Výsledky vyhledávání - Feature-based enhanced boosting algorithm

Upřesnit hledání
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Zdroj: Biomarker-enhanced Artificial Intelligence Based Pediatric Sepsis Screening Tool Towards Early Recognition and Personalized Therapeutics
    Goldstein B, Giroir B, Randolph A; International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005 Jan;6(1):2-8. doi: 10.1097/01.PCC.0000149131.72248.E6.
    Eisenberg M, Madden K, Christianson JR, Melendez E, Harper MB. Performance of an Automated Screening Algorithm for Early Detection of Pediatric Severe Sepsis. Pediatr Crit Care Med. 2019 Dec;20(12):e516-e523. doi: 10.1097/PCC.0000000000002101.
    Eisenberg MA, Freiman E, Capraro A, Madden K, Monuteaux MC, Hudgins J, Harper M. Outcomes of Patients with Sepsis in a Pediatric Emergency Department after Automated Sepsis Screening. J Pediatr. 2021 Aug;235:239-245.e4. doi: 10.1016/j.jpeds.2021.03.053. Epub 2021 Mar 30.
    Iwashyna TJ, Odden A, Rohde J, Bonham C, Kuhn L, Malani P, Chen L, Flanders S. Identifying patients with severe sepsis using administrative claims: patient-level validation of the angus implementation of the international consensus conference definition of severe sepsis. Med Care. 2014 Jun;52(6):e39-43. doi: 10.1097/MLR.0b013e318268ac86.
    Mathias B, Mira JC, Larson SD. Pediatric sepsis. Curr Opin Pediatr. 2016 Jun;28(3):380-7. doi: 10.1097/MOP.0000000000000337.
    Weiss SL, Parker B, Bullock ME, Swartz S, Price C, Wainwright MS, Goodman DM. Defining pediatric sepsis by different criteria: discrepancies in populations and implications for clinical practice. Pediatr Crit Care Med. 2012 Jul;13(4):e219-26. doi: 10.1097/PCC.0b013e31823c98da.
    Scott HF, Brilli RJ, Paul R, Macias CG, Niedner M, Depinet H, Richardson T, Riggs R, Gruhler H, Larsen GY, Huskins WC, Balamuth F; Improving Pediatric Sepsis Outcomes (IPSO) Collaborative Investigators.. Evaluating Pediatric Sepsis Definitions Designed for Electronic Health Record Extraction and Multicenter Quality Improvement. Crit Care Med. 2020 Oct;48(10):e916-e926. doi: 10.1097/CCM.0000000000004505.
    Lippi G. Sepsis biomarkers: past, present and future. Clin Chem Lab Med. 2019 Aug 27;57(9):1281-1283. doi: 10.1515/cclm-2018-1347. No abstract available.
    Marshall JC, Reinhart K; International Sepsis Forum. Biomarkers of sepsis. Crit Care Med. 2009 Jul;37(7):2290-8. doi: 10.1097/CCM.0b013e3181a02afc.
    Taneja I, Reddy B, Damhorst G, Dave Zhao S, Hassan U, Price Z, Jensen T, Ghonge T, Patel M, Wachspress S, Winter J, Rappleye M, Smith G, Healey R, Ajmal M, Khan M, Patel J, Rawal H, Sarwar R, Soni S, Anwaruddin S, Davis B, Kumar J, White K, Bashir R, Zhu R. Combining Biomarkers with EMR Data to Identify Patients in Different Phases of Sepsis. Sci Rep. 2017 Sep 7;7(1):10800. doi: 10.1038/s41598-017-09766-1.
    Patel K, McElvania E. Diagnostic Challenges and Laboratory Considerations for Pediatric Sepsis. J Appl Lab Med. 2019 Jan;3(4):587-600. doi: 10.1373/jalm.2017.025908. Epub 2018 Nov 21.
    Lanziotti VS, Povoa P, Soares M, Silva JR, Barbosa AP, Salluh JI. Use of biomarkers in pediatric sepsis: literature review. Rev Bras Ter Intensiva. 2016 Oct-Dec;28(4):472-482. doi: 10.5935/0103-507X.20160080.
    Wong HR, Salisbury S, Xiao Q, Cvijanovich NZ, Hall M, Allen GL, Thomas NJ, Freishtat RJ, Anas N, Meyer K, Checchia PA, Lin R, Shanley TP, Bigham MT, Sen A, Nowak J, Quasney M, Henricksen JW, Chopra A, Banschbach S, Beckman E, Harmon K, Lahni P, Lindsell CJ. The pediatric sepsis biomarker risk model. Crit Care. 2012 Oct 1;16(5):R174. doi: 10.1186/cc11652.
    Jacobs L, Berrens Z, Stenson EK, Zackoff MW, Danziger LA, Lahni P, Wong HR. The Pediatric Sepsis Biomarker Risk Model (PERSEVERE) Biomarkers Predict Clinical Deterioration and Mortality in Immunocompromised Children Evaluated for Infection. Sci Rep. 2019 Jan 23;9(1):424. doi: 10.1038/s41598-018-36743-z.
    Gardlund B, Dmitrieva NO, Pieper CF, Finfer S, Marshall JC, Taylor Thompson B. Six subphenotypes in septic shock: Latent class analysis of the PROWESS Shock study. J Crit Care. 2018 Oct;47:70-79. doi: 10.1016/j.jcrc.2018.06.012. Epub 2018 Jun 8.
    Williams JB, Ghosh D, Wetzel RC. Applying Machine Learning to Pediatric Critical Care Data. Pediatr Crit Care Med. 2018 Jul;19(7):599-608. doi: 10.1097/PCC.0000000000001567.
    Seymour CW, Kennedy JN, Wang S, Chang CH, Elliott CF, Xu Z, Berry S, Clermont G, Cooper G, Gomez H, Huang DT, Kellum JA, Mi Q, Opal SM, Talisa V, van der Poll T, Visweswaran S, Vodovotz Y, Weiss JC, Yealy DM, Yende S, Angus DC. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA. 2019 May 28;321(20):2003-2017. doi: 10.1001/jama.2019.5791.
    Sepanski RJ, Godambe SA, Mangum CD, Bovat CS, Zaritsky AL, Shah SH. Designing a pediatric severe sepsis screening tool. Front Pediatr. 2014 Jun 16;2:56. doi: 10.3389/fped.2014.00056. eCollection 2014.
    Hajian-Tilaki K. Sample size estimation in diagnostic test studies of biomedical informatics. J Biomed Inform. 2014 Apr;48:193-204. doi: 10.1016/j.jbi.2014.02.013. Epub 2014 Feb 26.
    Sinha P, Calfee CS, Delucchi KL. Practitioner's Guide to Latent Class Analysis: Methodological Considerations and Common Pitfalls. Crit Care Med. 2021 Jan 1;49(1):e63-e79. doi: 10.1097/CCM.0000000000004710.
    Weiss SL, Fitzgerald JC, Balamuth F, Alpern ER, Lavelle J, Chilutti M, Grundmeier R, Nadkarni VM, Thomas NJ. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit Care Med. 2014 Nov;42(11):2409-17. doi: 10.1097/CCM.0000000000000509.
    C. D. Sutton, "Classification and Regression Trees, Bagging, and Boosting," Handb. Stat., vol. 24, pp. 303-329, 2005, doi: 10.1016/S0169-7161(04)24011-1.
    Sinha P, Delucchi KL, Thompson BT, McAuley DF, Matthay MA, Calfee CS; NHLBI ARDS Network. Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Med. 2018 Nov;44(11):1859-1869. doi: 10.1007/s00134-018-5378-3. Epub 2018 Oct 5.
    Wiersema R, Jukarainen S, Vaara ST, Poukkanen M, Lakkisto P, Wong H, Linder A, van der Horst ICC, Pettila V. Two subphenotypes of septic acute kidney injury are associated with different 90-day mortality and renal recovery. Crit Care. 2020 Apr 15;24(1):150. doi: 10.1186/s13054-020-02866-x.
    Delucchi K, Famous KR, Ware LB, Parsons PE, Thompson BT, Calfee CS; ARDS Network. Stability of ARDS subphenotypes over time in two randomised controlled trials. Thorax. 2018 May;73(5):439-445. doi: 10.1136/thoraxjnl-2017-211090. Epub 2018 Feb 24.
    Feuillet F, Bellanger L, Hardouin JB, Victorri-Vigneau C, Sebille V. On Comparison of Clustering Methods for Pharmacoepidemiological Data. J Biopharm Stat. 2015;25(4):843-56. doi: 10.1080/10543406.2014.920855.
    Kent P, Jensen RK, Kongsted A. A comparison of three clustering methods for finding subgroups in MRI, SMS or clinical data: SPSS TwoStep Cluster analysis, Latent Gold and SNOB. BMC Med Res Methodol. 2014 Oct 2;14:113. doi: 10.1186/1471-2288-14-113.
    R. Lachman, "Expert systems: A cognitive science perspective," Behav. Res. Methods, Instruments, Comput., 1989, doi: 10.3758/BF03205582.
    L. Medsker, M. Tan, and E. Turban, "Knowledge acquisition from multiple experts: Problems and issues," Expert Syst. Appl., vol. 9, no. 1, pp. 35-40, Jan. 1995, doi: 10.1016/0957-4174(94)00046-X.
    Brewer A, Helfgott MA, Novak J, Schanhals R. An application of cmaps in the description of clinical information structure and logic in electronic health records. Glob Adv Health Med. 2012 Sep;1(4):16-31. doi: 10.7453/gahmj.2012.1.4.003.
    Beglinger B, Rohacek M, Ackermann S, Hertwig R, Karakoumis-Ilsemann J, Boutellier S, Geigy N, Nickel C, Bingisser R. Physician's first clinical impression of emergency department patients with nonspecific complaints is associated with morbidity and mortality. Medicine (Baltimore). 2015 Feb;94(7):e374. doi: 10.1097/MD.0000000000000374.
    R. R. Starr and J. M. Parente De Oliveira, "Concept maps as the first step in an ontology construction method," Inf. Syst., 2013, doi: 10.1016/j.is.2012.05.010.
    R. Matkar and A. Parab, "Ontology based expert systems - replication of human learning," Thinkquest~2010, pp. 43-47, 2011, doi: 10.1007/978-81-8489-989-4_7.
    Yamagata Y, Kozaki K, Imai T, Ohe K, Mizoguchi R. An ontological modeling approach for abnormal states and its application in the medical domain. J Biomed Semantics. 2014 May 21;5:23. doi: 10.1186/2041-1480-5-23. eCollection 2014.
    R. M. RJ Rovetto, "Causality and the ontology of disease," Appl Ontol, vol. 10, no. 2, pp. 79-105, Sep. 2015, doi: 10.3233/ao-150147.
    Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70. doi: 10.1093/nar/gkh061.
    Ghassemi M, Naumann T, Schulam P, Beam AL, Chen IY, Ranganath R. A Review of Challenges and Opportunities in Machine Learning for Health. AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:191-200. eCollection 2020.
    Rudin C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
    Wong A, Otles E, Donnelly JP, Krumm A, McCullough J, DeTroyer-Cooley O, Pestrue J, Phillips M, Konye J, Penoza C, Ghous M, Singh K. External Validation of a Widely Implemented Proprietary Sepsis Prediction Model in Hospitalized Patients. JAMA Intern Med. 2021 Aug 1;181(8):1065-1070. doi: 10.1001/jamainternmed.2021.2626.
    Wong HR, Caldwell JT, Cvijanovich NZ, Weiss SL, Fitzgerald JC, Bigham MT, Jain PN, Schwarz A, Lutfi R, Nowak J, Allen GL, Thomas NJ, Grunwell JR, Baines T, Quasney M, Haileselassie B, Lindsell CJ. Prospective clinical testing and experimental validation of the Pediatric Sepsis Biomarker Risk Model. Sci Transl Med. 2019 Nov 13;11(518):eaax9000. doi: 10.1126/scitranslmed.aax9000.
    Bujang MA, Adnan TH. Requirements for Minimum Sample Size for Sensitivity and Specificity Analysis. J Clin Diagn Res. 2016 Oct;10(10):YE01-YE06. doi: 10.7860/JCDR/2016/18129.8744. Epub 2016 Oct 1.
    Paxton C, Niculescu-Mizil A, Saria S. Developing predictive models using electronic medical records: challenges and pitfalls. AMIA Annu Symp Proc. 2013 Nov 16;2013:1109-15. eCollection 2013.

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20