Suchergebnisse - Computing methodologies Machine learning Learning paradigms Multi-task learning
-
1
Autoren: et al.
Quelle: BMC Sports Science, Medicine & Rehabilitation; 8/27/2025, Vol. 17 Issue 1, p1-20, 20p
-
2
-
3
Autoren:
Quelle: Hydrology (2306-5338); Nov2025, Vol. 12 Issue 11, p291, 26p
Schlagwörter: GROUNDWATER, TRANSFORMER models, SPATIOTEMPORAL processes, RIVER channels, MACHINE learning, WATERSHEDS, WATER management
Geografische Kategorien: CHINA
-
4
Autoren: et al.
Quelle: Soft Computing - A Fusion of Foundations, Methodologies & Applications. Nov2025, Vol. 29 Issue 21/22, p5845-5857. 13p.
-
5
Autoren: Ponti, Andrea
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, I.6.0, Computer Science - Artificial Intelligence, G.1.6, G.3, Computer Science - Neural and Evolutionary Computing, I.2.1, Machine Learning (cs.LG), Methodology (stat.ME), Artificial Intelligence (cs.AI), Optimization and Control (math.OC), 68T01, 65K10, 05C82, FOS: Mathematics, Neural and Evolutionary Computing (cs.NE), Mathematics - Optimization and Control, Statistics - Methodology
Zugangs-URL: http://arxiv.org/abs/2112.04891
-
6
Autoren: et al.
Quelle: Cuestiones de Fisioterapia; 2025, Vol. 54 Issue 3, p3588-3597, 10p
-
7
Autoren: Zekić, Ana
Quelle: Computation; Jul2025, Vol. 13 Issue 7, p169, 23p
-
8
Autoren: et al.
Quelle: Diagnostics (2075-4418); Oct2025, Vol. 15 Issue 20, p2661, 21p
-
9
Autoren:
Quelle: Cuestiones de Fisioterapia; 2025, Vol. 54 Issue 3, p4693-4721, 29p
Schlagwörter: MACHINE learning, REINFORCEMENT learning, DEEP learning, FEATURE selection, TUMOR classification
-
10
Autoren: et al.
Quelle: Pharmaceutics; Sep2025, Vol. 17 Issue 9, p1186, 30p
Schlagwörter: MACHINE learning, PHARMACOLOGY, POLYPHARMACY, ETHICAL problems, ONCOLOGY, DEEP learning
-
11
Autoren: et al.
Weitere Verfasser: et al.
Quelle: CIKM '23: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management ; https://hal.science/hal-04468374 ; CIKM '23: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Feb 2023, Birmingham (UK), United Kingdom. pp.4038--4042, ⟨10.1145/3583780.3615236⟩
Schlagwörter: Computing methodologies, Machine learning, Learning paradigms, Multi-task learning, Lifelong machine learning, Class-incremental continual learning, Parameter isolation, Anomaly detection, [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
Geographisches Schlagwort: Birmingham (UK), United Kingdom
Relation: info:eu-repo/semantics/altIdentifier/arxiv/2310.20052; ARXIV: 2310.20052
-
12
Autoren:
Quelle: African Journal of Biomedical Research; 2025 Supplement, Vol. 28, p2145-2152, 8p
-
13
Autoren: et al.
Quelle: Biochemical & Cellular Archives; Oct2025, Vol. 25 Issue 2, p2175-2180, 6p
-
14
Autoren: et al.
Quelle: BioData Mining; 6/16/2025, Vol. 18 Issue 1, p1-23, 23p
-
15
Autoren: et al.
Quelle: Cuestiones de Fisioterapia; 2025, Vol. 54 Issue 4, p1304-1311, 8p
-
16
Autoren: et al.
Quelle: IEEE Transactions on Affective Computing. 13:508-518
Schlagwörter: FOS: Computer and information sciences, Computer Science - Computation and Language, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, Computation and Language (cs.CL)
Zugangs-URL: http://arxiv.org/pdf/1810.12349
https://pubmed.ncbi.nlm.nih.gov/36704750
http://arxiv.org/abs/1810.12349
https://arxiv.org/abs/1810.12349
http://ui.adsabs.harvard.edu/abs/2018arXiv181012349G/abstract
https://dblp.uni-trier.de/db/journals/corr/corr1810.html#abs-1810-12349
https://arxiv.org/pdf/1810.12349.pdf
https://ieeexplore.ieee.org/abstract/document/8894557
https://arxiv.org/abs/1810.12349
https://arxiv.org/pdf/1810.12349 -
17
Autoren:
Weitere Verfasser:
Schlagwörter: DRUŠTVENE ZNANOSTI. Informacijske i komunikacijske znanosti, SOCIAL SCIENCES. Information and Communication Sciences, Računalna znanost i tehnologija. Računalstvo. Obrada podataka, Computer science and technology. Computing. Data processing, info:eu-repo/classification/udc/004(043.3), peer-to-peer, non-IID, machine learning, natural language processing, personalization, multi-task, istorazinsko učenje, neovisno i nejednako distribuirani skupovi podataka, strojno učenje, obrada prirodnog jezika, personalizacija, višezadaćno učenje
Dateibeschreibung: application/pdf
Relation: https://www.unirepository.svkri.uniri.hr/islandora/object/infri:1394; https://urn.nsk.hr/urn:nbn:hr:195:812527; https://www.unirepository.svkri.uniri.hr/islandora/object/infri:1394/datastream/PDF
-
18
Autoren: et al.
Quelle: Water (20734441); Nov2025, Vol. 17 Issue 21, p3176, 32p
-
19
Autoren:
Quelle: Biomedical Engineering Letters; Jul2025, Vol. 15 Issue 4, p619-660, 42p
-
20
Autoren:
Quelle: Pharmaceutics; Nov2025, Vol. 17 Issue 11, p1440, 21p
Full Text Finder
Nájsť tento článok vo Web of Science