Search Results - Key Words. inertial splitting algorithm
-
1
Authors: et al.
Contributors: et al.
Source: http://arxiv.org/pdf/1403.3330.pdf.
Subject Terms: Key Words. inertial splitting algorithm, Douglas–Rachford splitting, Krasnosel’skĭı–
File Description: application/pdf
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.760.2763; http://arxiv.org/pdf/1403.3330.pdf
-
2
Authors: YINGLIN LUO
Source: Journal of Applied & Numerical Optimization; 2020, Vol. 2 Issue 3, p279-295, 17p
-
3
Authors:
Subject Terms: keyword:split equality, keyword:generalized equilibrium problem, keyword:variational inclusion problem, keyword:variational inequality, keyword:quasi-nonexpansive mapping, keyword:fixed point problem, msc:47H06, msc:47H09, msc:47J05, msc:47J25
File Description: application/pdf
Relation: mr:MR4186109; zbl:Zbl 07286006; reference:[1] Attouch H., Bolte J., Redont P., Soubeyran A.: Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's.J. Convex Anal. 15 (2008), no. 3, 485–506. MR 2431407; reference:[2] Attouch H., Cabot A., Frankel P., Peypouquet J.: Alternating proximal algorithms for linearly constrained variational inequalities: application to domain decomposition for PDE's.Nonlinear Anal. 74 (2011), no. 18, 7455–7473. MR 2833727; reference:[3] Attouch H., Czarnecki M. O.: Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria.J. Differential Equations 179 (2002), no. 1, 278–310. MR 1883745, 10.1006/jdeq.2001.4034; reference:[4] Attouch H., Goudou X., Redont P.: The heavy ball with friction. I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system.Commun. Contemp. Math. 2 (2000), no. 1, 1–34. MR 1753136, 10.1142/S0219199700000025; reference:[5] Attouch H., Peypouquet J., Redont P.: A dynamical approach to an inertial forward–backward algorithm for convex minimization.SIAM J. Optim. 24, (2014), no. 1, 232–256. MR 3164130, 10.1137/130910294; reference:[6] Blum E., Oettli W.: From optimization and variational inequalities to equilibrium problems.Math. Student 63 (1994), no. 1–4, 123–145. MR 1292380; reference:[7] Boţ R. I., Csetnek E. R.: A hybrid proximal-extragradient algorithm with inertial effects.Numer. Funct. Anal. Optim. 36 (2015), no. 8, 951–963. MR 3373745; reference:[8] Boţ R. I., Csetnek E. R.: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems.Numer. Algorithms 71 (2016), no. 3, 519–540. MR 3463479, 10.1007/s11075-015-0007-5; reference:[9] Boţ R. I., Csetnek E. R., Hendrich C.: Inertial Douglas–Rachford splitting for monotone inclusion problems.Appl. Math. Comput. 256 (2015), 472–487. MR 3316085; reference:[10] Boţ R. I., Csetnek E. R., László S. C.: An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions.EURO J. Comput. Optim. 4 (2016), no. 1, 3–25. MR 3500980, 10.1007/s13675-015-0045-8; reference:[11] Byrne C. L., Moudafi A.: Extensions of the CQ algorithm for the split feasibility and split equality problems.J. Nonlinear Convex Anal. 18 (2017), no. 8, 1485–1496. MR 3716968; reference:[12] Censor Y.: Parallel application of block-iterative methods in medical imaging and radiation therapy.Math. Programming 42 (1988), no. 2, (Ser. B), 307–325. MR 0976123, 10.1007/BF01589408; reference:[13] Censor Y., Bortfeld T., Martin B., Trofimov A.: A unified approach for inversion problems in intensity-modulated radiation therapy.Phys. Med. Biol. 51 (2006), no. 10, 2353–2365. 10.1088/0031-9155/51/10/001; reference:[14] Chang S.-S., Wang L., Wang X. R., Wang G.: General split equality equilibrium problems with application to split optimization problems.J. Optim. Theory Appl. 166 (2015), no. 2, 377–390. MR 3371380, 10.1007/s10957-015-0739-3; reference:[15] Chen C., Chan R. H., Ma S., Yang J.: Inertial proximal ADMM for linearly constrained separable convex optimization.SIAM J. Imaging Sci. 8 (2015), no. 4, 2239–2267. MR 3404682, 10.1137/15100463X; reference:[16] Cholamjiak W., Pholasa N., Suantai S.: A modified inertial shrinking projection method for solving inclusion problems and quasi-nonexpansive multivalued mappings.Comput. Appl. Math. 37 (2018), no. 5, 5750–5774. MR 3885793, 10.1007/s40314-018-0661-z; reference:[17] Chuang C.-S.: Hybrid inertial proximal algorithm for the split variational inclusion problem in Hilbert spaces with applications.Optimization 66 (2017), no. 5, 777–792. MR 3628551, 10.1080/02331934.2017.1306744; reference:[18] Dong Q.-L., Lu Y.-Y., Yang J.: The extragradient algorithm with inertial effects for solving the variational inequality.Optimization 65 (2016), no. 12, 2217–2226. MR 3564913, 10.1080/02331934.2016.1239266; reference:[19] Guo H., He H., Chen R.: Strong convergence theorems for the split equality variational inclusion problem and fixed point problem in Hilbert spaces.Fixed Point Theory Appl. (2015), 2015:223, 18 pages. MR 3430301; reference:[20] He Z.: The split equilibrium problem and its convergence algorithms.J. Inequal. Appl. (2012), 2012:162, 15 pages. MR 2972645; reference:[21] Jolaoso L. O., Abass H. A., Mewomo O. T.: A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space.Arch. Math. (Brno) 55 (2019), no. 3, 167–194. MR 3994324, 10.5817/AM2019-3-167; reference:[22] Jolaoso L. O., Alakoya T. O., Taiwo A., Mewomo O. T.: A parallel combination extragradient method with Armijo line searching for finding common solutions of finite families of equilibrium and fixed point problems.Rend. Circ. Mat. Palermo (2) 69 (2019), 711–735. MR 4168136; reference:[23] Jolaoso L. O., Ogbuisi F. U., Mewomo O. T.: An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces.Adv. Pure Appl. Math. 9 (2018), no. 3, 167–184. MR 3819533, 10.1515/apam-2017-0037; reference:[24] Jolaoso L. O., Oyewole K. O., Okeke C. C., Mewomo O. T.: A unified algorithm for solving split generalized mixed equilibrium problem, and for finding fixed point of nonspreading mapping in Hilbert spaces.Demonstr. Math. 51 (2018), no. 1, 211–232. MR 3856588, 10.1515/dema-2018-0015; reference:[25] Jolaoso L. O., Taiwo A., Alakoya T. O., Mewomo O. T.: A self adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spaces.Demonstr. Math. 52 (2019), no. 1, 183–203. MR 3938331, 10.1515/dema-2019-0013; reference:[26] Kazmi K. R., Rizvi S. H.: An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping.Optim. Lett. 8 (2014), no. 3, 1113–1124. MR 3170590, 10.1007/s11590-013-0629-2; reference:[27] Latif A., Eslamian M.: Split equality problem with equilibrium problem, variational inequality problem, and fixed point problem of nonexpansive semigroups.J. Nonlinear Sci. Appl. 10 (2017), no. 6, 3217–3230. MR 3670500, 10.22436/jnsa.010.06.34; reference:[28] Lemaire B.: Which fixed point does the iteration method select?.Recent Advances in Optimization, Trier, 1996, Lecture Notes in Econom. and Math. Systems, 452, Springer, Berlin, 1997, pages 154–157. MR 1467027, 10.1007/978-3-642-59073-3_11; reference:[29] Li S., Li L., Cao L., He X., Yue X.: Hybrid extragradient method for generalized mixed equilibrium problem and fixed point problems in Hilbert space.Fixed Point Theory Appl. (2013), 2013:240, 13 pages. MR 3261016; reference:[30] Lin L.-J., Chen Y.-D., Chuang C.-S.: Solutions for a variational inclusion problem with applications to multiple sets split feasibility problems.Fixed Point Theory Appl. (2013), 2013:333, 21 pages. MR 3338266; reference:[31] López G., Martín-Márquez V., Wang F., Xu H.-K.: Solving the split feasibility problem without prior knowledge of matrix norm.Inverse Problems 28 (2012), no. 8, 085004, 18 pages. MR 2948743; reference:[32] Ma Z., Wang L., Chang S.-S., Duan W.: Convergence theorems for split equality mixed equilibrium problems with applications.Fixed Point Theory Appl. (2015), 2015:31, 18 pages. MR 3316770; reference:[33] Maingé P.-E.: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces.J. Math. Anal. Appl. 325 (2007), no. 1, 469–479. MR 2273538, 10.1016/j.jmaa.2005.12.066; reference:[34] Maingé P.-E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization.Set-Valued Anal. 16 (2008), no. 7–8, 899–912. MR 2466027, 10.1007/s11228-008-0102-z; reference:[35] Marino G., Xu H.-K.: Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces.J. Math. Anal. Appl. 329 (2007), no. 1, 336–346. MR 2306805, 10.1016/j.jmaa.2006.06.055; reference:[36] Matinez-Yanes C., Xu H.-K.: Strong convergence of the CQ method for fixed point iteration processes.Nonlinear Anal. 64 (2006), no. 11, 2400–2411. MR 2215815, 10.1016/j.na.2005.08.018; reference:[37] Mewomo O. T., Ogbuisi F. U.: Convergence analysis of an iterative method for solving multiple-set split feasibility problems in certain Banach spaces.Quaest. Math. 41 (2018), no. 1, 129–148. MR 3761493, 10.2989/16073606.2017.1375569; reference:[38] Moudafi A.: A note on the split common fixed-point problem for quasi-nonexpansive operators.Nonlinear Anal. 74 (2011), no. 12, 4083–4087. MR 2802988, 10.1016/j.na.2011.03.041; reference:[39] Moudafi A.: Split monotone variational inclusions.J. Optim. Theory Appl. 150 (2011), no. 2, 275–283. MR 2818920, 10.1007/s10957-011-9814-6; reference:[40] Moudafi A.: Alternating CQ-algorithms for convex feasibility and split fixed-point problems.J. Nonlinear Convex Anal. 15 (2014), no. 4, 809–818. MR 3222909; reference:[41] Moudafi A., Al-Shemas E.: Simultaneous iterative methods for split equality problems and applications.Trans. Math. Program. Appl. 1 (2013), 1–11.; reference:[42] Ochs P., Brox T., Pock T.: iPiasco: inertial proximal algorithm for strongly convex optimization.J. Math. Imaging Vision 53 (2015), no. 2, 171–181. MR 3372139, 10.1007/s10851-015-0565-0; reference:[43] Rahaman M., Liou Y.-C., Ahmad R., Ahmad I.: Convergence theorems for split equality generalized mixed equilibrium problems for demi-contractive mappings.J. Inequal. Appl. (2015), 2015:418, 25 pages. MR 3438079; reference:[44] Rockafellar R. T.: Monotone operators and the proximal point algorithm.SIAM J. Control. Optim. 14 (1976), no. 5, 877–898. MR 0410483, 10.1137/0314056; reference:[45] Shehu Y., Mewomo O. T.: Further investigation into split common fixed point problem for demicontractive operators.Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 11, 1357–1376. MR 3557403, 10.1007/s10114-016-5548-6; reference:[46] Shehu Y., Mewomo O. T., Ogbuisi F. U.: Further investigation into approximation of a common solution of fixed point problems and split feasibility problems.Acta Math. Sci. Ser. B (Engl. Ed.) 36 (2016), no. 3, 913–930. MR 3479264; reference:[47] Shukla R., Pant R.: Approximating solution of split equality and equilibrium problems by viscosity approximation algorithms.Comput. Appl. Math. 37 (2018), no. 4, 5293–5314. MR 3848595, 10.1007/s40314-018-0637-z; reference:[48] Taiwo A., Jolaoso L. O., Mewomo O. T.: A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces.Comput. Appl. Math. 38 (2019), no. 2, Paper No. 77, 28 pages. MR 3933584, 10.1007/s40314-019-0841-5; reference:[49] Taiwo A., Jolaoso L. O., Mewomo O. T.: Parallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problems.Bull. Malays. Math. Sci. Soc. 43 (2020), no. 2, 1893–1918. MR 4061458, 10.1007/s40840-019-00781-1; reference:[50] Thong D. V., Hieu D. V.: An inertial method for solving split common fixed point problems.J. Fixed Point Theory Appl. 19 (2017), no. 4, 3029–3051. MR 3720493, 10.1007/s11784-017-0464-7; reference:[51] Thong D. V., Hieu D. V.: Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems.Numer. Algorithms 80 (2019), no. 4, 1283–1307. MR 3927234, 10.1007/s11075-018-0527-x; reference:[52] Zegeye H., Shahzad N.: Convergence of Mann's type iteration method for generalized asymptotically nonexpansive mappings.Comput. Math. Appl. 62 (2011), no. 11, 4007–4014. MR 2859956, 10.1016/j.camwa.2011.09.018; reference:[53] Zhao J.: Solving split equality fixed-point problem of quasi-nonexpanive mappings without prior knowledge of operators norms.Optimization 64 (2015), no. 12, 2619–2630. MR 3411824, 10.1080/02331934.2014.883515; reference:[54] Zhao J., He S.: Strong convergence of the viscosity approximation process for the split common fixed-point problem of quasi-nonexpansive mappings.J. Appl. Math. 2012 (2012), Art. ID 438023, 12 pages. MR 2904520; reference:[55] Zhao J., Wang S.: Viscosity approximation methods for the split equality common fixed point problem of quasi-nonexpansive operators.Acta Math. Sci. Ser. B (Engl. Ed.) 36 (2016), no. 5, 1474–1486. MR 3529631; reference:[56] Zhao J., Yang Q.: A simple projection method for solving the multiple-sets split feasibility problem.Inverse Probl. Sci. Eng. 21 (2013), no. 3, 537–546. MR 3022436, 10.1080/17415977.2012.712521
Availability: http://hdl.handle.net/10338.dmlcz/148468
-
4
Authors:
Contributors:
Subject Terms: Key words. monotone operators, elargements, proximal point algorithm, cocoercivity, splitting algorithm, projection, convergence
File Description: application/postscript
-
5
Authors:
Subject Terms: keyword:inertial term, keyword:forward-backward splitting, keyword:inclusion problem, keyword:strong convergence, keyword:Banach space, msc:47H05, msc:47J20, msc:47J25
File Description: application/pdf
Relation: mr:MR3987226; zbl:Zbl 07088749; reference:[1] Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping.Set-Valued Anal. 9 (2001), 3-11. Zbl 0991.65056, MR 1845931, 10.1023/A:1011253113155; reference:[2] Attouch, H., Cabot, A.: Convergence of a relaxed inertial forward-backward algorithm for structured monotone inclusions.Available at https://hal.archives-ouvertes.fr/hal-01782016 (2018), Hal ID: 01782016, 35 pages. MR 4026592; reference:[3] Baillon, J.-B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et $n$-cycliquement monotones.Isr. J. Math. 26 French (1977), 137-150. Zbl 0352.47023, MR 0500279, 10.1007/BF03007664; reference:[4] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.SIAM J. Imaging Sci. 2 (2009), 183-202. Zbl 1175.94009, MR 2486527, 10.1137/080716542; reference:[5] Bertsekas, D. P., Tsitsiklis, J. N.: Parallel and Distributed Computation: Numerical Methods.Athena Scientific, Belmont (2014). Zbl 1325.65001, MR 3587745; reference:[6] Boţ, R. I., Csetnek, E. R.: An inertial alternating direction method of multipliers.Minimax Theory Appl. 1 (2016), 29-49. Zbl 1337.90082, MR 3477895; reference:[7] Boţ, R. I., Csetnek, E. R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion problems.Appl. Math. Comput. 256 (2015), 472-487. Zbl 1338.65145, MR 3316085, 10.1016/j.amc.2015.01.017; reference:[8] Brézis, H., Lions, P.-L.: Produits infinis de résolvantes.Isr. J. Math. 29 (1978), 329-345 French. Zbl 0387.47038, MR 0491922, 10.1007/BF02761171; reference:[9] Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction.Inverse Probl. 20 (2004), 103-120. Zbl 1051.65067, MR 2044608, 10.1088/0266-5611/20/1/006; reference:[10] Chen, C., Chan, R. H., Ma, S., Yang, J.: Inertial proximal ADMM for linearly constrained separable convex optimization.SIAM J. Imaging Sci. 8 (2015), 2239-2267. Zbl 1328.65134, MR 3404682, 10.1137/15100463X; reference:[11] Chen, G. H.-G., Rockafellar, R. T.: Convergence rates in forward-backward splitting.SIAM J. Optim. 7 (1997), 421-444. Zbl 0876.49009, MR 1443627, 10.1137/S1052623495290179; reference:[12] Chidume, C.: Geometric Properties of Banach Spaces and Nonlinear Iterations.Lecture Notes in Mathematics 1965, Springer, Berlin (2009). Zbl 1167.47002, MR 2504478, 10.1007/978-1-84882-190-3; reference:[13] Cholamjiak, P.: A generalized forward-backward splitting method for solving quasi inclusion problems in Banach spaces.Numer. Algorithms 71 (2016), 915-932. Zbl 1342.47079, MR 3479747, 10.1007/s11075-015-0030-6; reference:[14] Cholamjiak, P., Cholamjiak, W., Suantai, S.: A modified regularization method for finding zeros of monotone operators in Hilbert spaces.J. Inequal. Appl. 2015 (2015), Article ID 220, 10 pages. Zbl 1338.47077, MR 3367213, 10.1186/s13660-015-0739-8; reference:[15] Cholamjiak, W., Cholamjiak, P., Suantai, S.: An inertial forward-backward splitting method for solving inclusion problems in Hilbert spaces.J. Fixed Point Theory Appl. 20 (2018), Article ID 42, 17 pages. Zbl 06858734, MR 3764675, 10.1007/s11784-018-0526-5; reference:[16] Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems.Mathematics and Its Applications 62, Kluwer Academic Publishers, Dordrecht (1990). Zbl 0712.47043, MR 1079061, 10.1007/978-94-009-2121-4; reference:[17] Combettes, P. L.: Iterative construction of the resolvent of a sum of maximal monotone operators.J. Convex Anal. 16 (2009), 727-748. Zbl 1193.47067, MR 2583892; reference:[18] Combettes, P. L., Wajs, V. R.: Signal recovery by proximal forward-backward splitting.Multiscale Model. Simul. 4 (2005), 1168-1200. Zbl 1179.94031, MR 2203849, 10.1137/050626090; reference:[19] Dong, Q., Jiang, D., Cholamjiak, P., Shehu, Y.: A strong convergence result involving an inertial forward-backward algorithm for monotone inclusions.J. Fixed Point Theory Appl. 19 (2017), 3097-3118. Zbl 06817792, MR 3720497, 10.1007/s11784-017-0472-7; reference:[20] Dunn, J. C.: Convexity, monotonicity, and gradient processes in Hilbert space.J. Math. Anal. Appl. 53 (1976), 145-158. Zbl 0321.49025, MR 0388176, 10.1016/0022-247X(76)90152-9; reference:[21] Güler, O.: On the convergence of the proximal point algorithm for convex minimization.SIAM J. Control Optim. 29 (1991), 403-419. Zbl 0737.90047, MR 1092735, 10.1137/0329022; reference:[22] Halpern, B.: Fixed points of nonexpanding maps.Bull. Am. Math. Soc. 73 (1967), 957-961. Zbl 0177.19101, MR 0218938, 10.1090/S0002-9904-1967-11864-0; reference:[23] Haugazeau, Y.: Sur la minimisation des formes quadratiques avec contraintes.C. R. Acad. Sci., Paris, Sér. A 264 (1967), 322-324 French. Zbl 0149.36201, MR 0215113; reference:[24] Kazarinoff, N. D.: Analytic Inequalities.Holt, Rinehart and Winston, New York (1961). Zbl 0097.03801, MR 0260957; reference:[25] Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators.SIAM J. Numer. Anal. 16 (1979), 964-979. Zbl 0426.65050, MR 0551319, 10.1137/0716071; reference:[26] López, G., Martín-Márquez, V., Wang, F., Xu, H.-K.: Forward-backward splitting methods for accretive operators in Banach spaces.Abstr. Appl. Anal. 2012 (2012), Article ID 109236, 25 pages. Zbl 1252.47043, MR 2955015, 10.1155/2012/109236; reference:[27] Lorenz, D. A., Pock, T.: An inertial forward-backward algorithm for monotone inclusions.J. Math. Imaging Vis. 51 (2015), 311-325. Zbl 1327.47063, MR 3314536, 10.1007/s10851-014-0523-2; reference:[28] Maingé, P.-E.: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces.J. Math. Anal. Appl. 325 (2007), 469-479. Zbl 1111.47058, MR 2273538, 10.1016/j.jmaa.2005.12.066; reference:[29] Martinet, B.: Régularisation d'inéquations variationnelles par approximations successives.Rev. Franç. Inform. Rech. Opér. 4 (1970), 154-158 French. Zbl 0215.21103, MR 0298899; reference:[30] Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators.J. Comput. Appl. Math. 155 (2003), 447-454. Zbl 1027.65077, MR 1984300, 10.1016/S0377-0427(02)00906-8; reference:[31] Passty, G. B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space.J. Math. Anal. Appl. 72 (1979), 383-390. Zbl 0428.47039, MR 0559375, 10.1016/0022-247X(79)90234-8; reference:[32] Pesquet, J.-C., Pustelnik, N.: A parallel inertial proximal optimization method.Pac. J. Optim. 8 (2012), 273-306. Zbl 1259.47080, MR 2954380; reference:[33] Polyak, B. T.: Some methods of speeding up the convergence of iterative methods.U.S.S.R. Comput. Math. Math. Phys. 4 (1967), 1-17 translation from Zh. Vychisl. Mat. Mat. Fiz. 4 1964 791-803. Zbl 0147.35301, MR 0169403, 10.1016/0041-5553(64)90137-5; reference:[34] Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces.J. Math. Anal. Appl. 75 (1980), 287-292. Zbl 0437.47047, MR 0576291, 10.1016/0022-247X(80)90323-6; reference:[35] Rockafellar, R. T.: Monotone operators and the proximal point algorithm.SIAM J. Control Optim. 14 (1976), 877-898. Zbl 0358.90053, MR 0410483, 10.1137/0314056; reference:[36] Shehu, Y.: Iterative approximations for zeros of sum of accretive operators in Banach spaces.J. Funct. Spaces 2016 (2016), Article ID 5973468, 9 pages. Zbl 1337.47096, MR 3459658, 10.1155/2016/5973468; reference:[37] Shehu, Y., Cai, G.: Strong convergence result of forward-backward splitting methods for accretive operators in Banach spaces with applications.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112 (2018), 71-87. Zbl 06836237, MR 3742991, 10.1007/s13398-016-0366-3; reference:[38] Suantai, S., Pholasa, N., Cholamjiak, P.: The modified inertial relaxed CQ algorithm for solving the split feasibility problems.J. Ind. Manag. Optim. 14 (2018), 1595-1615. MR 3917875, 10.3934/jimo.2018023; reference:[39] Sunthrayuth, P., Cholamjiak, P.: Iterative methods for solving quasi-variational inclusion and fixed point problem in $q$-uniformly smooth Banach spaces.Numer. Algorithms 78 (2018), 1019-1044. Zbl 06916361, MR 3827320, 10.1007/s11075-017-0411-0; reference:[40] Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings.SIAM J. Control Optim. 38 (2000), 431-446. Zbl 0997.90062, MR 1741147, 10.1137/S0363012998338806; reference:[41] Wei, L., Agarwal, R. P.: A new iterative algorithm for the sum of infinite $m$-accretive mappings and infinite $\mu_i$-inversely strongly accretive mappings and its applications to integro-differential systems.Fixed Point Theory Appl. 2016 (2016), Article ID 7, 22 pages. Zbl 1346.47071, MR 3441542, 10.1186/s13663-015-0495-y; reference:[42] Xu, H.-K.: Inequalities in Banach spaces with applications.Nonlinear Anal., Theory Methods Appl. 16 (1991), 1127-1138. Zbl 0757.46033, MR 1111623, 10.1016/0362-546X(91)90200-K
Availability: http://hdl.handle.net/10338.dmlcz/147798
-
6
Authors:
Subject Terms: keyword:proximal gradient algorithm, keyword:proximal operator, keyword:demimetric mappings, keyword:inertial algorithm, keyword:viscosity approximation, keyword:Meir Keeler contraction, keyword:fixed point theory, msc:46N10, msc:47H10, msc:47J25, msc:65K10, msc:65K15
File Description: application/pdf
Relation: mr:MR3994324; zbl:Zbl 07138661; reference:[1] Abass, H.A., Ogbuisi, F.U., Mewomo, O.T.: Common solution of split equilibrium problem and fixed point problem with no prior knowledge of operator norm.U.P.B. Sci. Bull., Series A 80 (1) (2018), 175–190. MR 3785191; reference:[2] Alvarez, F., Attouch, H.: An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping.Set-Valued Anal. 9 (2001), 3–11. MR 1845931, 10.1023/A:1011253113155; reference:[3] Beck, A., Teboull, M.: Gradient-based algorithms with applications to signal-recovery problems.Convex optimization in signal processing and communications (Palomar, D., Elder, Y., eds.), Cambridge Univ. Press, Cambridge, 2010, pp. 42–88. MR 2767564; reference:[4] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problem.SIAM J. Imaging Sci. 2 (1) (2009), 183–202. MR 2486527, 10.1137/080716542; reference:[5] Bot, R.I., Csetnek, E.R.: An inerial Tseng’s type proximal point algorithm for nonsmooth and nonconvex optimization problem.J. Optim. Theory Appl. 171 (2016), 600–616. MR 3557440, 10.1007/s10957-015-0730-z; reference:[6] Bot, R.I., Csetnek, E.R., Laszlo, S.C.: An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions.EJCO 4 (2016), 3–25. MR 3500980; reference:[7] Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction.Inverse Problems 20 (2004), 103–120. MR 2044608, 10.1088/0266-5611/20/1/006; reference:[8] Cai, G., Shehu, Y.: An iterative algorithm for fixed point problem and convex minimization problem with applications.Fixed Point Theory and Appl. 2015 123 (2015), 18 pp. MR 3303116; reference:[9] Ceng, L.-C., Ansari, Q.H., Ya, J.-C.: Some iterative methods for finding fixed points and for solving constrained convex minimization problems.Nonlinear Anal. 74 (2011), 5286–5302. MR 2819274, 10.1016/j.na.2011.05.005; reference:[10] Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space.Numer. Algorithms 8 (2–4) (1994), 221–239. Zbl 0828.65065, MR 1309222, 10.1007/BF02142692; reference:[11] Chambolle, A., Dossal, C.: On the convergence of the iterates of the fast iterative shrinkage thresholding algorithm.J. Optim. Theory Appl. 166 (2015), 968–982. MR 3375610, 10.1007/s10957-015-0746-4; reference:[12] Chan, R.H., Ma, S., Jang, J.F.: Inertial proximal ADMM for linearly constrained separable convex optimization.SIAM J. Imaging Sci. 8 (4) (2015), 2239–2267. MR 3404682, 10.1137/15100463X; reference:[13] Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators.Optimization 53 (2004), 475–504. MR 2115266, 10.1080/02331930412331327157; reference:[14] Combettes, P.L., Pesquet, J.-C.: Proximal Splitting Methods in Signal Processing.Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New York, 2011, pp. 185–212. MR 2858838; reference:[15] Fichera, G.: Problemi elastostatic con vincoli unilaterli: II Problema di signorini con ambigue condizioni al contorno.Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8) 7 (1963/1964), 91–140. MR 0178631; reference:[16] Geobel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory.Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990. MR 1074005; reference:[17] Guo, Y., Cui, W.: Strong convergence and bounded perturbation resilence of a modified proximal gradient algorithm.J. Ineq. Appl. 2018 (2018). MR 3797139, 10.1186/s13660-018-1695-x; reference:[18] Izuchukwu, C., Ugwunnadi, G.C., Mewomo, O.T., Khan, A.R., Abbas, M.: Proximal-type algorithms for split minimization problem in P-uniformly convex metric spaces.Numer. Algorithms (2018), https://doi.org/10.1007/s11075-018-0633-9. MR 4027651, 10.1007/s11075-018-0633-9; reference:[19] Jolaoso, L.O., Ogbuisi, F.U., Mewomo, O.T.: An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces.Adv. Pure Appl. Math. 9 (3) (2018), 167–183. MR 3819533, 10.1515/apam-2017-0037; reference:[20] Jolaoso, L.O., Oyewole, K.O., Okeke, C.C., Mewomo, O.T.: A unified algorithm for solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space.Demonstratio Math. 51 (2018), 211–232. MR 3856588, 10.1515/dema-2018-0015; reference:[21] Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: A strong convergence theorem for solving variational inequalities using an inertial viscosity subgradient extragradient algorithm with self adaptive stepsize.Demonstratio Math. 52 (1) (2019), 183–203. MR 3938331; reference:[22] Lions, J.L., Stampacchia, G.: Variational inequalities.Comm. Pure Appl. Math. 20 (1967), 493–519. Zbl 0152.34601, MR 0216344, 10.1002/cpa.3160200302; reference:[23] Lorenz, D., Pock, T.: An inertial forward-backward algorithm for monotone inclusions.J. Math. Imaging Vision 51 (2) (2015), 311–325. MR 3314536, 10.1007/s10851-014-0523-2; reference:[24] Maingé, P.E.: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces.J. Math. Anal. Appl. 325 (2007), 469–479. MR 2273538, 10.1016/j.jmaa.2005.12.066; reference:[25] Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization.Set-Valued Anal. 16 (2008), 899–912. MR 2466027, 10.1007/s11228-008-0102-z; reference:[26] Martinez-Yanes, C., Xu, H.K.: Strong convergence of the CQ method for fixed-point iteration processes.Nonlinear Anal. 64 (2006), 2400–2411. MR 2215815, 10.1016/j.na.2005.08.018; reference:[27] Meir, A., Keeler, E.: A theorem on contraction mappings.J. Math. Anal. Appl. 28 (1969), 326–329. MR 0250291, 10.1016/0022-247X(69)90031-6; reference:[28] Mewomo, O.T., Ogbuisi, F.U.: Convergence analysis of iterative method for multiple set split feasibility problems in certain Banach spaces.Quaestiones Math. 41 (1) (2018), 129–148. MR 3761493, 10.2989/16073606.2017.1375569; reference:[29] Moudafi, A.: Viscosity approximation method for fixed-points problems.J. Math. Anal. Appl. 241 (1) (2000), 46–55. MR 1738332, 10.1006/jmaa.1999.6615; reference:[30] Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators.J. Comput. Appl. Math. 155 (2003), 447–454. MR 1984300, 10.1016/S0377-0427(02)00906-8; reference:[31] Moudafi, A., Thakur, B.S.: Solving proximal split feasibility problems without prior knowledge of operator norms.Optim. Lett. 8 (7) (2014), 2099–2110. MR 3263242, 10.1007/s11590-013-0708-4; reference:[32] Nesterov, Y.: A method for solving the convex programming problem with convergence rate $0(\frac{1}{k^2})$.Dokl. Akad. Nauk SSSR 269 (3) (1983), 543–547. MR 0701288; reference:[33] Ogbuisi, F.U., Mewomo, O.T.: On split generalized mixed equilibrium problems and fixed point problems with no prior knowledge of operator norm.J. Fixed Point Theory Appl. 19 (3) (2016), 2109–2128. MR 3692443, 10.1007/s11784-016-0397-6; reference:[34] Ogbuisi, F.U., Mewomo, O.T.: Iterative solution of split variational inclusion problem in a real Banach space.Afrika Mat. (3) 28 (1–2) (2017), 295–309. MR 3613639, 10.1007/s13370-016-0450-z; reference:[35] Ogbuisi, F.U., Mewomo, O.T.: Convergence analysis of common solution of certain nonlinear problems.Fixed Point Theory 19 (1) (2018), 335–358. MR 3754008, 10.24193/fpt-ro.2018.1.26; reference:[36] Okeke, C.C., Mewomo, O.T.: On split equilibrim problem, variational inequality problem and fixed point problem for multi-valued mappings.Ann. Acad. Rom. Sci. Ser. Math. Appl. 9 (2) (2017), 255–280. MR 3742495; reference:[37] Parith, N., Boyd, S.: Proximal algorithms.Foundations and Trends in Optimization 1 (3) (2013), 123–231.; reference:[38] Pesquet, J.-C., Putselnik, N.: A parallel inertial proximal optimization method.Pacific J. Optim. 8 (2) (2012), 273–306. MR 2954380; reference:[39] Polyak, B.T.: Some methods of speeding up the convergence of iteration methods.U.S.S.R. Comput. Math. Math. Phys. 4 (5) (1964), 1–17. MR 0169403, 10.1016/0041-5553(64)90137-5; reference:[40] Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators.Trans. Amer. Math. Soc. 149 (1970), 75–88. MR 0282272, 10.1090/S0002-9947-1970-0282272-5; reference:[41] Rockafellar, R.T., Wets, R.: Variational Analysis.Springer, Berlin, 1988.; reference:[42] Shehu, Y.: Approximation of solutions to constrained convex minimization problem in Hilbert spaces.Vietnam J. Math. (2014), DOI 10.1007/s10013-014-0091-1. MR 3386057, 10.1007/s10013-014-0091-1; reference:[43] Stampacchia, G.: Formes bilinearies coercitives sur les ensembles convexes.Comput. Rend. Acad. Sci. Paris 258 (1964), 4413–4416. MR 0166591; reference:[44] Su, M., Xu, H.K.: Remarks on the gradient-projection algorithm.J. Nonlinear Anal. Optim. 1 (1) (2010), 35–43. MR 2911685; reference:[45] Suzuki, T.: Moudai’s viscosity approximations with Meir-Keeler contractions.J. Math. Anal. Appl. 325 (2007), 342–352. MR 2273529, 10.1016/j.jmaa.2006.01.080; reference:[46] Takahashi, W., Wen, C.-F., Yao, J.-C.: The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space.Fixed Point Theory 19 (1) (2018), 407–420. MR 3754014, 10.24193/fpt-ro.2018.1.32; reference:[47] Tian, M., Huang, L.H.: A general approximation method for a kind of convex optimization problems in Hilbert spaces.J. Appl. Math. 2014 (2014), 9 pages, Article ID 156073. MR 3198359; reference:[48] Xu, H.K.: Viscosity approximation method for nonexpansive mappings.J. Math. Anal. Appl. 298 (1) (2004), 279–291. MR 2086546, 10.1016/j.jmaa.2004.04.059; reference:[49] Xu, H.K.: Average mappings and the gradient projection algorithm.J. Optim. Theory Appl. 150 rm (2) (2011), 360–378. MR 2818926, 10.1007/s10957-011-9837-z
Availability: http://hdl.handle.net/10338.dmlcz/147824
-
7
Authors: et al.
Contributors: et al.
Subject Terms: Key words. non-convex optimization, Heavy-ball method
File Description: application/pdf
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.651.717; http://gpu4vision.icg.tugraz.at/papers/2013/ipiano.pdf
-
8
Alternate Title: An inertial splitting algorithm for solving equilibrium problems. (English)
Authors: et al.
Source: Journal of Dalian University of Technology / Dalian Ligong Daxue Xuebao; 2020, Vol. 60 Issue 6, p643-646, 4p
-
9
Authors:
Source: Journal of Advanced Zoology. 2023 Supplement, Vol. 44, p1024-1030. 7p.
PDF Full Text -
10
Authors: et al.
Source: Journal of Mathematics; 10/7/2025, Vol. 2025, p1-23, 23p
Subject Terms: HILBERT space, MONOTONE operators, OPTIMIZATION algorithms, NUMERICAL calculations, ALGORITHMS
-
11
Authors: et al.
Source: Optimization; Nov2025, Vol. 74 Issue 15, p3901-3924, 24p
-
12
Authors: et al.
Source: Optimization; Aug2025, Vol. 74 Issue 9, p2137-2158, 22p
-
13
Authors:
Source: Mathematics (2227-7390); Nov2025, Vol. 13 Issue 22, p3722, 26p
Subject Terms: NONEXPANSIVE mappings, ALGORITHMS, ITERATIVE methods (Mathematics)
-
14
Authors: et al.
Source: Journal of Nonlinear & Variational Analysis; 2025, Vol. 9 Issue 6, p927-945, 19p
-
15
Authors:
Source: Mathematics (2227-7390); Sep2025, Vol. 13 Issue 17, p2783, 24p
-
16
Authors:
Source: Mathematical Methods in the Applied Sciences; 1/15/2025, Vol. 48 Issue 1, p748-764, 17p
-
17
Authors:
Source: Symmetry (20738994); Aug2024, Vol. 16 Issue 8, p1091, 20p
Subject Terms: REAL numbers, HILBERT space, ALGORITHMS
-
18
Authors:
Source: Optimization Methods & Software; Apr2024, Vol. 39 Issue 2, p431-456, 26p
Subject Terms: FORWARD-backward algorithm, MONOTONE operators, HILBERT space, EXTRAPOLATION
-
19
Authors:
Source: Applicable Analysis; May2025, Vol. 104 Issue 9, p1732-1752, 21p
Subject Terms: MONOTONE operators, HILBERT space, EXTRAPOLATION, ALGORITHMS
-
20
Authors: et al.
Source: Frontiers in Veterinary Science. 2025, p1-15. 15p.
HTML Full Text PDF Full Text
Nájsť tento článok vo Web of Science
Full Text Finder