Výsledky vyhledávání - Interval nonlinear multiobjective programming
-
1
Autoři: a další
Zdroj: Agricultural Water Management. 220:13-26
Témata: 0106 biological sciences, 2. Zero hunger, 13. Climate action, 15. Life on land, 01 natural sciences, 6. Clean water
-
2
Autoři: a další
Zdroj: Agricultural Water Management. 209:123-133
Témata: 0106 biological sciences, 2. Zero hunger, 0207 environmental engineering, 02 engineering and technology, 15. Life on land, 01 natural sciences, 6. Clean water
-
3
Autoři: a další
Zdroj: IAENG International Journal of Computer Science. Mar2023, Vol. 50 Issue 1, p209-218. 10p.
-
4
Autoři:
Zdroj: Optimization. Oct2023, Vol. 72 Issue 10, p2635-2659. 25p.
-
5
Autoři: a další
Zdroj: IET Smart Grid (2019)
Témata: linear programming, Pareto optimisation, cost reduction, power generation scheduling, integer programming, maintenance engineering, power markets, nonlinear programming, power generation reliability, scheduling, search problems, optimisation, generation maintenance scheduling, restructured power systems, global criterion method, important scheduling problems, maintenance time interval, generation unit, multiobjective-GMS, global criterion approach, MO-GMS model, maintenance intervals, generation company, system reserve, independent system operator standpoint, optimal maintenance weeks, IEEE 118-bus test systems, multiobjective model, multiobjective optimisation, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Popis souboru: electronic resource
Relation: https://digital-library.theiet.org/content/journals/10.1049/iet-stg.2018.0140; https://doaj.org/toc/2515-2947
Přístupová URL adresa: https://doaj.org/article/5b0d725fff044aa785310c11fbb7ede8
-
6
Autoři:
Zdroj: The Scientific World Journal, Vol 2014 (2014)
Témata: Technology, Medicine, Science
Popis souboru: electronic resource
Přístupová URL adresa: https://doaj.org/article/1986411b7d8d4cecbfc3c4d4c2fa7390
-
7
Přispěvatelé: Kaplan, E
Zdroj: Conference: International symposium on real-time operation of hydrosystems, Waterloo, Ontario, Canada, 24 Jun 1981
Popis souboru: Medium: ED; Size: Pages: 20
Přístupová URL adresa: http://www.osti.gov/scitech/servlets/purl/6531262
-
8
Autoři: a další
Zdroj: Fractal and Fractional, Vol 6, Iss 1, p 3 (2021)
Témata: multiobjective programs with vanishing constraints, semidefinite programming, convexificators, nonsmooth analysis, constraint qualifications, Thermodynamics, QC310.15-319, Mathematics, QA1-939, Analysis, QA299.6-433
Popis souboru: electronic resource
Přístupová URL adresa: https://doaj.org/article/db90bb78beb349d991bd83431c952309
-
9
Autoři:
Zdroj: Journal of Nonlinear Sciences & Applications (JNSA); 2017, Vol. 10 Issue 9, p4687-4694, 8p
-
10
-
11
Autoři: a další
-
12
Autoři: a další
-
13
Autoři:
Témata: Fuzzy programming, Interval numbers, Transportation problem, Multiobjective programming, Nonlinear programming
Popis souboru: application/pdf
Relation: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES; Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı; https://hdl.handle.net/11363/1419; 89; 279; 289
Dostupnost: https://hdl.handle.net/11363/1419
-
14
Autoři:
Témata: keyword:interval-valued problem, keyword:multiobjective programming, keyword:exact l$_1$ penalty function, keyword:LU-efficient solution, msc:49J52, msc:49M30, msc:90C29, msc:90C46
Popis souboru: application/pdf
Relation: mr:MR4848305; zbl:Zbl 07980816; reference:[1] Antczak, T.: $(p,r)$-invex sets and functions.J. Math. Anal. Appl. 263 (2001), 355-379. MR 1866053, 10.1006/jmaa.2001.7574; reference:[2] Antczak, T.: Exact penalty functions method for mathematical programming problems involving invex functions.Europ. J. Oper. Res. 198 (2009), 29-36. MR 2508030; reference:[3] Antczak, T.: The exact l$_1$ penalty function method for constrained nonsmooth invex optimization problems.In: System Modeling and Optimization Vol. 391 of the series IFIP Advances in Information and Communication Technology (2013) (D. Hömberg and F. Tröltzsch, eds.), pp. 461-470. MR 3409747; reference:[4] Antczak, T.: Exactness property of the exact absolute value penalty function method for solving convex nondifferentiable interval-valued optimization problems.J. Optim. Theory Appl. 176 (2018), 205-224. MR 3749691; reference:[5] Antczak, T.: Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function.Acta Math. Scientia 37 (2017), 1133-1150. MR 3657212; reference:[6] Antczak, T., Farajzadeh, A.: On nondifferentiable semi-infinite multiobjective programming with interval-valued functions.J. Industr. Management Optim. 19(8) (2023), 1-26. MR 4562617; reference:[7] Antczak, T., Studniarski, M.: The exactness property of the vector exact $l_1$ penalty function method in nondifferentiable invex multiobjective programming.Functional Anal. Optim.37 (2016), 1465-1487. MR 3579015; reference:[8] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming: Theory and Algorithms.John Wiley and Sons, New York 1991. Zbl 1140.90040, MR 0533477; reference:[9] Ben-Israel, A., Mond, B.: What is invexity.J. Austral. Math. Soc. Series B 28 (1986). 1-9. MR 0846778, 10.1017/S0334270000005142; reference:[10] Bertsekas, D. P., Koksal, A. E.: Enhanced optimality conditions and exact penalty functions.In: Proc. Allerton Conference, 2000.; reference:[11] Craven, B. D.: Invex functions and constrained local minima.Bull. Austral. Math. Soc. 24 (1981), 357-366. MR 0647362, 10.1017/S0004972700004895; reference:[12] Clarke, F. H.: Optimization and Nonsmooth Analysis.Wiley, New York 1983. MR 0709590; reference:[13] Fletcher, R.: An exact penalty function for nonlinear programming with inequalities.Math. Programm. 5 (1973), 129-150. MR 0329644; reference:[14] Ha, N. X., Luu, D. V.: Invexity of supremum and infimum functions.Bull. Austral. Math. Soc. 65 (2002), 289-306. MR 1898543; reference:[15] Hanson, M. A.: On sufficiency of the Kuhn-Tucker conditions.J. Math. Anal. Appl. 80 (1981), 545-550. MR 0614849, 10.1016/0022-247X(81)90123-2; reference:[16] Jayswal, A., Stancu-Minasian, I., Ahmad, I.: On sufficiency and duality for a class of interval-valued programming problems.Appl. Math. Comput. 218 (2011), 4119-4127. MR 2862082; reference:[17] Jayswal, A., Banerjee, J.: An exact l$_1$ penalty approach for interval-valued programming problem.J. Oper. Res. Soc. China 4 (2016), 461-481. MR 3572965; reference:[18] Mangasarian, O. L.: Sufficiency of exact penalty minimization.SIAM J. Control Optim. 23 (1985), 30-37. MR 0774027; reference:[19] Martin, D. H.: The essence of invexity.J. Optim. Theory Appl. 42 (1985), 65-76. MR 0802390, 10.1007/BF00941316; reference:[20] Moore, R. E.: Interval Analysis.Prentice-Hall, Englewood Cliffs 1966. MR 0231516; reference:[21] Moore, R. E.: Methods and applications of interval analysis.Soc. Industr. Appl. Math., Philadelphia 1979. MR 0551212; reference:[22] Pietrzykowski, T.: An exact potential method for constrained maxima.SIAM J. Numer. Anal. 6 (1969), 299-304. MR 0245183; reference:[23] Reiland, T. W.: Nonsmooth invexity.Bull. Austral. Math. Soc. 42 (1990), 437-446. MR 1083280; reference:[24] Khatri, S., Prasad, A. K.: Duality for a fractional variational formulation using $\eta $-approximated method.Kybernetika 59(5) (2023), 700-722. MR 4681018; reference:[25] Weir, T., Jeyakumar, V.: A class of nonconvex functions and mathematical programming.Bull. Austral. Math. Soc. 38 (1988), 177-189. MR 0969907, 10.1017/S0004972700027441; reference:[26] Wu, H. C.: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function.Europ, J. Oper. Res. 176 (2007), 46-59. MR 2265133; reference:[27] Wu, H. C.: Wolfe duality for interval-valued optimization.J. Optim. Theory Appl. 138 (2008), 497-509. MR 2429694; reference:[28] Zangwill, W. I.: Non-linear programming via penalty functions.Management Sci. 13 (1967), 344-358. MR 0252040; reference:[29] Zhang, J.: Optimality condition and Wolfe duality for invex interval-valued nonlinear programming problems.J. Appl. Math. Article ID 641345 (2013). MR 3142560; reference:[30] Zhou, H. C., Wang, Y. J.: Optimality condition and mixed duality for interval-valued optimization.Fuzzy Inform. Engrg.2 (2009), 1315-1323. MR 2429694
Dostupnost: http://hdl.handle.net/10338.dmlcz/152719
-
15
Přispěvatelé:
Témata: non homogenous boussinesq equations, global well-posedness, littlewood-paley decomposition, multiobjective programming, nonlinear programming, convex optimization, saddle point, preinvex fuzzy interval-valued function, fuzzy fractional integral operator, Hermite-Hadamard type inequality, Hermite-Hadamard Fejér type inequality, left and right convex interval-valued function, fractional integral operator, Hermite–Hadamard type inequality, Hermite–Hadamard Fejér type inequality, invex set, coordinated preinvex functions, Hermite–Hadamard inequalities, interval-valued functions, polynomial bounds, L’Hôpital’s rule of monotonicity, Jordan’s inequality, trigonometric functions, tripled fixed point, edge-preserving, directed graph, b-metric space, differential equation with infinite delay, convex operator, uniform boundedness
Popis souboru: application/octet-stream
Relation: ONIX_20230405_9783036565910_28; https://mdpi.com/books/pdfview/book/6756
-
16
Autoři: Xinmin Yang
Resource Type: eBook.
Témata: Nonlinear programming, Mathematics, Theory of distributions (Functional analysis), Mathematical optimization
Categories: BUSINESS & ECONOMICS / Operations Research, BUSINESS & ECONOMICS / Management Science, MATHEMATICS / Mathematical Analysis
-
17
Autoři: Ammar, E.E.1 Ammar_al_Saeed@hotmail.com
Zdroj: European Journal of Operational Research. Mar2009, Vol. 193 Issue 2, p329-341. 13p.
-
18
Autoři:
Zdroj: IEEE Transactions on Evolutionary Computation; Aug2011, Vol. 15 Issue 4, p487-514, 28p
-
19
Autoři: Ammar, E.E.1 Ammar_al_Saeed@hotmail.com
Zdroj: Information Sciences. Jan2008, Vol. 178 Issue 2, p468-484. 17p.
-
20
Autoři:
Témata: keyword:interval-valued vector optimization problem, keyword:quasidifferentiable $\mathfrak {F}$-convexity, keyword:LU-Pareto optimality, msc:49J52, msc:90C26, msc:90C29, msc:90C30
Popis souboru: application/pdf
Relation: reference:[1] Antczak, T.: Optimality conditions in quasidifferentiable vector optimization.J. Optim. Theory Appl. 171 (2016), 708-725. MR 3557446; reference:[2] Antczak, T.: Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function.Acta Math. Scientia 37 (2017), 1133-1150. MR 3657212; reference:[3] Bhatia, D., Jain, P.: Generalized (F,$\rho$)-convexity and duality for nonsmooth multi-objective programs.Optimization 31 (1994), 239-244.; reference:[4] Bhurjee, A. K., Panda, G.: Efficient solution of interval optimization problem.Math. Methods Oper. Res. 76 (2012), 273-288. MR 3000987; reference:[5] Bolintinéanu, S.: Approximate efficiency and scalar stationarity in unbounded nonsmooth convex vector optimization problems.J. Optim. Theory Appl. 106 (2000), 265-296. MR 1788925; reference:[6] Brandao, A. J. V., Rojas-Medar, M. A., Silva, G. N.: Optimality conditions for Pareto nonsmooth nonconvex programming in Banach spaces.J. Optim. Theory Appl. 103 (1999), 65-73. MR 1715008, 10.1023/A:1021769232224; reference:[7] Chankong, V., Haimes, Y.: Multiobjective Decision Making: Theory and Methodology.North-Holland, New York 1983. MR 0780745; reference:[8] Chinchuluun, A., Pardalos, P. M.: A survey of recent developments in multiobjective optimization.Ann. Oper. Res. 154 (2007), 29-50. MR 2332820; reference:[9] Clarke, F. H.: Optimization and Nonsmooth Analysis.Wiley, New York 1983. MR 0709590; reference:[10] Coladas, L., Li, Z., Wang, S.: Optimality conditions for multiobjective and nonsmooth minimization in abstract spaces.Bull. Austral. Math. Soc. 50 (1994), 205-218. MR 1296749; reference:[11] Craven, B. D.: Nonsmooth multiobjective programming.Numer. Funct. Anal. Optim. 10 (1989), 49-64. MR 0978802, 10.1080/01630568908816290; reference:[12] Demyanov, V. F., Rubinov, A. M.: On quasidifferentiable functional.Dokl. Akad. Nauk SSSR 250 (1980), 21-25 (translated in Soviet Mathematics Doklady 21 (1980), 14-17.) MR 0556111; reference:[13] Demyanov, V. F., Rubinov, A. M.: On some approaches to the non-smooth optimization problem.Ekonom. Matem. Metody 17 (1981), 1153-1174. MR 0653043; reference:[14] Abdouni, B. El., Thibault, L.: Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces.Optimization 26 (1992), 277-285. MR 1236612; reference:[15] Eppler, K., Luderer, B.: The Lagrange principle and quasidifferential calculus.Wissenschaftliche Zeitschrift der Technischen Hochschule Karl-Marx-Stadt 29 (1987), 187-192. MR 0909080; reference:[16] Gao, Y.: Demyanov's difference of two sets and optimality conditions in Lagrange multiplier type for constrained quasidifferentiable optimization.J. Optim. Theory Appl. 104 (2000), 377-394. MR 1752323; reference:[17] Gao, Y.: Optimality conditions with Lagrange multipliers for inequality constrained quasidifferentiable optimization.In: Quasidifferentiability and Related Topics (V. Demyanov and A. Rubinov, eds.), Kluwer Academic Publishers 2000, pp. 151-162. MR 1766796; reference:[18] Huang, N. J., Li, J., Wu, S. Y.: Optimality conditions for vector optimization problems.J. Optim. Theory Appl. 142 (2009), 323-342. MR 2525793; reference:[19] Jayswal, A., Stancu-Minasian, I. M., Ahmad, I.: On sufficiency and duality for a class of interval-valued programming problems.Appl. Math. Comput. 218 (2011), 4119-4127. MR 2862082; reference:[20] Jeyakumar, V., Yang, X. Q.: Convex composite multi-objective nonsmooth programming.Math. Program. 59 (1993), 325-343. MR 1226821; reference:[21] Kanniappan, P.: Necessary conditions for optimality of nondifferentiable convex multiobjective programming.J. Optim. Theory Appl. 40 (1983), 167-174. MR 0703314; reference:[22] Kuntz, L., Scholtes, S.: Constraint qualifications in quasidifferentiable optimization.Math. Program. 60 (1993), 339-347. MR 1234879; reference:[23] Luc, D. T.: Theory of Vector Optimization.Lect. Notes Econom. Math. Systems 319 Springer, Berlin 1989. Zbl 0654.90082, MR 1116766, 10.1007/978-3-642-50280-4_3; reference:[24] Luderer, B., Rösiger, R.: On Shapiro's results in quasidifferential calculus.Math. Program. 46 (1990), 403-407. MR 1054147; reference:[25] Miettinen, K. M.: Nonlinear Multiobjective Optimization.International Series in Operations Research and Management Science 12, Kluwer Academic Publishers, Boston 2004. MR 1784937; reference:[26] Minami, M.: Weak Pareto-optimal necessary conditions in nondifferentiable multiobjective program on a Banach space.J. Optim. Theory Appl. 41 (1983), 451-461. MR 0728312; reference:[27] Polyakova, L. N.: On the minimization of a quasidifferentiable function subject to equality-type constraints.Math. Program. Studies 29 (1986), 44-55. MR 0837885; reference:[28] Shapiro, A.: On optimality conditions in quasidifferentiable optimization.SIAM Control Appl. 22 (1984), 610-617. MR 0747972; reference:[29] Sun, Y., Wang, L.: Optimality conditions and duality in nondifferentiable interval-valued programming.J. Industr. Management Optim. 9 (2013), 131-142. MR 3003020, 10.3934/jimo.2013.9.131; reference:[30] Uderzo, A.: Quasi-multipliers rules for quasidifferentiable extremum problems.Optimization 51 (2002), 761-795. MR 1941714; reference:[31] Wang, S.: Lagrange conditions in nonsmooth and multiobjective mathematical programming.Math. Econom. 1 (1984), 183-193.; reference:[32] Ward, D. E.: A constraint qualification in quasidifferentiable programming.Optimization 22 (1991), 661-668. MR 1120494; reference:[33] Wu, H. C.: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function.European J. Oper. Res. 176 (2007), 46-59. MR 2265133; reference:[34] Xia, Z. Q., Song, C. L., Zhang, L. W.: On Fritz John and KKT necessary conditions of constrained quasidifferentiable optimization.Int. J. Pure Appl. Math. 23 (2005), 299-310. MR 2176203; reference:[35] Zhang, J., Liu, S., Li, L., Feng, Q.: The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function.Optim. Lett. 8 (2014), 607-631. MR 3163292, 10.1007/s11590-012-0601-6; reference:[36] Zhou, H. C., Wang, Y. J.: Optimality condition and mixed duality for interval-valued optimization.In: Fuzzy Information and Engineering, Vol. 2, Advances in Intelligent and Soft Computing 62, Proc. Third International Conference on Fuzzy Information and Engineering (ICFIE 2009), Springer 2009, pp. 1315-1323. MR 2461173
Dostupnost: http://hdl.handle.net/10338.dmlcz/152989
Full Text Finder
Nájsť tento článok vo Web of Science