Suchergebnisse - Constrained Graph Variational Autoencoder
-
1
Autoren:
Quelle: 2020 IEEE Symposium Series on Computational Intelligence (SSCI). :729-736
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 01 natural sciences, Machine Learning (cs.LG), 0104 chemical sciences
Dateibeschreibung: application/pdf
Zugangs-URL: http://arxiv.org/pdf/2009.00725
http://arxiv.org/abs/2009.00725
https://arxiv.org/pdf/2009.00725
https://www.research.unipd.it/handle/11577/3389931
https://arxiv.org/abs/2009.00725
http://dblp.uni-trier.de/db/journals/corr/corr2009.html#abs-2009-00725
https://dblp.uni-trier.de/db/journals/corr/corr2009.html#abs-2009-00725
https://hdl.handle.net/11577/3389931
https://doi.org/10.1109/SSCI47803.2020.9308554 -
2
-
3
-
4
Autoren:
Schlagwörter: 0301 basic medicine, 03 medical and health sciences, 01 natural sciences, 3. Good health, 0104 chemical sciences
Zugangs-URL: https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/60c74990842e658846db2d79/original/on-the-generation-of-novel-ligands-for-sars-co-v-2-protease-and-ace2-receptor-via-
constrained -graph -variational -autoencoders .pdf
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/60c7494f4c8919e3e9ad3078/original/on-the-generation-of-novel-ligands-for-sars-co-v-2-protease-and-ace2-receptor-via-constrained -graph -variational -autoencoders .pdf
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/60c7490e337d6c09f4e27666/original/on-the-generation-of-novel-ligands-for-sars-co-v-2-protease-and-ace2-receptor-via-constrained -graph -variational -autoencoders .pdf
https://europepmc.org/article/PPR/PPR118788
https://chemrxiv.org/engage/chemrxiv/article-details/60c7490e337d6c09f4e27666
https://doi.org/10.26434%2Fchemrxiv.12011157.v3 -
5
-
6
Autoren: et al.
-
7
-
8
Autoren: et al.
Quelle: Symmetry (20738994). Apr2025, Vol. 17 Issue 4, p520. 15p.
Schlagwörter: *DETECTION algorithms, *SELF-organizing maps, *FEATURE selection, *ANOMALY detection (Computer security), *AUTOENCODERS
-
9
Autoren: et al.
Quelle: Nature Machine Intelligence; Dec2024, Vol. 6 Issue 12, p1457-1466, 10p
-
10
Autoren: et al.
Quelle: Advanced Science. 12/11/2025, Vol. 12 Issue 46, p1-9. 9p.
-
11
Autoren: et al.
Quelle: Structural & Multidisciplinary Optimization; Mar2024, Vol. 67 Issue 3, p1-18, 18p
-
12
Autoren: et al.
Quelle: Molecular Informatics; May2023, Vol. 42 Issue 5, p1-15, 15p
-
13
Autoren:
Quelle: Journal of Statistical Computation & Simulation. Sep2025, Vol. 95 Issue 14, p3048-3076. 29p.
Schlagwörter: *CAUSAL inference, *CAUSAL models
-
14
Autoren: et al.
Quelle: Algorithms; Mar2023, Vol. 16 Issue 3, p143, 17p
Schlagwörter: DEEP learning, PHASE coding
-
15
Autoren:
Weitere Verfasser:
Schlagwörter: Variationale Autoencoder, niedermolekulare organische Verbindungen, VAE, SMILES, Chem- VAE, fragmentbasiertes Deep-Generatives-Model, Constrained Graph Variational Autoencoder, CGVAE, 004: Informatik, ddc:004
Dateibeschreibung: application/pdf
Verfügbarkeit: https://hdl.handle.net/20.500.12738/16162
-
16
Autoren:
Verfügbarkeit: https://doi.org/10.26434/chemrxiv.12011157.v1
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/60c7490e337d6c09f4e27666/original/on-the-generation-of-novel-ligands-for-sars-co-v-2-protease-and-ace2-receptor-via-constrained-graph-variational-autoencoders.pdf -
17
Autoren: et al.
Relation: http://arxiv.org/abs/2511.05968
Verfügbarkeit: http://arxiv.org/abs/2511.05968
-
18
Quelle: Drug Week; 6/28/2024, p1058-1058, 1p
Schlagwörter: OBESITY, DRUG discovery, REPRESENTATIONS of graphs, SCIENCE projects, THREE-dimensional imaging
Geografische Kategorien: XIAMEN Shi (China)
-
19
Autoren: et al.
Quelle: Reliability Engineering & System Safety. Sep2025, Vol. 261, pN.PAG-N.PAG. 1p.
Schlagwörter: *URBAN transit systems, *DIRECTED graphs, *AUTOENCODERS, *PANTOGRAPH, *CATENARY, *PREDICTION models
-
20
Autoren: et al.
Quelle: Bioinformatics Advances; 2021, Vol. 1 Issue 1, p1-9, 9p
Schlagwörter: PROTEINS, COMPUTER vision, IMAGE processing, MOTION analysis, MACHINE learning
Nájsť tento článok vo Web of Science
Full Text Finder