Výsledky vyhledávání - Gene co-expression network inference algorithms

Upřesnit hledání
  1. 1

    Autoři: Cingiz MÖ; Computer Engineering Department, Faculty of Engineering and Natural Sciences, Bursa Technical University, Mimar Sinan Campus, Yildirim, 16310, Bursa, Turkey. mustafa.cingiz@btu.edu.tr.

    Zdroj: Molecular biotechnology [Mol Biotechnol] 2024 Nov; Vol. 66 (11), pp. 3213-3225. Date of Electronic Publication: 2023 Nov 11.

    Způsob vydávání: Journal Article

    Informace o časopise: Publisher: Springer Country of Publication: Switzerland NLM ID: 9423533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0305 (Electronic) Linking ISSN: 10736085 NLM ISO Abbreviation: Mol Biotechnol Subsets: MEDLINE

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    Zdroj: Vavilov Journal of Genetics and Breeding; Том 28, № 8 (2024); 974-981 ; Вавиловский журнал генетики и селекции; Том 28, № 8 (2024); 974-981 ; 2500-3259 ; 10.18699/vjgb-24-88

    Popis souboru: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4418/1903; Ackermann A.M., Wang Z., Schug J., Naji A., Kaestner K.H. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol. Metab. 2016;5(3):233-244. doi 10.1016/j.molmet.2016.01.002; Aibar S., González-Blas C.B., Moerman T., Huynh-Thu V.A., Imrichova H., Hulselmans G., Rambow F., Marine J., Geurts P., Aerts J., Van Den Oord J., Atak Z.K., Wouters J., Aerts S. SCENIC: singlecell regulatory network inference and clustering. Nat. Methods. 2017;14(11):1083-1086. doi 10.1038/nmeth.4463; Altay G. Empirically determining the sample size for large-scale gene network inference algorithms. IET Syst. Biol. 2012;6(2):35-43. doi 10.1049/iet-syb.2010.0091; Angermueller C., Clark S.J., Lee H.J., Macaulay I.C., Teng M.J., Hu T.X., Krueger F., Smallwood S.A., Ponting C.P., Voet T., Kelsey G., Stegle O., Reik W. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods. 2016; 13(3):229-232. doi 10.1038/nmeth.3728; Argelaguet R., Cuomo A.S.E., Stegle O., Marioni J.C. Computational principles and challenges in single-cell data integration. Nat. Biotechnol. 2021;39(10):1202-1215. doi 10.1038/s41587-021-00895-7; Aubin-Frankowski P., Vert J. Gene regulation inference from singlecell RNA-seq data with linear differential equations and velocity inference. Bioinformatics. 2020;36(18):4774-4780. doi 10.1093/bioinformatics/btaa576; Badia-i-Mompel P., Wessels L., Müller-Dott S., Trimbour R., Flores R.O.R., Argelaguet R., Saez-Rodriguez J. Gene regulatory network inference in the era of single-cell multi-omics. Nat. Rev. Genet. 2023;24(11):739-754. doi 10.1038/s41576-023-00618-5; Blencowe M., Arneson D., Ding J., Chen Y.W., Saleem Z., Yang X. Network modeling of single-cell omics data: challenges, opportunities, and progresses. Emerg. Top. Life Sci. 2019;3(4):379-398. doi 10.1042/ETLS20180176; Bonnaffoux A., Herbach U., Richard A., Guillemin A., Gonin-Giraud S., Gros P., Gandrillon O. WASABI: a dynamic iterative framework for gene regulatory network inference. BMC Bioinformatics. 2019;20(1):220. doi 10.1186/s12859-019-2798-1; Buenrostro J.D., Wu B., Litzenburger U.M., Ruff D., Gonzales M.L., Snyder M.P., Chang H.Y., Greenleaf W.J. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015; 523(7561):486-490. doi 10.1038/nature14590; Chan T.E., Stumpf M.P., Babtie A.C. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 2017;5(3):251-267.e3. doi 10.1016/j.cels.2017.08.014; Chang L., Hao T., Wang W., Lin C. Inference of single-cell network using mutual information for scRNA-seq data analysis. BMC Bioinformatics. 2024;25(S2):292. doi 10.1186/s12859-024-05895-3; Chen S., Mar J.C. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data. BMC Bioinformatics. 2018;19(1):232. doi 10.1186/s12859-018-2217-z; Chen S., Lake B.B., Zhang K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 2019;37(12):1452-1457. doi 10.1038/s41587-019-0290-0; Gao N.P., Ud-Dean S.M.M., Gandrillon O., Gunawan R. SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles. Bioinformatics. 2017;34(2):258-266. doi 10.1093/bioinformatics/btx575; Herbach U., Bonnaffoux A., Espinasse T., Gandrillon O. Inferring gene regulatory networks from single-cell data: a mechanistic approach. BMC Syst. Biol. 2017;11(1):105. doi 10.1186/s12918-017-0487-0; Hong S., Chen X., Jin L., Xiong M. Canonical correlation analysis for RNA-seq co-expression networks. Nucleic Acids Res. 2013;41(8): e95. doi 10.1093/nar/gkt145; Hou W., Ji Z., Chen Z., Wherry E.J., Hicks S.C., Ji H. A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples. Nat. Commun. 2023;14(1):7286. doi 10.1038/s41467-023-42841-y; Hu Y., Huang K., An Q., Du G., Hu G., Xue J., Zhu X., Wang C., Xue Z., Fan G. Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol. 2016;17(1):88. doi 10.1186/s13059-016-0950-z; Huynh-Thu V.A., Geurts P. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data. Sci. Rep. 2018;8(1):3384. doi 10.1038/s41598-018-21715-0; Huynh-Thu V.A., Sanguinetti G. Gene regulatory network inference: An introductory survey. Methods Mol. Biol. 2019;1883:1-23. doi 10.1007/978-1-4939-8882-2_1; Huynh-Thu V.A., Irrthum A., Wehenkel L., Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One. 2010;5(9):e12776. doi 10.1371/journal.pone.0012776; Isbel L., Grand R.S., Schübeler D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat. Rev. Genet. 2022;23(12):728-740. doi 10.1038/s41576-022-00512-6; Kang Y., Thieffry D., Cantini L. Evaluating the reproducibility of single-cell gene regulatory network inference algorithms. Front. Genet. 2021;12:617282. doi 10.3389/fgene.2021.617282; Kim S. ppcor: An R package for a fast calculation to semi-partial correlation coefficients. Commun. Stat. Appl. Methods. 2015;22(6):665-674. doi 10.5351/CSAM.2015.22.6.665; Kolchanov N.A., Ignatieva E.V., Podkolodnaya O.A., Likhoshvai V.A., Matushkin Yu.G. Gene networks. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2): 833-850 (in Russian)]; Li Y., Ma A., Wang Y., Guo Q., Wang C., Fu H., Liu B., Ma Q. Enhancerdriven gene regulatory networks inference from single-cell RNAseq and ATAC-seq data. Brief. Bioinform. 2024;25(5):bbae369. doi 10.1093/bib/bbae369; Loers J.U., Vermeirssen V. A single-cell multimodal view on gene regulatory network inference from transcriptomics and chromatin accessibility data. Brief. Bioinform. 2024;25(5):bbae382. doi 10.1093/bib/bbae382; Luecken M.D., Theis F.J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 2019;15(6):e8746. doi 10.15252/msb.20188746; Malekpour S.A., Alizad-Rahvar A.R., Sadeghi M. LogicNet: probabilistic continuous logics in reconstructing gene regulatory networks. BMC Bioinformatics. 2020;21(1):318. doi 10.1186/s12859-020-03651-x; Matsumoto H., Kiryu H., Furusawa C., Ko M.S.H., Ko S.B.H., Gouda N., Hayashi T., Nikaido I. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics. 2017;33(15):2314-2321. doi 10.1093/bioinformatics/btx194; Mercatelli D., Scalambra L., Triboli L., Ray F., Giorgi F.M. Gene regulatory network inference resources: A practical overview. Biochim. Biophys. Acta Gene Regul. Mech. 2020;1863(6):194430. doi 10.1016/j.bbagrm.2019.194430; Moerman T., Santos S.A., González-Blas C.B., Simm J., Moreau Y., Aerts J., Aerts S. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics. 2018; 35(12):2159-2161. doi 10.1093/bioinformatics/bty916; Nguyen H., Shrestha S., Tran D., Shafi A., Draghici S., Nguyen T. A comprehensive survey of tools and software for active subnetwork identification. Front. Genet. 2019;10:155. doi 10.3389/fgene.2019.00155; Nguyen H., Tran D., Tran B., Pehlivan B., Nguyen T. A comprehensive survey of regulatory network inference methods using single cell RNA sequencing data. Brief. Bioinform. 2021;22(3):bbaa190. doi 10.1093/bib/bbaa190; Parmar J.J., Padinhateeri R. Nucleosome positioning and chromatin organization. Curr. Opin. Struct. Biol. 2020;64:111-118. doi 10.1016/j.sbi.2020.06.021; Pratapa A., Jalihal A.P., Law J.N., Bharadwaj A., Murali T.M. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. Methods. 2020;17(2):147-154. doi 10.1038/s41592-019-0690-6; Qin J., Hu Y., Xu F., Yalamanchili H.K., Wang J. Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. Methods. 2014;67(3):294-303. doi 10.1016/j.ymeth.2014.03.006; Qiu X., Rahimzamani A., Wang L., Ren B., Mao Q., Durham T., McFaline-Figueroa J.L., Saunders L., Trapnell C., Kannan S. Inferring causal gene regulatory networks from coupled single-cell expression dynamics using scribe. Cell Syst. 2020;10(3):265-274. doi 10.1016/j.cels.2020.02.003; Saelens W., Cannoodt R., Todorov H., Saeys Y. A comparison of singlecell trajectory inference methods. Nat. Biotechnol. 2019;37(5):547-554. doi 10.1038/s41587-019-0071-9; Sanchez-Castillo M., Blanco D., Tienda-Luna I.M., Carrion M.C., Huang Y. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics. 2017;34(6):964-970. doi 10.1093/bioinformatics/btx605; Sekula M., Gaskins J., Datta S. A sparse Bayesian factor model for the construction of gene co-expression networks from single-cell RNA sequencing count data. BMC Bioinformatics. 2020;21(1):361. doi 10.1186/s12859-020-03707-y; Shalek A.K., Satija R., Shuga J., Trombetta J.J., Gennert D., Lu D., Chen P., Gertner R.S., Gaublomme J.T., Yosef N., Schwartz S., Fowler B., Weaver S., Wang J., Wang X., Ding R., Raychowdhury R., Friedman N., Hacohen N., Park H., May A.P., Regev A. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014;510(7505):363-369. doi 10.1038/nature13437; Sönmezer C., Kleinendorst R., Imanci D., Barzaghi G., Villacorta L., Schübeler D., Benes V., Molina N., Krebs A.R. Molecular co-occupancy identifies transcription factor binding cooperativity in vivo. Mol. Cell. 2020;81(2):255-267. doi 10.1016/j.molcel.2020.11.015; Specht A.T., Li J. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering. Bioinformatics. 2017;33(5):764-766. doi 10.1093/bioinformatics/btw729; Stock M., Popp N., Fiorentino J., Scialdone A. Topological benchmarking of algorithms to infer gene regulatory networks from single-cell RNA-seq data. Bioinformatics. 2024;40(5):btae267. doi 10.1093/bioinformatics/btae267; Tang F., Barbacioru C., Wang Y., Nordman E., Lee C., Xu N., Wang X., Bodeau J., Tuch B.B., Siddiqui A., Lao K., Surani M.A. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods. 2009; 6(5):377-382. doi 10.1038/nmeth.1315; Tieri P., Castiglione F. Modeling macrophage differentiation and cellular dynamics. In: Wolkenhauer O. (Ed.). Systems Medicine. Integrative, Qualitative and Computational Approaches. Academic Press, 2021;511-520. doi 10.1016/B978-0-12-801238-3.11644-7; Van de Sande B., Flerin C., Davie K., De Waegeneer M., Hulselmans G., Aibar S., Seurinck R., Saelens W., Cannoodt R., Rouchon Q., Verbeiren T., De Maeyer D., Reumers J., Saeys Y., Aerts S. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat. Protoc. 2020;15(7):2247-2276. doi 10.1038/s41596-020-0336-2; Wagner A., Regev A., Yosef N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 2016;34(11):1145-1160. doi 10.1038/nbt.3711; Wang P., Qin J., Qin Y., Zhu Y., Wang L.Y., Li M.J., Zhang M.Q., Wang J. ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks. Nucleic Acids Res. 2015;43(W1):264-269. doi 10.1093/nar/gkv398; Woodhouse S., Piterman N., Wintersteiger C.M., Göttgens B., Fisher J. SCNS: a graphical tool for reconstructing executable regulatory networks from single-cell genomic data. BMC Syst. Biol. 2018; 2(1):59. doi 10.1186/s12918-018-0581-y; Zhang S., Pyne S., Pietrzak S., Halberg S., McCalla S.G., Siahpirani A.F., Sridharan R., Roy S. Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets. Nat. Commun. 2023;14(1):3064. doi 10.1038/s41467-023-38637-9; https://vavilov.elpub.ru/jour/article/view/4418

  16. 16

    Popis souboru: 1 recurso en línea (130 páginas); application/pdf

    Relation: Siddhartha Mukherjee. The gene: an intimate history. Scribner, 2016.; Greg Elgar and Tanya Vavouri. “Tuning in to the signals: noncoding sequence conservation in vertebrate genomes”. In: Trends in genetics 24.7 (2008), pp. 344–352.; ENCODE Project Consortium et al. “An integrated encyclopedia of DNA elements in the human genome”. In: Nature 489.7414 (2012), pp. 57–74.; Vân Anh Huynh-Thu and Guido Sanguinetti. “Gene Regulatory Network Inference: An Introductory Survey”. In: Gene Regulatory Networks: Methods and Protocols. Ed. by Guido Sanguinetti and Vân Anh Huynh-Thu. New York, NY: Springer New York, 2019, pp. 1–23. isbn: 978-1-4939-8882-2.; Terry Brown. Understanding a Genome Sequence. Wiley-Liss, 2002. Chap. 7.; Louis M. Straudt. Mouse cDNA Microarray. National Cancer Institute, 2001. url: https://visualsonline.cancer.gov/details.cfm?imageid=1849.; Jessica C Mar. “The rise of the distributions: why non-normality is important for understanding the transcriptome and beyond”. In: Biophysical reviews 11.1 (2019), pp. 89–94.; Albert-Laszlo Barabasi and Zoltan N Oltvai. “Network biology: understanding the cell’s functional organization”. In: Nature reviews genetics 5.2 (2004), pp. 101–113.; Anna D Broido and Aaron Clauset. “Scale-free networks are rare”. In: Nature communications 10.1 (2019), pp. 1–10.; Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. “Power-law distributions in empirical data”. In: SIAM review 51.4 (2009), pp. 661–703.; Romualdo Pastor-Satorras, Eric Smith, and Ricard V Solé. “Evolving protein interaction networks through gene duplication”. In: Journal of Theoretical biology 222.2 (2003), pp. 199–210.; Robert D Leclerc. “Survival of the sparsest: robust gene networks are parsimonious”. In: Molecular systems biology 4.1 (2008), p. 213.; Z Burda et al. “Motifs emerge from function in model gene regulatory networks”. In: Proceedings of the National Academy of Sciences 108.42 (2011), pp. 17263–17268.; Réka Albert, Hawoong Jeong, and Albert-László Barabási. “Error and attack tolerance of complex networks”. In: nature 406.6794 (2000), pp. 378–382.; Momoko Otsuka and Sho Tsugawa. “Robustness of network attack strategies against node sampling and link errors”. In: Plos one 14.9 (2019), e0221885.; Reuven Cohen and Shlomo Havlin. “Scale-free networks are ultrasmall”. In: Physical review letters 90.5 (2003), p. 058701.; Ulrike Von Luxburg. “A tutorial on spectral clustering”. In: Statistics and computing 17.4 (2007), pp. 395–416.; M. E. J. Newman. “Modularity and community structure in networks”. In: Proceedings of the National Academy of Sciences 103.23 (2006), pp. 8577–8582. issn: 0027-8424.; Vincent D Blondel et al. “Fast unfolding of communities in large networks”. In: Journal of statistical mechanics: theory and experiment 2008.10 (2008), P10008.; Roger B Nelsen. An introduction to copulas. Springer Science & Business Media, 2007.; Steffen L Lauritzen. Graphical models. Vol. 17. Clarendon Press, 1996.; Rajen D Shah, Jonas Peters, et al. “The hardness of conditional independence testing and the generalised covariance measure”. In: Annals of Statistics 48.3 (2020), pp. 1514–1538.; Bin Zhang and Steve Horvath. “A general framework for weighted gene co-expression network analysis”. In: Statistical applications in genetics and molecular biology 4.1 (2005).; Atul J Butte and Isaac S. Kohane. “Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements.” In: Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing (2000), pp. 418–29.; Kshitij Khare and Bala Rajaratnam. “Sparse matrix decompositions and graph characterizations”. In: Linear algebra and its applications 437.3 (2012), pp. 932–947.; Adam A. Margolin et al. “ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context”. In: BMC Bioinformatics 7 (2006), S7 –S7.; Patrick E Meyer et al. “Information-theoretic inference of large transcriptional regulatory networks”. In: EURASIP journal on bioinformatics and systems biology.; Xiujun Zhang et al. “NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference”. In: Bioinformatics 29.1; Nicolai Meinshausen, Peter Bühlmann, et al. “High-dimensional graphs and variable selection with the lasso”. In: The annals of statistics 34.3 (2006), pp. 1436–1462.; Anne-Claire Haury et al. “TIGRESS: trustful inference of gene regulation using stability selection”. In: BMC systems biology 6.1 (2012), p. 145.; Bradley Efron et al. “Least angle regression”. In: The Annals of statistics 32.2 (2004), pp. 407–499.; Vân Anh Huynh-Thu et al. “Inferring regulatory networks from expression data using tree-based methods”. In: PloS one 5.9 (2010), pp. 1–10.; Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. “Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data”. In: Journal of Machine learning research 9.Mar (2008), pp. 485–516.; Jerome Friedman, Trevor Hastie, and Robert Tibshirani. “Sparse inverse covariance estimation with the graphical lasso”. In: Biostatistics 9.3 (2008), pp. 432–441.; Peter Spirtes, Clark N Glymour, and Scheines. Causation, prediction, and search. 2nd ed. The MIT Press, 2000.; Xiujun Zhang et al. “Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information”. In: Bioinformatics 28.1 (2012), pp. 98–104.; James M Robins et al. “Uniform consistency in causal inference”. In: Biometrika 90.3 (2003), pp. 491–515.; Diego Colombo and Marloes H Maathuis. “Order-independent constraint-based causal structure learning”. In: The Journal of Machine Learning Research 15.1 (2014), pp. 3741–3782.; Jeremiah J Faith et al. “Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles”. In: PLOS Biology 5.1 (Jan. 2007), pp. 1–13.; Daniel Marbach et al. “Revealing strengths and weaknesses of methods for gene network inference”. In: Proceedings of the national academy of sciences 107.14 (2010), pp. 6286–6291.; Thomas Schaffter, Daniel Marbach, and Dario Floreano. “GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods”. In: Bioinformatics 27.16 (2011), pp. 2263–2270.; Daniel Marbach et al. “Wisdom of crowds for robust gene network inference”. In: Nature methods 9.8 (2012), p. 796.; Adriano V Werhli, Marco Grzegorczyk, and Dirk Husmeier. “Comparative evaluationof reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks”. In: Bioinformatics 22.20 (2006), pp. 2523–2531.; Wenbin Guo et al. “Evaluation and improvement of the regulatory inference for large co-expression networks with limited sample size”. In: BMC systems biology 11.1 (2017), p. 62.; Jonathan Ish-Horowicz and John Reid. “Mutual information estimation for transcriptional regulatory network inference”. In: bioRxiv (2017).; Shuonan Chen and Jessica C Mar. “Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data”. In: BMC bioinformatics 19.1 (2018), p. 232.; Sisi Ma et al. “De-Novo Learning of Genome-Scale Regulatory Networks in S. cerevisiae”. In: PLOS ONE 9.9 (Sept. 2014), pp. 1–20.; Jeffrey D Allen et al. “Comparing statistical methods for constructing large scale gene networks”. In: PloS one 7.1 (2012).; Aditya Pratapa et al. “Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data”. In: Nature Methods (2020), pp. 1–8.; Judea Pearl. Causality. Cambridge University Press, 2009.; Diego Colombo et al. “Learning high-dimensional directed acyclic graphs with latent and selection variables”. In: The Annals of Statistics (2012), pp. 294–321.; Stephan Bongers et al. “Theoretical Aspects of Cyclic Structural Causal Models”. In: arXiv.org preprint arXiv:1611.06221v2 [stat.ME] (Aug. 2018).; Judea Pearl, Thomas Verma, et al. “A theory of inferred causation.” In: KR 91 (1991), pp. 441–452.; Nancy Cartwright. Hunting causes and using them: Approaches in philosophy and economics. Cambridge University Press, 2007.; Holly Andersen. “When to expect violations of causal faithfulness and why it matters”. In: Philosophy of Science 80.5 (2013), pp. 672–683.; Juliane Schäfer and Korbinian Strimmer. “A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics”. In: Statistical applications in genetics and molecular biology 4.1 (2005).; Hiroyuki Toh and Katsuhisa Horimoto. “Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling”. In: Bioinformatics 18.2 (2002), pp. 287–297.; Oliver J Maclaren and Ruanui Nicholson. “What can be estimated? Identifiability, estimability, causal inference and ill-posed inverse problems”. In: arXiv preprint arXiv:1904.02826 (2019).; Sunyong Kim, Seiya Imoto, and Satoru Miyano. “Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data”. In: Biosystems 75.1-3 (2004), pp. 57–65.; Bruno-Edouard Perrin et al. “Gene networks inference using dynamic Bayesian networks”. In: Bioinformatics 19.suppl 2 (2003), pp. ii138–ii148.; Stephan Bongers and Joris M Mooij. “From random differential equations to structural causal models: The stochastic case”. In: arXiv preprint arXiv:1803.08784 (2018).; Alexander Sokol and Niels Richard Hansen. “Causal interpretation of stochastic differential equations”. In: Electronic Journal of Probability 19.100 (2014), pp. 1–24.; Paul K Rubenstein et al. “From deterministic ODEs to dynamic structural causal models”. In: arXiv preprint arXiv:1608.08028 (2016).; Gary K Ackers, Alexander D Johnson, and Madeline A Shea. “Quantitative model for gene regulation by lambda phage repressor”. In: Proceedings of the National Academy of Sciences 79.4 (1982), pp. 1129–1133.; Lacramioara Bintu et al. “Transcriptional regulation by the numbers: models”. In: Current opinion in genetics & development 15.2 (2005), pp. 116–124.; Arwen Meister et al. “Learning a nonlinear dynamical system model of gene regulation: A perturbed steady-state approach”. In: The Annals of Applied Statistics 7.3 (2013), pp. 1311–1333.; William Chad Young, Ka Yee Yeung, and Adrian E Raftery. “Identifying dynamical time series model parameters from equilibrium samples, with application to gene regulatory networks”. In: Statistical Modelling 19.4 (2019), pp. 444–465.; Lacramioara Bintu et al. “Transcriptional regulation by the numbers: applications”. In: Current opinion in genetics & development 15.2 (2005), pp. 125–135.; Ruifei Cui et al. “Learning the Causal Structure of Copula Models with Latent Variables.” In: UAI. 2018, pp. 188–197.; R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria, 2020.; Ioannis Tsamardinos and Giorgos Borboudakis. “Permutation Testing Improves Bayesian Network Learning”. In: Machine Learning and Knowledge Discovery in Databases. Ed. by José Luis Balcázar et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 322–337. isbn: 978-3-642-15939-8.; Jonathan Ish-Horowicz. fastGeneMI: A Suite of Mutual Information Estimators used for Gene Regulatory Network Inference from Microarray Expression Data. R package version 1.0. 2018.; Gabriele Sales and Chiara Romualdi. parmigene: Parallel Mutual Information estimation for Gene Network reconstruction. R package version 1.0.2. 2012.; Patrick E. Meyer, Frederic Lafitte, and Gianluca Bontempi. “MINET: An open source R/Bioconductor Package for Mutual Information based Network Inference”. In: BMC Bioinformatics 9 (2008).; Xiujun Zhang. Website of Xiujun Zhang. url: https://sites.google.com/site/xiujunzhangcsb/software/narromi.; Marco Scutari. “Learning Bayesian Networks with the bnlearn R Package”. In: Journal of Statistical Software 35.3 (2010), pp. 1–22.; Osiris Rı́os et al. “A Boolean network model of human gonadal sex determination”. In: Theoretical Biology and Medical Modelling 12.1 (2015), pp. 1–18.; Jan Krumsiek et al. “Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network”. In: PloS one 6.8 (2011), e22649.; Anna Lovrics et al. “Boolean modelling reveals new regulatory connections between transcription factors orchestrating the development of the ventral spinal cord”. In: PloS one 9.11 (2014), e111430.; Clare E Giacomantonio and Geoffrey J Goodhill. “A Boolean model of the gene regulatory network underlying Mammalian cortical area development”. In: PLoS Comput Biol 6.9 (2010), e1000936.; Daniel Marbach et al. “Generating realistic in silico gene networks for performance assessment of reverse engineering methods”. In: Journal of computational biology 16.2 (2009), pp. 229–239.; Brendan McKay. Graphs. url: http://users.cecs.anu.edu.au/~bdm/data/graphs.html.; [83]Richard P Stanley. “Acyclic orientations of graphs”. In: Discrete Mathematics 5.2 (1973), pp. 171–178.; P Hanlon. “The chromatic polynomial of an unlabeled graph”. In: Journal of Combinatorial Theory, Series B 38.3 (1985), pp. 226–239.; Jeffrey M Wooldridge. Econometric analysis of cross section and panel data. MIT press, 2010.; Markus Kalisch and Peter Bühlmann. “Estimating high-dimensional directed acyclic graphs with the PC-algorithm”. In: Journal of Machine Learning Research 8.Mar (2007), pp. 613–636.; Zuur Pedraza, A. G. (2020). An assessment of gene regulatory network inference algorithms [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional; https://repositorio.unal.edu.co/handle/unal/79256

    Dostupnost: https://repositorio.unal.edu.co/handle/unal/79256

  17. 17
  18. 18
  19. 19
  20. 20