Suchergebnisse - Convolutional sparse autoencoder~
-
1
Autoren: et al.
Quelle: Tsinghua Science and Technology. 30:68-86
-
2
Autoren:
Quelle: Signal, Image and Video Processing. 19
Schlagwörter: autoencoder, semi-supervised learning, convolutional sparse autoencoder, facial expression recognition, feature representation, unsupervised learning
Zugangs-URL: https://bura.brunel.ac.uk/handle/2438/31141
-
3
Autoren: et al.
Quelle: Signal, Image and Video Processing. 18:3509-3525
-
4
Autoren: et al.
Quelle: 2023 International Conference on Human-Centered Cognitive Systems (HCCS). :1-6
-
5
Autoren: et al.
Quelle: Natural Resources Research. 32:1-18
-
6
Autoren:
Quelle: Lecture Notes on Data Engineering and Communications Technologies ISBN: 9783031277610
-
7
-
8
Autoren:
Quelle: 2019 5th International Conference on Computing Engineering and Design (ICCED). :1-4
Schlagwörter: 4. Education, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
9
Autoren: et al.
Quelle: Communications in Computer and Information Science ISBN: 9783030923068
-
10
Autoren:
Quelle: Signal, Image & Video Processing; May2025, Vol. 19 Issue 5, p1-18, 18p
-
11
Autoren:
Quelle: IEEE Transactions on Neural Networks and Learning Systems. 32(6)
Schlagwörter: Information and Computing Sciences, Computer Vision and Multimedia Computation, Estimation, Dynamics, Optical imaging, Cameras, Training, Adaptive optics, Motion segmentation, Convolutional autoencoder, ego motion, object motion, overcomplete basis, sparse representation, cs.CV, cs.LG, Artificial Intelligence & Image Processing, Artificial intelligence
Dateibeschreibung: application/pdf
-
12
Autoren:
Quelle: Applied Sciences, Vol 13, Iss 1, p 481 (2022)
Schlagwörter: domain adaptation, convolutional autoencoder, sparse autoencoder, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
Dateibeschreibung: electronic resource
-
13
Autoren: et al.
Quelle: Frontiers in Neuroscience, Vol 19 (2025)
Schlagwörter: seizure detection, convolutional neural network, gated recurrent unit, sparse autoencoder, borderline synthetic minority oversampling technique, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
Dateibeschreibung: electronic resource
-
14
Autoren: et al.
Quelle: Expert Systems. Dec2024, Vol. 41 Issue 12, p1-20. 20p.
-
15
Autoren: et al.
Quelle: Natural Resources Research; Feb2023, Vol. 32 Issue 1, p1-18, 18p
Schlagwörter: ADDITION (Mathematics), GENERALIZATION, MINERALIZATION, ORE deposits, PRIOR learning
Geografische Kategorien: SHAANXI Sheng (China), CHINA
-
16
Autoren: et al.
Quelle: Signal, Image & Video Processing; Jun2024, Vol. 18 Issue 4, p3509-3525, 17p
-
17
Autoren:
Quelle: 2017 IEEE Power & Energy Society General Meeting. :1-1
Schlagwörter: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 3. Good health
-
18
Autoren:
Quelle: Scientific Reports; 9/24/2025, Vol. 15 Issue 1, p1-18, 18p
-
19
Autoren:
Quelle: Traitement du Signal. Feb2025, Vol. 42 Issue 1, p557-568. 12p.
Schlagwörter: *DATA security, *ARTIFICIAL neural networks, *DATA protection, PATIENT monitoring, ELECTROCARDIOGRAPHY, CLASSIFICATION
-
20
Autoren:
Quelle: Multimedia Tools & Applications; May2024, Vol. 83 Issue 18, p55963-55979, 17p
Nájsť tento článok vo Web of Science
Full Text Finder