Suchergebnisse - JavaScript malicious code
-
1
Autoren:
Quelle: Proceedings of the 2025 5th International Conference on Automation Control, Algorithm and Intelligent Bionics. :344-349
-
2
-
3
-
4
-
5
-
6
Autoren: et al.
Quelle: PLoS ONE, Vol 17, Iss 12, p e0277891 (2022)
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/1932-6203
-
7
Autoren: et al.
Quelle: Future Internet. Aug2022, Vol. 14 Issue 8, p217-N.PAG. 15p.
-
8
-
9
-
10
-
11
-
12
-
13
-
14
Autoren: et al.
Quelle: IEEE Access, Vol 6, Pp 59118-59125 (2018)
Schlagwörter: JavaScript, malicious code detection, bytecode, word vector, LSTM, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Dateibeschreibung: electronic resource
-
15
Autoren:
Quelle: Безопасность информационных технологий, Vol 17, Iss 1, Pp 115-117 (2010)
Schlagwörter: malicious code detection, behavior analysis, behavior signature, Information technology, T58.5-58.64, Information theory, Q350-390
Dateibeschreibung: electronic resource
-
16
Autoren: et al.
Quelle: PLoS ONE; 12/14/2022, Vol. 17 Issue 12, p1-27, 27p
-
17
Autoren:
Thesis Advisors:
Dateibeschreibung: 31
Verfügbarkeit: http://ndltd.ncl.edu.tw/handle/dyhtkn
-
18
Autoren: et al.
Quelle: Information Security Journal: A Global Perspective; 2012, Vol. 21 Issue 1, p1-11, 11p
-
19
Autoren:
Quelle: IEEE Access, Vol 8, Pp 190539-190552 (2020)
Schlagwörter: Cybersecurity, systematic literature review, malicious code detection, javascript attacks, javascript malware detection, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Dateibeschreibung: electronic resource
-
20
Autoren: et al.
Schlagwörter: Cancer, Science Policy, Biological Sciences not elsewhere classified, Mathematical Sciences not elsewhere classified, Information Systems not elsewhere classified, conduct comparative experiments, 87 %, higher, 32 %, short javascript code, original dataset db_or, existing methods based, enhanced dataset db_re, div >< p, convolutional block rdcnet, distance association features, association features, 72 %, variable distance, subsequent models, score <, model presented, method ’, jacnet improved, feature extraction, f <, deep learning, datasets used, capture short, 79 %
Verfügbarkeit: https://doi.org/10.1371/journal.pone.0277891.g001
Nájsť tento článok vo Web of Science
Full Text Finder