Suchergebnisse - Deep convolutional encoder–decoder
-
1
Autoren:
Quelle: IEEE Transactions on Artificial Intelligence. 6:700-709
-
2
Autoren: et al.
Quelle: Energy and AI, Vol 21, Iss , Pp 100553- (2025)
Schlagwörter: Surrogate models, Physics-informed convolutional encoder-decoder networks, Wind farm layout optimization, Annual energy production, Wind turbines, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Computer software, QA76.75-76.765
Dateibeschreibung: electronic resource
-
3
Unsupervised Image Hashing Using a Deep Convolutional Encoder-Decoder Model for Fast Image Retrieval
Autoren: Enver AKBACAK
Quelle: Volume: 23, Issue: 6 1458-1465
Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri DergisiSchlagwörter: EncoderDecoder, Denetimsiz Öğrenme, Deep Learning, Hash Codes, Yapay Zeka, Artificial Intelligence, Hash Kodlar, Derin Öğrenme, Denetimsiz öğrenme, Derin öğrenme, Kodlayıcı ve kod çözücü, Hash kodları, Unsupervised Learning, KodlayıcıKod Çözücü, Unsupervised learning, Deep learning, Encoder-decoder, Hash codes
Dateibeschreibung: application/pdf
-
4
Autoren:
Quelle: Network: Computation in Neural Systems. 36:480-506
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/38775271
-
5
Autoren:
Quelle: Physics of Fluids. 37
-
6
Autoren:
Quelle: Applied Sciences, Vol 15, Iss 13, p 7300 (2025)
-
7
-
8
Autoren: et al.
Quelle: CCF Transactions on High Performance Computing. 6:408-424
-
9
Autoren:
Quelle: Cluster Computing. 27:4925-4940
-
10
Autoren: et al.
Quelle: IEEE Access, Vol 9, Pp 161326-161341 (2021)
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, deep learning, segmentation analysis, 02 engineering and technology, Electrical Engineering and Systems Science - Image and Video Processing, semantic segmentation, TK1-9971, Machine Learning (cs.LG), Artificial Intelligence (cs.AI), multi-level deep convolutional encoder-decoder network, FOS: Electrical engineering, electronic engineering, information engineering, 0202 electrical engineering, electronic engineering, information engineering, Electrical engineering. Electronics. Nuclear engineering, blood cells, CNN
-
11
Autoren:
Quelle: Journal of Intelligent & Fuzzy Systems. 45:2331-2345
-
12
Autoren: et al.
Quelle: International Journal of Remote Sensing. 44:5686-5712
-
13
A novel deep convolutional encoder–decoder network: application to moving object detection in videos
Autoren:
Quelle: Neural Computing and Applications. 35:22027-22041
-
14
Autoren:
Quelle: Scientific Programming. 2023:1-15
Schlagwörter: 11. Sustainability, 0211 other engineering and technologies, 02 engineering and technology, 01 natural sciences, 0105 earth and related environmental sciences
Dateibeschreibung: text/xhtml
-
15
Autoren: et al.
Quelle: IEEE Transactions on Antennas and Propagation. 71:2867-2872
-
16
Autoren:
Quelle: IEEE Transactions on Geoscience and Remote Sensing. 61:1-18
-
17
Autoren:
Quelle: IEEE Transactions on Antennas and Propagation. 71:1152-1157
-
18
Autoren:
Quelle: Lecture Notes in Networks and Systems ISBN: 9789819994854
-
19
Autoren:
Quelle: IEEE Access, Vol 9, Pp 56699-56708 (2021)
Schlagwörter: noise reduction, deep neural network, 0202 electrical engineering, electronic engineering, information engineering, Electrocardiogram signal, Electrical engineering. Electronics. Nuclear engineering, 02 engineering and technology, sparse representation, time-frequency domain, TK1-9971
-
20
Autoren:
Quelle: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). :4291-4294
Schlagwörter: Electrocardiography, Wearable Electronic Devices, 0206 medical engineering, Electrocardiography, Ambulatory, Humans, Neural Networks, Computer, 02 engineering and technology, Artifacts
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/36085851
Full Text Finder
Nájsť tento článok vo Web of Science