Výsledky vyhledávání - Interval nonlinear multiobjective programming

Upřesnit hledání
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Přispěvatelé: Kaplan, E

    Zdroj: Conference: International symposium on real-time operation of hydrosystems, Waterloo, Ontario, Canada, 24 Jun 1981

    Popis souboru: Medium: ED; Size: Pages: 20

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

    Popis souboru: application/pdf

    Relation: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES; Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı; https://hdl.handle.net/11363/1419; 89; 279; 289

  14. 14

    Popis souboru: application/pdf

    Relation: mr:MR4848305; zbl:Zbl 07980816; reference:[1] Antczak, T.: $(p,r)$-invex sets and functions.J. Math. Anal. Appl. 263 (2001), 355-379. MR 1866053, 10.1006/jmaa.2001.7574; reference:[2] Antczak, T.: Exact penalty functions method for mathematical programming problems involving invex functions.Europ. J. Oper. Res. 198 (2009), 29-36. MR 2508030; reference:[3] Antczak, T.: The exact l$_1$ penalty function method for constrained nonsmooth invex optimization problems.In: System Modeling and Optimization Vol. 391 of the series IFIP Advances in Information and Communication Technology (2013) (D. Hömberg and F. Tröltzsch, eds.), pp. 461-470. MR 3409747; reference:[4] Antczak, T.: Exactness property of the exact absolute value penalty function method for solving convex nondifferentiable interval-valued optimization problems.J. Optim. Theory Appl. 176 (2018), 205-224. MR 3749691; reference:[5] Antczak, T.: Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function.Acta Math. Scientia 37 (2017), 1133-1150. MR 3657212; reference:[6] Antczak, T., Farajzadeh, A.: On nondifferentiable semi-infinite multiobjective programming with interval-valued functions.J. Industr. Management Optim. 19(8) (2023), 1-26. MR 4562617; reference:[7] Antczak, T., Studniarski, M.: The exactness property of the vector exact $l_1$ penalty function method in nondifferentiable invex multiobjective programming.Functional Anal. Optim.37 (2016), 1465-1487. MR 3579015; reference:[8] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming: Theory and Algorithms.John Wiley and Sons, New York 1991. Zbl 1140.90040, MR 0533477; reference:[9] Ben-Israel, A., Mond, B.: What is invexity.J. Austral. Math. Soc. Series B 28 (1986). 1-9. MR 0846778, 10.1017/S0334270000005142; reference:[10] Bertsekas, D. P., Koksal, A. E.: Enhanced optimality conditions and exact penalty functions.In: Proc. Allerton Conference, 2000.; reference:[11] Craven, B. D.: Invex functions and constrained local minima.Bull. Austral. Math. Soc. 24 (1981), 357-366. MR 0647362, 10.1017/S0004972700004895; reference:[12] Clarke, F. H.: Optimization and Nonsmooth Analysis.Wiley, New York 1983. MR 0709590; reference:[13] Fletcher, R.: An exact penalty function for nonlinear programming with inequalities.Math. Programm. 5 (1973), 129-150. MR 0329644; reference:[14] Ha, N. X., Luu, D. V.: Invexity of supremum and infimum functions.Bull. Austral. Math. Soc. 65 (2002), 289-306. MR 1898543; reference:[15] Hanson, M. A.: On sufficiency of the Kuhn-Tucker conditions.J. Math. Anal. Appl. 80 (1981), 545-550. MR 0614849, 10.1016/0022-247X(81)90123-2; reference:[16] Jayswal, A., Stancu-Minasian, I., Ahmad, I.: On sufficiency and duality for a class of interval-valued programming problems.Appl. Math. Comput. 218 (2011), 4119-4127. MR 2862082; reference:[17] Jayswal, A., Banerjee, J.: An exact l$_1$ penalty approach for interval-valued programming problem.J. Oper. Res. Soc. China 4 (2016), 461-481. MR 3572965; reference:[18] Mangasarian, O. L.: Sufficiency of exact penalty minimization.SIAM J. Control Optim. 23 (1985), 30-37. MR 0774027; reference:[19] Martin, D. H.: The essence of invexity.J. Optim. Theory Appl. 42 (1985), 65-76. MR 0802390, 10.1007/BF00941316; reference:[20] Moore, R. E.: Interval Analysis.Prentice-Hall, Englewood Cliffs 1966. MR 0231516; reference:[21] Moore, R. E.: Methods and applications of interval analysis.Soc. Industr. Appl. Math., Philadelphia 1979. MR 0551212; reference:[22] Pietrzykowski, T.: An exact potential method for constrained maxima.SIAM J. Numer. Anal. 6 (1969), 299-304. MR 0245183; reference:[23] Reiland, T. W.: Nonsmooth invexity.Bull. Austral. Math. Soc. 42 (1990), 437-446. MR 1083280; reference:[24] Khatri, S., Prasad, A. K.: Duality for a fractional variational formulation using $\eta $-approximated method.Kybernetika 59(5) (2023), 700-722. MR 4681018; reference:[25] Weir, T., Jeyakumar, V.: A class of nonconvex functions and mathematical programming.Bull. Austral. Math. Soc. 38 (1988), 177-189. MR 0969907, 10.1017/S0004972700027441; reference:[26] Wu, H. C.: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function.Europ, J. Oper. Res. 176 (2007), 46-59. MR 2265133; reference:[27] Wu, H. C.: Wolfe duality for interval-valued optimization.J. Optim. Theory Appl. 138 (2008), 497-509. MR 2429694; reference:[28] Zangwill, W. I.: Non-linear programming via penalty functions.Management Sci. 13 (1967), 344-358. MR 0252040; reference:[29] Zhang, J.: Optimality condition and Wolfe duality for invex interval-valued nonlinear programming problems.J. Appl. Math. Article ID 641345 (2013). MR 3142560; reference:[30] Zhou, H. C., Wang, Y. J.: Optimality condition and mixed duality for interval-valued optimization.Fuzzy Inform. Engrg.2 (2009), 1315-1323. MR 2429694

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20

    Popis souboru: application/pdf

    Relation: reference:[1] Antczak, T.: Optimality conditions in quasidifferentiable vector optimization.J. Optim. Theory Appl. 171 (2016), 708-725. MR 3557446; reference:[2] Antczak, T.: Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function.Acta Math. Scientia 37 (2017), 1133-1150. MR 3657212; reference:[3] Bhatia, D., Jain, P.: Generalized (F,$\rho$)-convexity and duality for nonsmooth multi-objective programs.Optimization 31 (1994), 239-244.; reference:[4] Bhurjee, A. K., Panda, G.: Efficient solution of interval optimization problem.Math. Methods Oper. Res. 76 (2012), 273-288. MR 3000987; reference:[5] Bolintinéanu, S.: Approximate efficiency and scalar stationarity in unbounded nonsmooth convex vector optimization problems.J. Optim. Theory Appl. 106 (2000), 265-296. MR 1788925; reference:[6] Brandao, A. J. V., Rojas-Medar, M. A., Silva, G. N.: Optimality conditions for Pareto nonsmooth nonconvex programming in Banach spaces.J. Optim. Theory Appl. 103 (1999), 65-73. MR 1715008, 10.1023/A:1021769232224; reference:[7] Chankong, V., Haimes, Y.: Multiobjective Decision Making: Theory and Methodology.North-Holland, New York 1983. MR 0780745; reference:[8] Chinchuluun, A., Pardalos, P. M.: A survey of recent developments in multiobjective optimization.Ann. Oper. Res. 154 (2007), 29-50. MR 2332820; reference:[9] Clarke, F. H.: Optimization and Nonsmooth Analysis.Wiley, New York 1983. MR 0709590; reference:[10] Coladas, L., Li, Z., Wang, S.: Optimality conditions for multiobjective and nonsmooth minimization in abstract spaces.Bull. Austral. Math. Soc. 50 (1994), 205-218. MR 1296749; reference:[11] Craven, B. D.: Nonsmooth multiobjective programming.Numer. Funct. Anal. Optim. 10 (1989), 49-64. MR 0978802, 10.1080/01630568908816290; reference:[12] Demyanov, V. F., Rubinov, A. M.: On quasidifferentiable functional.Dokl. Akad. Nauk SSSR 250 (1980), 21-25 (translated in Soviet Mathematics Doklady 21 (1980), 14-17.) MR 0556111; reference:[13] Demyanov, V. F., Rubinov, A. M.: On some approaches to the non-smooth optimization problem.Ekonom. Matem. Metody 17 (1981), 1153-1174. MR 0653043; reference:[14] Abdouni, B. El., Thibault, L.: Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces.Optimization 26 (1992), 277-285. MR 1236612; reference:[15] Eppler, K., Luderer, B.: The Lagrange principle and quasidifferential calculus.Wissenschaftliche Zeitschrift der Technischen Hochschule Karl-Marx-Stadt 29 (1987), 187-192. MR 0909080; reference:[16] Gao, Y.: Demyanov's difference of two sets and optimality conditions in Lagrange multiplier type for constrained quasidifferentiable optimization.J. Optim. Theory Appl. 104 (2000), 377-394. MR 1752323; reference:[17] Gao, Y.: Optimality conditions with Lagrange multipliers for inequality constrained quasidifferentiable optimization.In: Quasidifferentiability and Related Topics (V. Demyanov and A. Rubinov, eds.), Kluwer Academic Publishers 2000, pp. 151-162. MR 1766796; reference:[18] Huang, N. J., Li, J., Wu, S. Y.: Optimality conditions for vector optimization problems.J. Optim. Theory Appl. 142 (2009), 323-342. MR 2525793; reference:[19] Jayswal, A., Stancu-Minasian, I. M., Ahmad, I.: On sufficiency and duality for a class of interval-valued programming problems.Appl. Math. Comput. 218 (2011), 4119-4127. MR 2862082; reference:[20] Jeyakumar, V., Yang, X. Q.: Convex composite multi-objective nonsmooth programming.Math. Program. 59 (1993), 325-343. MR 1226821; reference:[21] Kanniappan, P.: Necessary conditions for optimality of nondifferentiable convex multiobjective programming.J. Optim. Theory Appl. 40 (1983), 167-174. MR 0703314; reference:[22] Kuntz, L., Scholtes, S.: Constraint qualifications in quasidifferentiable optimization.Math. Program. 60 (1993), 339-347. MR 1234879; reference:[23] Luc, D. T.: Theory of Vector Optimization.Lect. Notes Econom. Math. Systems 319 Springer, Berlin 1989. Zbl 0654.90082, MR 1116766, 10.1007/978-3-642-50280-4_3; reference:[24] Luderer, B., Rösiger, R.: On Shapiro's results in quasidifferential calculus.Math. Program. 46 (1990), 403-407. MR 1054147; reference:[25] Miettinen, K. M.: Nonlinear Multiobjective Optimization.International Series in Operations Research and Management Science 12, Kluwer Academic Publishers, Boston 2004. MR 1784937; reference:[26] Minami, M.: Weak Pareto-optimal necessary conditions in nondifferentiable multiobjective program on a Banach space.J. Optim. Theory Appl. 41 (1983), 451-461. MR 0728312; reference:[27] Polyakova, L. N.: On the minimization of a quasidifferentiable function subject to equality-type constraints.Math. Program. Studies 29 (1986), 44-55. MR 0837885; reference:[28] Shapiro, A.: On optimality conditions in quasidifferentiable optimization.SIAM Control Appl. 22 (1984), 610-617. MR 0747972; reference:[29] Sun, Y., Wang, L.: Optimality conditions and duality in nondifferentiable interval-valued programming.J. Industr. Management Optim. 9 (2013), 131-142. MR 3003020, 10.3934/jimo.2013.9.131; reference:[30] Uderzo, A.: Quasi-multipliers rules for quasidifferentiable extremum problems.Optimization 51 (2002), 761-795. MR 1941714; reference:[31] Wang, S.: Lagrange conditions in nonsmooth and multiobjective mathematical programming.Math. Econom. 1 (1984), 183-193.; reference:[32] Ward, D. E.: A constraint qualification in quasidifferentiable programming.Optimization 22 (1991), 661-668. MR 1120494; reference:[33] Wu, H. C.: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function.European J. Oper. Res. 176 (2007), 46-59. MR 2265133; reference:[34] Xia, Z. Q., Song, C. L., Zhang, L. W.: On Fritz John and KKT necessary conditions of constrained quasidifferentiable optimization.Int. J. Pure Appl. Math. 23 (2005), 299-310. MR 2176203; reference:[35] Zhang, J., Liu, S., Li, L., Feng, Q.: The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function.Optim. Lett. 8 (2014), 607-631. MR 3163292, 10.1007/s11590-012-0601-6; reference:[36] Zhou, H. C., Wang, Y. J.: Optimality condition and mixed duality for interval-valued optimization.In: Fuzzy Information and Engineering, Vol. 2, Advances in Intelligent and Soft Computing 62, Proc. Third International Conference on Fuzzy Information and Engineering (ICFIE 2009), Springer 2009, pp. 1315-1323. MR 2461173