Suchergebnisse - Depthwise convolution*
-
1
Autoren:
Quelle: IEEE Access, Vol 13, Pp 28789-28798 (2025)
-
2
Autoren: et al.
Quelle: IEEE Open Journal of the Communications Society, Vol 6, Pp 656-670 (2025)
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY
IEEE Open Journal of the Communications SocietySchlagwörter: Technology and Engineering, depthwise separable convolution, Co-channel interference cancellation, Telecommunication, convolutional neural network, quantization, TK5101-6720, resource-constrained environments, Transportation and communications, HE1-9990
Dateibeschreibung: application/pdf
Zugangs-URL: https://doaj.org/article/341cafeff36d4bfda9e1787bac74b2c1
http://doi.org/10.1109/OJCOMS.2024.3523797
https://biblio.ugent.be/publication/01JK5HTAWDGWMJJS2WJXFZYXPX/file/01JK5HYN9MJFV42CWNKWW2Q23F
http://hdl.handle.net/1854/LU-01JK5HTAWDGWMJJS2WJXFZYXPX
https://biblio.ugent.be/publication/01JK5HTAWDGWMJJS2WJXFZYXPX -
3
Explainable AI for Lightweight Network Traffic Classification Using Depthwise Separable Convolutions
Autoren: et al.
Quelle: IEEE Open Journal of the Computer Society, Vol 6, Pp 908-920 (2025)
-
4
Autoren: et al.
Quelle: Scientific Reports, Vol 15, Iss 1, Pp 1-14 (2025)
Schlagwörter: Internet of vehicles (IoV), Adaptive personalized federated learning (APFed), Intrusion detection system (IDS), Lightweight depthwise convolutional bottleneck network (LDwCBN), Non-IID data, Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
-
5
Autoren: et al.
Quelle: Scientific Reports, Vol 15, Iss 1, Pp 1-17 (2025)
Schlagwörter: Skin segmentation, Lightweight model, Depthwise separable convolution, Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
-
6
Autoren:
Quelle: 2025 International Conference on Multimedia Analysis and Pattern Recognition (MAPR). :1-6
-
7
Autoren: et al.
Quelle: 2025 7th International Conference on Electronics and Communication, Network and Computer Technology (ECNCT). :530-534
-
8
Autoren: et al.
Quelle: 2025 6th International Conference on Data Intelligence and Cognitive Informatics (ICDICI). :1131-1137
-
9
Autoren:
Quelle: IEEE Access, Vol 13, Pp 122207-122223 (2025)
-
10
Autoren:
Quelle: Neurocomputing. 609
Schlagwörter: Convolutional neural network, Efficient network, Deep learning, Network complexity, Low rank approximation, Subspace method
Dateibeschreibung: electronic
-
11
Autoren: et al.
Quelle: Very Efficient Deep Learning in IOT (VEDLIoT) EPI SGA2 53rd International Conference on Parallel Processing, ICPP 2024, Gotland, Sweden ACM International Conference Proceeding Series. :58-67
Schlagwörter: layer fusion, depthwise convolution, CNN, vision transformer, pointwise convolution, GPU
Dateibeschreibung: electronic
-
12
Autoren:
Quelle: 2025 IEEE Statistical Signal Processing Workshop (SSP). :91-95
Schlagwörter: FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing
Zugangs-URL: http://arxiv.org/abs/2505.00374
-
13
Autoren:
Quelle: Techno.Com, Vol 24, Iss 2, Pp 355-364 (2025)
Schlagwörter: Information technology, T58.5-58.64
-
14
Autoren: Bangar Raju Cherukuri
Quelle: Journal of Machine and Computing. :814-830
-
15
Autoren:
Quelle: Journal of Korea Multimedia Society. 28:733-740
-
16
Autoren: et al.
Quelle: MethodsX, Vol 15, Iss , Pp 103685- (2025)
Schlagwörter: Blood cell classification, Deep learning, Wavelet CNN, Spectral-aware downsampling, Depthwise separable convolution, Science
Dateibeschreibung: electronic resource
-
17
Autoren:
Quelle: Canadian Journal of Remote Sensing, Vol 51, Iss 1 (2025)
Schlagwörter: hyperspectral image classification, deep learning, multiscale features, channel spatial attention, depthwise separable convolution, Environmental sciences, GE1-350, Technology
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/1712-7971
-
18
Quelle: International Journal of Intelligent Engineering and Systems. 18:72-82
-
19
Autoren: et al.
Quelle: 2025 10th International Conference on Electronic Technology and Information Science (ICETIS). :267-271
-
20
Autoren: et al.
Quelle: Nondestructive Testing and Evaluation. :1-27
Full Text Finder
Nájsť tento článok vo Web of Science