Search Results - Error back propagation algorithm through time

Refine Results
  1. 1

    Source: Mining Science and Technology (Russia); Vol 6, No 4 (2021); 241–251 ; Горные науки и технологии; Vol 6, No 4 (2021); 241–251 ; 2500-0632

    File Description: application/pdf

    Relation: https://mst.misis.ru/jour/article/view/305/260; Long N. Q., Ahmad A., Cuong C. X., Canh L. Van. Designing observation lines: a case study of the G9 seam in the Mong Duong colliery. Journal of Mining and Earth Sciences. 2019;60(3):18–24. URL: https://www.researchgate.net/publication/333560617_Designing_observation_lines_a_case_study_of_the_G9_seam_in_the_Mong_Duong_colliery; Ambrožič T., Turk G. Prediction of subsidence due to underground mining by artificial neural networks. Computers and Geosciences. 2003;29(5):627–637. https://doi.org/10.1016/S0098-3004(03)00044-X; King M. A., Watson C. S. Long GPS coordinate time series: Multipath and geometry effects. Journal of Geophysical Research: Solid Earth. 2010;115(4):1–23. https://doi.org/10.1029/2009JB006543; Yang W., Xia X. Prediction of mining subsidence under thin bedrocks and thick unconsolidated layers based on field measurement and artificial neural networks. Computers and Geosciences. 2013;52:199–203. https://doi.org/10.1016/j.cageo.2012.10.017; Cong Khai P., Tran D. T., Nguyen V. H. GNSS/CORS-Based Technology for Real-Time Monitoring of Landslides on Waste Dump – A Case Study at the Deo Nai South Dump, Vietnam. Inżynieria Mineralna. 2020;1(2):181–191. https://doi.org/10.29227/IM-2020-02-23; Hejmanowski R., Witkowski W. T. Suitability assessment of artificial neural network to approximate surface subsidence due to rock mass drainage. Journal of Sustainable Mining. 2015;14(2):101–107. https://doi.org/10.1016/j.jsm.2015.08.014; Zhao K., Chen S. N. Study on artificial neural network method for ground subsidence prediction of metal mine. Procedia Earth and Planetary Science. 2011;2(1):177–182. https://doi.org/10.1016/j.proeps.2011.09.029; Kim K. D., Lee S., Oh H. J. Prediction of ground subsidence in Samcheok City, Korea using artificial neural networks and GIS. Environmental Geology. 2009;58(1):61–70. https://doi.org/10.1007/s00254-008-1492-9; Kim Y., Son M., Moon H. K., Lee S. A. A study on the development of an artificial neural network model for the prediction of ground subsidence over abandoned mines in Korea. Geosystem Engineering. 2017;20(3):163–171. https://doi.org/10.1080/12269328.2016.1254573; Lee S., Park I., Choi J. K. Spatial prediction of ground subsidence susceptibility using an artificial neural network. Environmental Management. 2012;49(2):347–358. https://doi.org/10.1007/s00267-011-9766-5; Hu Q., Deng X., Feng R., Li C., Wang X., Jiang T. Model for calculating the parameter of the Knothe time function based on angle of full subsidence. International Journal of Rock Mechanics and Mining Sciences. 2015;78:19–26. https://doi.org/10.1016/j.ijrmms.2015.04.022; Wang C., Ji H. Analysis on the improved time function model of surface subsidence. Electronic Journal of Geotechnical Engineering. 2015;19:615–627.; Zhanqiang C., Jinzhuang W. Study on time function of surface subsidence the improved Knothe time function. Chinese Journal of Rock Mechanics and Engineering. 2003;9.; Long N. Q., My V. C., Luyen B. K. Divergency verification of predicted values and monitored deformation indicators in specific condition of Thong Nhat underground coal mine (Vietnam). Geoinformatica Polonica. 2016;15:15–22. https://doi.org/10.4467/21995923GP.16.002.5479; Cui X., Miao X., Wang J., Yang S. et al. Improved prediction of differential subsidence caused by underground mining. International Journal of Rock Mechanics and Mining Sciences. 2000;37(4):615–627. https://doi.org/10.1016/S1365-1609(99)00125-2; Gonzalez-Nicieza C., Alvarez-Fernandez M. I., Menendez-Diaz A., Alvarez-Vigil A. E. The influence of time on subsidence in the Central Asturian Coalfield. Bulletin of Engineering Geology and the Environment. 2007;66(3):319–329. https://doi.org/10.1007/s10064-007-0085-2; Liu X., Wang J., Guo J., Yuan H., Li P. Time function of surface subsidence based on Harris model in mined-out area. International Journal of Mining Science and Technology. 2013;23(2):245–248. https://doi.org/10.1016/j.ijmst.2013.04.012; Haykin S. Neural Networks: A Comprehensive Foundation. 2nd Edition. 2004.; Rumelhart D. E., Hinton G. E., Williams R. J. Learning representations by back-propagating errors. Nature. 1986;323:533–536. https://doi.org/10.1038/323533a0; Long N. Q. A novel approach of determining the parameters of Asadi profiling function for predictiong ground subsidence due to inclied coal seam mining at Quang Ninh coal basin. Journal of Mining and Earth Sciences. 2020;61(2):86–95. https://doi.org/10.46326/JMES.2020.61(2).10; Atiya A. F. Learning algorithms for neural networks. California Institute of Technology, Pasadena, California. 1991. URL: https://thesis.library.caltech.edu/3725/1/Atiya_a_1991.pdf; Heaton J. Introduction to neural networks with Java. 2nd Edition. Heaton Research, Inc. 2008. 439 p.; Dayong Y., Jun S. Prediction method for evolutionary neural net of strata subsidence of rock Mass. Mining Safety & Environmental Protection. 2002;29(3):11–13. (In Chin.).; https://mst.misis.ru/jour/article/view/305

  2. 2
  3. 3
  4. 4
  5. 5

    Authors: Junjuan Liang

    Source: International Journal of Advanced Computer Science & Applications; 2024, Vol. 15 Issue 11, p211-221, 11p

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

    Source: 2014 International Conference on Soft Computing & Machine Intelligence; 2014, p98-101, 4p

  14. 14
  15. 15
  16. 16

    Source: International Journal of Systems Assurance Engineering & Management; Dec2022 Suppl 3, Vol. 13, p978-986, 9p

  17. 17
  18. 18
  19. 19

    Alternate Title: PROPOSAL OF A NEURO-DBR SYSTEM AND ITS APPLICATI ON TO THE PREDICTION OF LORENZ TIME SERIES.

    Source: Ciencia e Ingenieria Neogranadina. dic2010, Vol. 20 Issue 2, p31-51. 21p. 3 Diagrams, 3 Charts, 7 Graphs.

  20. 20