 2014.
*ref*/Kalboussi R., Abdellaoui M., and Douik A., A spatiotemporal model for video saliency detection, in 2016 International Image Processing, Applications and Systems (IPAS), 2016, pp. 1–6.
*ref*/Kim Y., Varshney A., Jacobs D. W., and Guimbretière F., Mesh Saliency and Human Eye Fixations, ACM Trans Appl Percept, 7 (2), pp. 1–13, Feb. 2010.
*ref*/Lau M., Dev K., Shi W., Dorsey J., and Rushmeier H., Tactile Mesh Saliency, ACM Trans Graph, 35(4), pp. 1–11, Jul. 2016.
*ref*/Limper M., Kuijper A., and Fellner D. W., Mesh Saliency Analysis via Local Curvature Entropy, in Proceedings of the 37th Annual Conference of the European Association for Computer Graphics: Short Papers, Goslar Germany, Germany, 2016, pp. 13–16.
*ref*/Wang S., Li N., Li S., Luo Z., Su Z., and Qin H., Multi-scale mesh saliency based on low-rank and sparse analysis in shape feature space, Comput. Aided Geom. Des., 35(36), pp. 206–214, May 2015.
*ref*/Liu X., Tao P., Cao J., Chen H., and Zou C., Mesh saliency detection via double absorbing Markov chain in feature space, Vis. Comput., 32(9), pp. 1121–1132, Sep. 2016.
*ref*/Tao P., Cao J., Li S., Liu X., and Liu L., Mesh saliency via ranking unsalient patches in a descriptor space, Comput. Graph., 46, pp. 264–274, Feb. 2015.
*ref*/Song R., Liu Y., Martin R., and Rosin P. L., Mesh Saliency via Spectral Processing, ACM Trans Graph, 33(1), pp. 6:1–6:17, Feb. 2014.
*ref*/Wu J., Shen X., Zhu W., and Liu L., Mesh saliency with global rarity, Graph. Models, 75(5), pp. 255–264, Sep. 2013.
*ref*/Nouri A., Charrier C., and Lézoray O., Multi-scale mesh saliency with local adaptive patches for viewpoint selection, Signal Process. Image Commun., 38, pp. 151–166, Oct. 2015.
*ref*/Liu X., Ma L., and Liu L., P2: a robust and rotationally invariant shape descriptor with applications to mesh saliency, Appl. Math.- J. Chin. Univ., 31(1), pp. 53–67, Mar. 2016.
*ref*/Zhao Y. et al., Region-based saliency estimation for 3D shape analysis and understanding, Neurocomputing, 197, pp. 1–13, Jul. 2016.
*ref*/Jeong S. W., and Sim J. Y., Saliency Detection for 3D Surface Geometry Using Semi-regular Meshes, IEEE Trans. Multimed., 19(12), pp. 2692–2705, Dec. 2017.
*ref*/Song R., Liu Y., Martin R., and Echavarria K., Local-to-global mesh saliency, Vis. Comput., 34(3), pp. 323–336, Nov. 2016.
*ref*/Guo Y., Wang F., and Xin J., Point-wise saliency detection on 3D point clouds via covariance descriptors, Vis. Comput., pp. 1–14, Jun. 2017.
*ref*/Tasse F. P., Kosinka J., and Dodgson N., Cluster-Based Point Set Saliency, in 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 163–171.
*ref*/Shtrom E., Leifman G., and Tal A., Saliency Detection in Large Point Sets, in 2013 IEEE International Conference on Computer Vision, 2013, pp. 3591–3598.
*ref*/Akman O., and Jonker P., Computing Saliency Map from Spatial Information in Point Cloud Data, in Advanced Concepts for Intelligent Vision Systems, 2010, pp. 290–299.
*ref*/Yu H., Wang R., Chen J., Liu L., and Wan W., Saliency computation and simplification of point cloud data, 2012, pp. 1350–1353.
*ref*/An G., Watanabe T., and Kakimoto M., Mesh Simplification Using Hybrid Saliency, in 2016 International Conference on Cyberworlds (CW), 2016, pp. 231–234.
*ref*/Dutta S., Banerjee S., Biswas P. K., and Bhowmick P., Mesh Denoising Using Multi-scale Curvature-Based Saliency, in Computer Vision - ACCV 2014 Workshops, 2014, pp. 507–516.
*ref*/Jiao X., Wu T., and Qin X., Mesh segmentation by combining mesh saliency with spectral clustering, J. Comput. Appl. Math., 329(1), pp. 134–146, Feb. 2018.
*ref*/Tasse F. P., Kosinka J., and Dodgson N., How Well Do Saliency-based Features Perform for Shape Retrieval?, Comput Graph, 59(C), pp. 57–67, Oct. 2016.
*ref*/Gal R., and Cohen-Or D., Salient Geometric Features for Partial Shape Matching and Similarity, ACM Trans Graph, 25(1), pp. 130–150, Jan. 2006.
*ref*/Wang W. et al., Saliency‐Preserving Slicing Optimization for Effective 3D Printing, Comput. Graph. Forum, 34(6), pp. 148–160, Sep. 2015.
*ref*/Li Y., Zhou Y., Xu L., Yang X., and Yang J., Incremental sparse saliency detection, in 2009 16th IEEE International Conference on Image Processing (ICIP), 2009, pp. 3093–3096.
*ref*/Ramirez I. and Sapiro G., An MDL Framework for Sparse Coding and Dictionary Learning, IEEE Trans. Signal Process., 60(6), pp. 2913–2927, Jun. 2012.
*ref*/Lee C. H., Varshney A., and Jacobs D. W., Mesh Saliency, in ACM SIGGRAPH 2005 Papers, New York, NY, USA, 2005, pp. 659–666.
*ref*/Leifman G., Shtrom E., and Tal A., Surface regions of interest for viewpoint selection, in 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 414–421.
*ref*/Itti L., Koch C., and Niebur E., A model of saliency-based visual attention for rapid scene analysis, IEEE Trans. Pattern Anal. Mach. Intell., 20(11), pp. 1254–1259, Nov. 1998.
*ref*/Itti L. and Koch C., Computational modelling of visual attention, Nat. Rev. Neurosci., 2(3), pp. 194–203, Mar. 2001.
*ref*/Olshausen and Field D. J., Sparse coding with an overcomplete basis set: A strategy employed by V1?, Vision Res., 37(23), pp. 3311–3325, Dec. 1997.
*ref*/Bao C., Ji H., Quan Y., and Shen Z., Dictionary Learning for Sparse Coding: Algorithms and Convergence Analysis, IEEE Trans. Pattern Anal. Mach. Intell., 38(7), pp. 1356–1369, Jul. 2016.
*ref*/Rissanen J., Modeling by shortest data description, Automatica, 14(5), pp. 465–471, Sep. 1978.
*ref*/Bruce N. D. B., and Tsotsos J. K., Saliency Based on Information Maximization, in Proceedings of the 18th International Conference on Neural Information Processing Systems, Cambridge, MA, USA, 2005, pp. 155–162.
*ref*/Borji A. and Itti L., Exploiting local and global patch rarities for saliency detection, in 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 478–485.
*ref*/Chen X., Saparov A., Pang B., and Funkhouser T., Schelling Points on 3D Surface Meshes, ACM Trans Graph, 31(4), pp. 29:1–29:12, Jul. 2012.
*ref*/Mitra N. J. and Nguyen A., Estimating Surface Normals in Noisy Point Cloud Data, in Proceedings of the Nineteenth Annual Symposium on Computational Geometry, New York, NY, USA, 2003, pp. 322–328.
*ref*/Tasse F. P., Kosinka J., and Dodgson N. A., Quantitative Analysis of Saliency Models, in SIGGRAPH ASIA 2016 Technical Briefs, New York, NY, USA, 2016, pp. 19:1–19:4. -
11
Authors:
Source: DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín, ISSN 0012-7353, Vol. 86, Nº. 209, 2019, pags. 238-247
-
12
Authors:
Source: IEICE Transactions on Information and Systems. 2016, E99.D(4):1212
-
13
Authors:
Source: Journal of King Saud University - Engineering Sciences. Jan2022, Vol. 34 Issue 1, p17-22. 6p.
Subject Terms: Roller bearings, Feature extraction, Signal denoising, Fault diagnosis, Set functions
-
14
Authors: et al.
Source: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. :1661-1665
Subject Terms: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
15
Authors:
Source: 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR). :2014-2018
-
16
Authors: et al.
Source: 2011 International Conference on Computer Vision. :1647-1652
Subject Terms: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
17
Authors:
Source: 2014 5th European Workshop on Visual Information Processing (EUVIP). :1-6
Subject Terms: 13. Climate action, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, face recognition, unsupervised learning, CMU multi-PIE face dataset, facial expressions, facial landmarks, landmark localization, local sparse coding representation, sparse code dictionaries, detectors, dictionaries, encoding, face, feature extraction, vectors, part-based models, sparse coding
File Description: application/pdf
-
18
Authors:
Source: IEICE Transactions on Information and Systems. 2016, E99.D(3):731
-
19
Authors:
Source: DYNA; Vol. 86 No. 209 (2019): April - June; 238-247 ; DYNA; Vol. 86 Núm. 209 (2019): Abril - Junio; 238-247 ; 2346-2183 ; 0012-7353
Subject Terms: point clouds, sparse coding, saliency, minimum description length, nubes de puntos, código disperso, salencia, longitud de descripción mínima
File Description: application/pdf; text/xml
-
20
Authors: et al.
Source: 2012 19th IEEE International Conference on Image Processing.
Subject Terms: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Access URL: http://ieeexplore.ieee.org/document/6467560/
https://asu.pure.elsevier.com/en/publications/supervised-local -sparse -coding -of-sub-image-features-for-image-re
https://dblp.uni-trier.de/db/conf/icip/icip2012.html#ThiagarajanRSS12
https://ieeexplore.ieee.org/document/6467560/
Full Text Finder
Nájsť tento článok vo Web of Science