Suchergebnisse - Convolutional neural network (CNN) Overcomplete Autoencoder application*
-
1
Autoren: et al.
Quelle: Mathematics (2227-7390); Apr2025, Vol. 13 Issue 7, p1119, 30p
-
2
Autoren:
Quelle: Sensors (14248220); Aug2025, Vol. 25 Issue 15, p4853, 27p
-
3
Autoren:
Quelle: Digital Signal Processing. Jan2026:Part C, Vol. 168, pN.PAG-N.PAG. 1p.
Schlagwörter: *WATER distribution, *LEAK detection, *FEATURE selection, *PATTERN perception, *AUTOENCODERS, *CONVOLUTIONAL neural networks, *OUTLIER detection
-
4
Autoren: et al.
Quelle: Sensors (14248220); Nov2023, Vol. 23 Issue 22, p9099, 19p
-
5
Alternate Title: 基于 CNN 特征的协同稀疏表示人脸识别算法. (Chinese)
Autoren:
Quelle: Journal of Measurement Science & Instrumentation; Mar2025, Vol. 16 Issue 1, p85-95, 11p
-
6
Autoren:
Quelle: Diagnostics (2075-4418); Jul2024, Vol. 14 Issue 14, p1469, 25p
-
7
Autoren: et al.
Quelle: AIP Advances; Oct2021, Vol. 11 Issue 10, p1-6, 6p
-
8
Autoren: et al.
Quelle: Medical physics [Med Phys] 2023 Oct; Vol. 50 (10), pp. 6137-6150. Date of Electronic Publication: 2023 Apr 17.
Publikationsart: Journal Article
Info zur Zeitschrift: Publisher: John Wiley and Sons, Inc Country of Publication: United States NLM ID: 0425746 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2473-4209 (Electronic) Linking ISSN: 00942405 NLM ISO Abbreviation: Med Phys Subsets: MEDLINE
-
9
Autoren: et al.
Quelle: Frontiers in Neuroscience; 10/25/2022, Vol. 16, p1-16, 16p
-
10
Autoren: et al.
Quelle: IEEE Transactions on Geoscience & Remote Sensing; Jul2020, Vol. 58 Issue 7, p4590-4603, 14p
Schlagwörter: CONVOLUTIONAL neural networks, SPECTRAL imaging
-
11
Autoren: et al.
Quelle: IEEE Transactions on Geoscience & Remote Sensing; Nov2020, Vol. 58 Issue 11, p8077-8092, 16p
Schlagwörter: CONVOLUTIONAL neural networks, REMOTE-sensing images, FILTER banks, DEEP learning
-
12
Autoren: et al.
Quelle: IEEE Transactions on Circuits & Systems for Video Technology; Sep2022, Vol. 32 Issue 9, p5830-5845, 16p
Schlagwörter: IMAGE reconstruction, IMAGE fusion, CONVOLUTIONAL neural networks, DEEP learning
-
13
Autoren: et al.
Quelle: Measurement Science & Technology; May2021, Vol. 32 Issue 5, p1-11, 11p
-
14
Autoren:
Quelle: International Journal of Remote Sensing; Jun2020, Vol. 41 Issue 11, p4057-4079, 23p, 7 Diagrams, 3 Charts, 4 Graphs
-
15
Autoren: et al.
Quelle: Applied Sciences (2076-3417); Mar2023, Vol. 13 Issue 5, p2828, 18p
Schlagwörter: CONVOLUTIONAL neural networks
-
16
Autoren: et al.
Quelle: IEEE Transactions on Geoscience & Remote Sensing; Dec2021, Vol. 59 Issue 12, p10348-10363, 16p
-
17
Autoren: et al.
Quelle: Physics of Fluids; Dec2020, Vol. 32 Issue 12, p1-17, 17p
-
18
Autoren:
Quelle: Wireless Personal Communications; 2021, Vol. 116 Issue 1, p491-511, 21p
-
19
Autoren: et al.
Quelle: Frontiers in Energy; Jun2025, Vol. 19 Issue 3, p348-364, 17p
-
20
Autoren: et al.
Quelle: Frontiers in Neuroscience; 12/9/2021, Vol. 15, p1-16, 16p
Schlagwörter: CONVOLUTIONAL neural networks, ANALOG circuits, MACHINE learning
Full Text Finder
Nájsť tento článok vo Web of Science