Suchergebnisse - Encoder-Decoder Neural Network
-
1
Autoren: et al.
Quelle: IEEE Access, Vol 13, Pp 128231-128248 (2025)
-
2
Autoren:
Quelle: International Journal of Image, Graphics and Signal Processing. 17:49-67
-
3
Autoren: B.S. Vien
Quelle: Materials Research Proceedings. 50:61-72
-
4
Autoren: et al.
Quelle: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :1-5
-
5
Autoren: et al.
Quelle: SPE Journal. 30:1010-1023
-
6
Autoren: et al.
Quelle: Series in Computer Vision ISBN: 9789819807147
-
7
Autoren: et al.
Quelle: IET Image Processing, Vol 18, Iss 14, Pp 4778-4798 (2024)
Schlagwörter: Pre‐trained VGG‐19 Model, QA76.75-76.765, 0209 industrial biotechnology, Deep Learning, Image Feature Extractor, Photography, 0202 electrical engineering, electronic engineering, information engineering, Image Captioning, Computer software, 02 engineering and technology, LSTM Decoder, TR1-1050, CNN Encoder
-
8
Autoren: et al.
Quelle: Energy and AI, Vol 21, Iss , Pp 100553- (2025)
Schlagwörter: Surrogate models, Physics-informed convolutional encoder-decoder networks, Wind farm layout optimization, Annual energy production, Wind turbines, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Computer software, QA76.75-76.765
Dateibeschreibung: electronic resource
-
9
Autoren:
Quelle: Sensors (Basel)
Sensors, Vol 25, Iss 8, p 2583 (2025)Schlagwörter: Chemical technology, digital soil mapping, quantile mapping, encoder-decoder, uncertainty maps, convolutional neural network, TP1-1185, soil carbon, Article
-
10
Autoren: et al.
Quelle: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). :1-4
Schlagwörter: Sleep Apnea Syndromes, Respiration, Snoring, Humans, Neural Networks, Computer, Sleep
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/38082595
-
11
Autoren:
Quelle: International Journal of Speech Technology. 27:637-656
-
12
Autoren: et al.
Weitere Verfasser: et al.
Quelle: BULERIA. Repositorio Institucional de la Universidad de León
Universidad de LeónSchlagwörter: Informática, FOS: Computer and information sciences, 0209 industrial biotechnology, LiDAR, Twin Encoder-Decoder, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Convolutional Neural Network, 02 engineering and technology, BEV, Road Detection, Ingenierías, 0202 electrical engineering, electronic engineering, information engineering
Zugangs-URL: http://arxiv.org/abs/2405.08429
https://hdl.handle.net /10612/20890 -
13
Autoren: et al.
Quelle: Communications in Computer and Information Science ISBN: 9783031979095
-
14
Autoren: et al.
Quelle: Intelligent Systems Reference Library ISBN: 9783031831225
-
15
Autoren:
Quelle: 2024 IEEE 5th International Conference on Dielectrics (ICD). :1-4
-
16
Autoren: et al.
Quelle: 2024 9th International Conference on Information Science, Computer Technology and Transportation (ISCTT). :317-321
-
17
Autoren: et al.
Quelle: 2024 18th International Symposium on Medical Information and Communication Technology (ISMICT). :47-52
-
18
Autoren:
Quelle: Journal of Machine Learning for Modeling and Computing. 5:69-85
-
19
-
20
Autoren: et al.
Schlagwörter: FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
Zugangs-URL: http://arxiv.org/abs/2504.16655
Full Text Finder
Nájsť tento článok vo Web of Science