Search Results - Dynamic programming in optimal control and differential games

Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12

    File Description: application/pdf

    Relation: mr:MR4299463; zbl:Zbl 07442524; reference:[1] L'Afflitto, A.: Differential games, continuous Lyapunov functions, and stabilization of non-linear dynamical systems.IET Control Theory Appl. 11 (2017), 2486-2496.; reference:[2] Bellman, R. E.: Dynamic Programming.Princeton University Press, Princeton 1957. Zbl 1205.90002; reference:[3] Bian, T., Jiang, Y., Jiang, Z. P.: Adaptive dynamic programming and optimal control of nonlinear nonaffine systems.Automatica 50 (2014), 2624-2632.; reference:[4] Chai, Y., Luo, J.-J., Han, N., Xie, J.-F.: Attitude takeover control of failed spacecraft using SDRE based differential game approach.J. Astronaut. 41 (2020), 191-198.; reference:[5] El-Sousy, F. F. M., Abuhasel, K. A.: Nonlinear robust optimal control via adaptive dynamic programming of permanent-magnet linear synchronous motor drive for uncertain two-axis motion control system.IEEE Trans. Industry Appl. 56 (2020), 1940-1952.; reference:[6] Federico, S., Tacconi, E.: Dynamic programming for optimal control problems with delays in the control variable.SIAM J. Control Optim. 52 (2014), 1203-1236.; reference:[7] Garcia, Y. H., Gonzalez-Hernandez, J.: Discrete-time Markov control processes with recursive discount rates.Kybernetika 52 (2016), 403-426.; reference:[8] Gromov, D., Gromova, E.: On a class of hybrid differential games.Dynamic Games Appl. 7 (2017), 266-288.; reference:[9] Hua, W., Meng, Q., Zhang, J.: Differential game guidance law for dual and bounded controlled missiles.J. Bejing Univ. Aeronaut. Astronaut. 42 (2016), 1851-1856.; reference:[10] Isaacs, R.: Differential Games.John Wiley and Sons, New York 1965.; reference:[11] Krasnosielska-Kobos, A.: Construction of Nash equilibrium based on multiple stopping problem in multi-person game.Math. Methods Oper. Res. 83 (2016), 53-70.; reference:[12] Lei, L., Yan-Jun, L., Aiqing, Ch., Shaocheng, T., Chen, C. L. P.: Integral barrier Lyapunov function based adaptive control for switched nonlinear systems.Science China Inform. Sci. 63 (2020), 132203.; reference:[13] Lei, L., Yan-Jun, J., Dapeng, L., Shaocheng, T., Zhanshan, W.: Barrier Lyapunov function based adaptive fuzzy FTC for switched systems and its applications to resistance inductance capacitance circuit system.IEEE Trans. Cybernet. 50 (2020), 3491-3502.; reference:[14] Li, J.-M., Zhu, H.-N.: Nash differential games for delayed nonlinear stochastic systems with state-and control-dependent noise.J. Guangdong Univ. Technol. 35 (2018), 41-45.; reference:[15] Liu, D. R., Li, H. L., Wang, D.: Neural-network-based zero-sum game for discrete time nonlinear systems via iterative adaptive dynamic programming algorithm.Neurocomputing 110 (2013), 92-100.; reference:[16] Majid, M., Sani, Seyed Kamal Hosseini: A Novel distributed optimal adaptive control algorithm for nonlinear multi-agent differential graphical games.IEEE/CAA J. Automat. Sinica 5 (2018), 331-341.; reference:[17] Marzieh, M., Karimi, B., Mahootchi, M.: A differential Stackelberg game for pricing on a freight transportation network with one dominant shipper and multiple oligopolistic carriers.Scientia Iranica 23 (2016), 2391-2406.; reference:[18] Moon, J.: Necessary and sufficient conditions of risk - sensitive optimal control and differential games for stochastic differential delayed equations.Int. J. Robust Nonlinear Control 29 (2019), 4812-4827.; reference:[19] Mu, C., Wang, K.: Approximate-optimal control algorithm for constrained zero-sum differential games through event-triggering mechanism.Nonlinear Dynamics 95 (2019), 2639-2657.; reference:[20] Nash, J. F.: Equilibrium points in n-person games.Proc. Nat. Acad. Sci. USA 36 (1950), 1, 48-49. 10.1073/pnas.36.1.48; reference:[21] Nash, J.: Non-cooperative games.Ann. Math. 54 (1951), 286-295. 10.2307/1969529; reference:[22] Neumann, J. von, Morgenstern, O.: Theory of Games and Economic Behavior.Princeton University Press, Princeton 1944.; reference:[23] Pham, H., Wei, X.: Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics.SIAM J. Control Optim. 55 (2016), 1069-1101.; reference:[24] Qin, Ch.: Research on Optimal Control Based on Approximate Dynamic Programming Application in Power System.Doctoral dissertation, Northeastern University 2014.; reference:[25] Rui-Feng, C., Wei-Dong, L., Li, E. G.: Differential game guidance of underwater nonlinear tracking control based on continuous time generalized predictive correction.Acta Physica Sinica 67 (2018), 050501.; reference:[26] Song, R., Li, J., Lewis, F. L.: Robust optimal control for disturbed nonlinear zero-sum differential games based on single NN and least qquares.IEEE Trans. Systems Man Cybernet. Systems PP99 (2019), 4009-4019.; reference:[27] Wei, Q., Liu, D., Lin, H.: Value iteration adaptive dynamic programming for optimal control of discrete-time nonlinear systems.IEEE Trans Cybernet. 46 (2016), 840-853.; reference:[28] Werbos, P. J.: Advances forecasting methods for global crisis warning and models of intelligence.General Systems Yearbook 22 (1977), 25-38.; reference:[29] Yang, B., Xuesong, C. L.: Heuristic dynamic programming based optimal control for multiple time delay systems.J. Theoret. Appl. Inform. Technol. 48 (2013), 876-881.; reference:[30] Zhang, H., Qin, Ch., Jiang, B., Luo, Y.: Online adaptive policy learning algorithm for Hinf state feedback control of unknown affine nonlinear discrete-time systems.IEEE Trans. Cybernet. 44 (2014), 2706-2718.; reference:[31] Zhang, F., Shan, G. S., Gao, H.: Rheumatoid arthritis analysis by Nash equilibrium game analysis.J. Medical Imaging Health Inform. 9 (2019), 1382-1385.; reference:[32] Zhu, Q., Liu, Y., Wen, G.: Adaptive neural network output feedback control for stochastic nonlinear systems with full state constraints.ISA Trans. 101 (2020), 60-68.; reference:[33] Zhu, Q., Wang, K., Shao, Z.: Distributed dynamic optimization for chemical process networks based on differential games.Industr. Engrg. Chem. Res. 59 (2020), 2441-2456.

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

    Authors: Fu X Yan H

    Source: Scientific reports [Sci Rep] 2024 Sep 16; Vol. 14 (1), pp. 21547. Date of Electronic Publication: 2024 Sep 16.

    Publication Type: Journal Article

    Journal Info: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: PubMed not MEDLINE; MEDLINE

  20. 20