Výsledky vyhľadávania - Directional Mordukhovich coderivative
-
1
Alternate Title: Calculus of Normal Cones and Coderivatives Under the Assumption of Directional Inner Semicompactness in Asplund Spaces.
Autori:
Zdroj: Applied Mathematics & Mechanics (1000-0887). Apr2017, Vol. 38 Issue 4, p457-468. 12p.
-
2
Autori: Hien, Le Van
Zdroj: Set-Valued & Variational Analysis; Sep2025, Vol. 33 Issue 3, p1-21, 21p
-
3
Autori: Li, Jinlu1 (AUTHOR) jli@shawnee.edu
Zdroj: Journal of Optimization Theory & Applications. Dec2024, Vol. 203 Issue 3, p2649-2678. 30p.
Predmety: *METRIC projections, *HILBERT space, *DIRECTIONAL derivatives
-
4
Autori:
Zdroj: Faculty Scholarship 2017
Predmety: Directional differentiability, Directional Mordukhovich coderivative, Directional Mordukhovich normal cone, Directional Mordukhovich subdifferential, Generalized differential calculus, Marginal function, Strict differentiability, Variational analysis
Relation: https://commons.emich.edu/fac_sch2017/37
-
5
Autori:
Zdroj: Faculty Scholarship 2017
Predmety: Directional differentiability, Directional Mordukhovich coderivative, Directional Mordukhovich normal cone, Directional sequential normal compactness, Generalized differential calculus, Strict differentiability, Variational analysis
Relation: https://commons.emich.edu/fac_sch2017/36
-
6
Autori: Adly, Samir
Zdroj: Set-Valued & Variational Analysis; Jun2025, Vol. 33 Issue 2, p1-31, 31p
-
7
Autori: Adly, Samir
Zdroj: Journal of Optimization Theory & Applications; Jan2019, Vol. 180 Issue 1, p62-90, 29p
-
8
Autori: Ghahraei, Elham
Zdroj: Bulletin of the Iranian Mathematical Society; Dec2022, Vol. 48 Issue 6, p3099-3116, 18p
Predmety: VECTOR fields
-
9
Autori:
Zdroj: Set-Valued Analysis; Dec2008, Vol. 16 Issue 7/8, p999-1014, 16p
-
10
Autori:
Zdroj: Set-Valued & Variational Analysis; Sep2015, Vol. 23 Issue 3, p399-414, 16p
-
11
Autori: Maréchal, Matthieu
Zdroj: Journal of Optimization Theory & Applications; Mar2018, Vol. 176 Issue 3, p541-558, 18p
-
12
Autori:
Zdroj: Optimization. Jan/Feb2011, Vol. 60 Issue 1/2, p253-275. 23p.
-
13
Autori:
Predmety: keyword:variational analysis, keyword:second-order theory, keyword:generalized differentiation, keyword:tilt stability, msc:49J52, msc:90C30, msc:90C31
Popis súboru: application/pdf
Relation: reference:[1] Artacho, F. J. A. Aragón, Goeffroy, M. H.: Characterization of metric regularity of subdifferentials.J. Convex Anal. 15 (2008), 365-380. MR 2422996; reference:[2] Bonnans, F. J., Shapiro, A.: Perturbation Analysis of Optimization Problems.Springer, New York 2000. Zbl 0966.49001, MR 1756264; reference:[3] Dontchev, A. L., Rockafellar, R. T.: Characterizations of strong regularity for variational inequalities over polyhedral convex sets.SIAM J. Optim. 6 (1996), 1087-1105. Zbl 0899.49004, MR 1416530, 10.1137/S1052623495284029; reference:[4] Dontchev, A. L., Rockafellar, R. T.: Characterizations of Lipschitzian stability in nonlinear programming.In: Mathematical Programming with Data Perturbations (A. V. Fiacco, ed.), Marcel Dekker, New York 1997, pp. 65-82. Zbl 0891.90146, MR 1472266; reference:[5] Dontchev, A. L., Rockafellar, R. T.: Implicit Functions and Solution Mappings. A View from Variational Analysis.Springer, Dordrecht 2009. Zbl 1178.26001, MR 2515104; reference:[6] Drusvyatskiy, D., Lewis, A. S.: Tilt stability, uniform quadratic growth, and strong metric regularity of the subdifferential.SIAM J. Optim. 23 (2013), 256-267. MR 3033107, 10.1137/120876551; reference:[7] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems.Springer, New York 2003. Zbl 1062.90002; reference:[8] Henrion, R., Mordukhovich, B. S., Nam, N. M.: Second-order analysis of polyhedral systems in finite and infinite dimensions with applications to robust stability of variational inequalities.SIAM J. Optim. 20 (2010), 2199-2227. Zbl 1208.49010, MR 2650845, 10.1137/090766413; reference:[9] Henrion, R., Outrata, J. V., Surowiec, T.: On the coderivative of normal cone mappings to inequality systems.Nonlinear Anal. 71 (2009), 1213-1226. MR 2527541, 10.1016/j.na.2008.11.089; reference:[10] Henrion, R., Outrata, J. V., Surowiec, T.: On regular coderivatives in parametric equalibria with non-unique multipliers.Math. Programming Ser. B 136 (2012), 111-131. MR 3000584, 10.1007/s10107-012-0553-8; reference:[11] Henrion, R., Kruger, A. Y., Outrata, J. V.: Some remarks on stability of generalized equations.J. Optim. Theory Appl., DOI 10.1007 s 10957-012-0147-x.; reference:[12] Izmailov, A. F., Kurennoy, A. S., Solodov, M. V.: A note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz continuous KKT systems.Math. Programming, DOI 10.1007/s 10107-012-0586-z.; reference:[13] Janin, R.: Directional derivative of marginal function in nonlinear programming.Math. Programming Stud. 21 (1984), 110-126. MR 0751246, 10.1007/BFb0121214; reference:[14] Klatte, D.: On the stability of local and global solutions in parametric problems of nonlinear programming. Part I: Basic results.Seminarbericht 75 der Sektion Mathematik der Humboldt-Universitat zu Berlin 1985, pp. 1-21, MR 0861527; reference:[15] Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications.Kluwer, Boston 2002. Zbl 1173.49300, MR 1909427; reference:[16] Kojima, M.: Strongly stable stationary solutions in nonlinear programs.In: Analysis and Computation of Fixed Points (S. M. Robinson, ed.), Academic Press, New York 1980, pp. 93-138. Zbl 0478.90062, MR 0592631; reference:[17] Levy, A. B., Poliquin, R. A., Rockafellar, R. T.: Stability of local optimal solutions.SIAM J. Optim. 10 (2000), 580-604. MR 1740960, 10.1137/S1052623498348274; reference:[18] Lewis, A. S., Zhang, S.: Partial smoothness, tilt stability, and generalized Hessians.SIAM J. Optim. 23 (2013), 74-94. MR 3033099, 10.1137/110852103; reference:[19] Lu, S.: Implications of the constant rank constraint qualification.Math. Programming 126 (2011), 365-392. Zbl 1214.90113, MR 2764353, 10.1007/s10107-009-0288-3; reference:[20] Minchenko, L., Stakhovski, S.: Parametric nonlinear programming problems under the relaxed constant rank condition.SIAM J. Optim. 21 (2011), 314-332. Zbl 1229.90216, MR 2783218, 10.1137/090761318; reference:[21] Mordukhovich, B. S.: Sensitivity analysis in nonsmooth optimization.In: Theoretical Aspects of Industrial Design (D. A. Field and V. Komkov, eds.), SIAM Proc. Appl. Math. 58 (1992), pp. 32-46. Philadelphia. Zbl 0769.90075, MR 1157413; reference:[22] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation. I: Basic Theory, II: Applications.Springer, Berlin 2006. Zbl 1100.49002, MR 2191744; reference:[23] Mordukhovich, B. S., Outrata, J. V.: Second-order subdifferentials and their applications.SIAM J. Optim. 12 (2001), 139-169. Zbl 1011.49016, MR 1870589, 10.1137/S1052623400377153; reference:[24] Mordukhovich, B. S., Outrata, J. V.: Coderivative analysis of quasi-variational inequalities with applications to stability and optimization.SIAM J. Optim. 18 (2007), 389-412. Zbl 1145.49012, MR 2338444, 10.1137/060665609; reference:[25] Mordukhovich, B. S., Rockafellar, R. T.: Second-order subdifferential calculus with applications to tilt stability in optimization.SIAM J. Optim. 22 (2012), 953-986. Zbl 1260.49022, MR 3023759, 10.1137/110852528; reference:[26] Outrata, J. V.: Optimality conditions for a class of mathematical programs with equilibrium constraints.Math. Oper. Res. 24 (1999), 627-644. Zbl 1039.90088, MR 1854246, 10.1287/moor.24.3.627; reference:[27] Outrata, J. M., C., H. Ramírez: On the Aubin property of critical points to perturbed second-order cone programs.SIAM J. Optim. 21 (2011), 798-823. Zbl 1247.90256, MR 2837552, 10.1137/100807168; reference:[28] Poliquin, R. A., Rockafellar, R. T.: Tilt stability of a local minimum.SIAM J. Optim. 8 (1998), 287-299. Zbl 0918.49016, MR 1618790, 10.1137/S1052623496309296; reference:[29] Ralph, D., Dempe, S.: Directional derivatives of the solution of a parametric nonlinear program.Math. Programming 70 (1995), 159-172. Zbl 0844.90089, MR 1361325, 10.1007/BF01585934; reference:[30] Robinson, S. M.: Generalized equations and their solutions, I: Basic theory.Math. Programming Stud. 10 (1979), 128-141. Zbl 0404.90093, MR 0527064, 10.1007/BFb0120850; reference:[31] Robinson, S. M.: Strongly regular generalized equations.Math. Oper. Res. 5 (1980), 43-62. Zbl 0437.90094, MR 0561153, 10.1287/moor.5.1.43; reference:[32] Robinson, S. M.: Local epi-continuity and local optimization.Math. Programming 37 (1987), 208-223. Zbl 0623.90078, MR 0883021, 10.1007/BF02591695; reference:[33] Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis.Springer, Berlin 1998. Zbl 0888.49001, MR 1491362
Dostupnosť: http://hdl.handle.net/10338.dmlcz/143358
-
14
Autori:
Zdroj: Set-Valued Analysis; Dec2006, Vol. 14 Issue 4, p327-345, 19p
-
15
Autori:
Zdroj: Mathematical Programming; Sep2025, Vol. 213 Issue 1/2, p385-432, 48p
Predmety: NONSMOOTH optimization, MATHEMATICAL optimization, VARIATIONAL inequalities (Mathematics), CALCULUS of variations, VARIATIONAL approach (Mathematics), NONLINEAR functions, NEWTON-Raphson method, BIOCHEMICAL models
Osoby: NEWTON, Isaac, 1642-1727
-
16
Autori:
Zdroj: SIAM Journal on Optimization; 2025, Vol. 35 Issue 4, p2234-2264, 31p
-
17
Autori:
Zdroj: Mathematical Programming; Jan2025, Vol. 209 Issue 1, p859-937, 79p
-
18
Autori:
Zdroj: Journal of Inequalities & Applications; 11/17/2025, Vol. 2025 Issue 1, p1-12, 12p
-
19
Autori:
Zdroj: Set-Valued & Variational Analysis; Sep2025, Vol. 33 Issue 3, p1-33, 33p
-
20
Autori: a ďalší
Zdroj: Set-Valued & Variational Analysis; Dec2023, Vol. 31 Issue 4, p1-27, 27p
Nájsť tento článok vo Web of Science
Full Text Finder