Suchergebnisse - Conditional variational autoencoder (cVAE)~
-
1
-
2
Autoren: et al.
Quelle: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 17, Pp 9337-9359 (2024)
Schlagwörter: Conditional variational autoencoder (CVAE), SMAP L4, QC801-809, Geophysics. Cosmic physics, 0207 environmental engineering, 02 engineering and technology, 15. Life on land, surface soil moisture (SM), 01 natural sciences, Ocean engineering, product reconstruction, 13. Climate action, ESA climate change initiative (CCI), TC1501-1800, 0105 earth and related environmental sciences
-
3
-
4
Autoren:
Quelle: 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1-6
Schlagwörter: FOS: Computer and information sciences, CVAE, Computer Science - Machine Learning, FOS: Electrical engineering, electronic engineering, information engineering, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, generative model, Systems and Control (eess.SY), 02 engineering and technology, synthetic data, Electrical Engineering and Systems Science - Systems and Control, load profiles, Machine Learning (cs.LG)
-
5
Autoren: et al.
Quelle: Journal of Polymer Science. 63:1334-1344
-
6
Autoren:
Quelle: Reliability Engineering and System Safety. 267
Schlagwörter: Graph convolutional network, Trajectory prediction, Cooperative intention constructor, Intelligent situational awareness systems, Conditional variational autoencoder, Multi-modal interaction extractor
Zugangs-URL: https://research.chalmers.se/publication/549377
-
7
Autoren:
Quelle: Orclever Proceedings of Research and Development. 5:498-514
-
8
Autoren:
Index Begriffe: Astrophysics - Instrumentation and Methods for Astrophysics, text
-
9
Autoren:
Quelle: IEEE Access, Vol 13, Pp 53084-53099 (2025)
-
10
Autoren:
Quelle: Artificial Intelligence. 29:75-81
-
11
Autoren:
Quelle: Physical Review D. 111
Schlagwörter: FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM)
Zugangs-URL: http://arxiv.org/abs/2502.09266
-
12
Autoren:
Quelle: Astronomy, Vol 4, Iss 3, p 13 (2025)
Schlagwörter: stellar spectroscopy, stellar parameters, deep learning, conditional variational autoencoders, Astronomy, QB1-991
Dateibeschreibung: electronic resource
-
13
Autoren: et al.
Quelle: Mathematics, Vol 13, Iss 14, p 2218 (2025)
-
14
Autoren:
Quelle: NeuroImage, Vol 312, Iss, Pp 121202-(2025)
Schlagwörter: Conditional variational autoencoder (CVAE), Adult, Deep Learning, Chemical exchange saturation transfer (CEST), Image Processing, Computer-Assisted, B1 inhomogeneity, Humans, Brain, Neurosciences. Biological psychiatry. Neuropsychiatry, Magnetic Resonance Imaging, RC321-571
-
15
Autoren: et al.
Quelle: Process Science. 2
Schlagwörter: Conditional models, Generative AI, Process mining, Deep learning
Dateibeschreibung: application/pdf
-
16
Autoren: et al.
Quelle: International Journal of Molecular Sciences. May2025, Vol. 26 Issue 9, p3980. 14p.
Schlagwörter: *DRUG discovery, *AUTOENCODERS, *OPTIMIZATION algorithms, *LINEAR operators, *VALUATION of real property
-
17
Autoren: et al.
Quelle: International Transactions on Electrical Energy Systems. 9/23/2025, Vol. 2025, p1-12. 12p.
-
18
Autoren:
Schlagwörter: Computational Physics, Instrumentation and Methods for Astrophysics, FOS: Physical sciences, Solar and Stellar Astrophysics, Space Physics, Computational Physics (physics.comp-ph), Instrumentation and Methods for Astrophysics (astro-ph.IM), Solar and Stellar Astrophysics (astro-ph.SR), Space Physics (physics.space-ph)
Zugangs-URL: http://arxiv.org/abs/2508.17059
-
19
Autoren: et al.
Quelle: Journal of Translational Medicine, Vol 23, Iss 1, Pp 1-21 (2025)
Schlagwörter: Spatial transcriptomics, Single-cell RNA sequencing, Gene imputation, Conditional variational autoencoder (CVAE), Attention mechanism, Medicine
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/1479-5876
-
20
Autoren:
Quelle: Annals of Nuclear Energy. 220:111502
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)
Zugangs-URL: http://arxiv.org/abs/2409.05790
Nájsť tento článok vo Web of Science
Full Text Finder