Search Results - Computer science Algorithms Symbolic computation and algebraic computation msc
-
1
Authors: et al.
Contributors: et al.
Source: J. Symb. Comput. 2011;46(10):1114-1138
Biblioteca Digital (UBA-FCEN)
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y TécnicasSubject Terms: index, Computer Science - Symbolic Computation, FOS: Computer and information sciences, Kronecker algorithm, 68W30, [MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA], 0102 computer and information sciences, Implicit systems of Differential Algebraic Equations, Symbolic Computation (cs.SC), Jacobi bound, 01 natural sciences, Differentiation Index, MSC 12H05, 12H05, 34A09, 68W30, Classical Analysis and ODEs (math.CA), FOS: Mathematics, 0101 mathematics, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], Algebra and Number Theory, Geometric resolution, DAE systems, Index, Computational Mathematics, Kronecker Algorithm, Mathematics - Classical Analysis and ODEs, 34A09, Geometric Resolution, Dae Systems
File Description: application/pdf
-
2
Authors:
Source: SIAM Journal on Matrix Analysis & Applications; 2025, Vol. 46 Issue 2, p1061-1090, 33p
-
3
Authors: et al.
Contributors: et al.
Source: 37th International Symposium on Symbolic and Algebraic Computation
https://hal.science/hal-00660566
37th International Symposium on Symbolic and Algebraic Computation, Jul 2012, Grenoble, France. pp.59-66, ⟨10.1145/2442829.2442842⟩Subject Terms: complexity, relaxed algorithms, algebraic system resolution, Lazy p-adic numbers, power series, integer linear systems, MSC 68Y30, 11Y40, 11Y16, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC]
Availability: https://hal.science/hal-00660566
https://hal.science/hal-00660566v2/document
https://hal.science/hal-00660566v2/file/Relaxed_Hensel.pdf
https://doi.org/10.1145/2442829.2442842 -
4
Authors:
Source: SIAM Journal on Applied Dynamical Systems; 2025, Vol. 24 Issue 3, p2369-2404, 36p
-
5
Authors: et al.
Source: SIAM Journal on Scientific Computing; 2025, Vol. 47 Issue 4, pA2378-A2402, 25p
-
6
Authors:
Source: Palestine Journal of Mathematics; 2024, Vol. 13 Issue 3, p1-13, 13p
Subject Terms: GENERATING functions, STATISTICS, SYMBOLIC computation, GROBNER bases, ALGEBRAIC equations
-
7
Authors: et al.
Contributors: et al.
Source: https://hal.inria.fr/hal-03209117 ; 2021.
Subject Terms: finite groups, representation theory, polynomial invariants, equivariants, symmetry adapted bases, H-basis. MSC: 13A50 20C30 68W30 13P10, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA]
Relation: hal-03209117; https://hal.inria.fr/hal-03209117; https://hal.inria.fr/hal-03209117/document; https://hal.inria.fr/hal-03209117/file/Hubert22Rodriguez.pdf
-
8
Authors: et al.
Contributors: et al.
Source: https://hal.science/hal-04910775 ; 2025.
Subject Terms: dynamical system differential elimination Newton polytope. MSC codes: 12H05 68W30 34A34 14Q20, dynamical system, differential elimination, Newton polytope. MSC codes: 12H05, 68W30, 34A34, 14Q20, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG], [MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA], [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
Relation: info:eu-repo/semantics/altIdentifier/arxiv/2501.13680; ARXIV: 2501.13680
Availability: https://hal.science/hal-04910775
https://hal.science/hal-04910775v1/document
https://hal.science/hal-04910775v1/file/Article_0_10-29.pdf -
9
Authors: et al.
Contributors: et al.
Source: ISSN: 0747-7171.
Subject Terms: Computational real algebraic geometry, Real algebraic sets, Critical points, Roadmaps, MSC: 14Q20, 14Q30, 14P05, 68W30, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
Relation: info:eu-repo/semantics/altIdentifier/arxiv/2203.03961; info:eu-repo/grantAgreement//813211/EU/Polynomial Optimization, Efficiency through Moments and Algebra/POEMA; ARXIV: 2203.03961
-
10
Authors: et al.
Contributors: et al.
Source: ISSN: 2305-221X.
Subject Terms: Set of non-properness, Maps on the plane, Newton polytopes, Boolean complexity, Real polynomial maps, MSC: 14R25, 26C05 (Primary), 12D10, 14P10, 52B20 (Secondary), [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG], [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC]
Relation: https://inria.hal.science/inria-00524834v4; info:eu-repo/semantics/altIdentifier/arxiv/2101.05245; ARXIV: 2101.05245
Availability: https://hal.science/hal-04223513
https://hal.science/hal-04223513v1/document
https://hal.science/hal-04223513v1/file/2101.05245.pdf
https://doi.org/10.1007/s10013-023-00652-0 -
11
Authors: et al.
Contributors: et al.
Source: https://hal.science/hal-01773137 ; 2018.
Subject Terms: creative telescoping, holonomic function, Hermite reduction, residues, MSC 33F10, 68W30, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.2: Algorithms, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA], [INFO.INFO-MS]Computer Science [cs]/Mathematical Software [cs.MS]
Availability: https://hal.science/hal-01773137
https://hal.science/hal-01773137v2/document
https://hal.science/hal-01773137v2/file/redtel.pdf -
12
Authors: et al.
Contributors: et al.
Source: https://hal.science/hal-01702547 ; 2018.
Subject Terms: MSC: 68W30, 13P10, 12Y05, 68W40, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.2: Algorithms/I.1.2.0: Algebraic algorithms, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC], [INFO.INFO-MS]Computer Science [cs]/Mathematical Software [cs.MS], [MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA]
Availability: https://hal.science/hal-01702547
https://hal.science/hal-01702547v2/document
https://hal.science/hal-01702547v2/file/redbivar.pdf -
13
Authors: et al.
Contributors: et al.
Source: Papers from the 12th Conference (AGC2T 12) held in Marseille, March 30--April 3, 2009, the 1st Geocrypt Conference held in Pointe-à-Pitre, April 27-May 1, 2009, and the European Science Foundation Exploratory Workshop on Curves, Coding Theory and Cryptography held in Marseille, March 25-29, 2009. ; https://hal.science/hal-00492824 ; Papers from the 12th Conference (AGC2T 12) held in Marseille, March 30--April 3, 2009, the 1st Geocrypt Conference held in Pointe-à-Pitre, April 27-May 1, 2009, and the European Science Foundation Exploratory Workshop on Curves, Coding Theory and Cryptography held in Marseille, March 25-29, 2009., Mar 2009, Marseille, France. pp.12, ⟨10.1090/conm/521⟩
Subject Terms: resolution of singularities, invariants, Algebraic geometry, MSC 32S45, 14Q99, 14L30, [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG], [MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC], [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC]
Availability: https://hal.science/hal-00492824
https://hal.science/hal-00492824v1/document
https://hal.science/hal-00492824v1/file/2009_-_Computing_Hironaka_s_invariants_Ridge_And_Directrix.pdf
https://doi.org/10.1090/conm/521 -
14
Authors: et al.
Contributors: et al.
Source: Lecture Notes in Computer Science ISBN: 9783319724522
Subject Terms: [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC], Frobenius FFT, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.0: General/G.1.0.0: Computer arithmetic, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic, [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS], ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY/F.2.1: Numerical Algorithms and Problems/F.2.1.0: Computation of transforms (e.g, Polynomial multiplication, Finite field, fast Fourier transform), 68W40, 0102 computer and information sciences, 68Q17, 01 natural sciences, ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY/F.2.1: Numerical Algorithms and Problems/F.2.1.1: Computations in finite fields, High performance, Implementation, 0101 mathematics, MSC 68W30, [INFO.INFO-MS]Computer Science [cs]/Mathematical Software [cs.MS]
Access URL: https://hal.archives-ouvertes.fr/hal-01579863/file/ff2mul.pdf
https://link.springer.com/chapter/10.1007/978-3-319-72453-9_9
https://hal.archives-ouvertes.fr/hal-01579863/document
https://rd.springer.com/chapter/10.1007/978-3-319-72453-9_9
https://link.springer.com/10.1007/978-3-319-72453-9_9
https://hal.archives-ouvertes.fr/hal-01579863 -
15
Authors: Andrews, Robert
Source: SIAM Journal on Computing; 2025, Vol. 54 Issue 5, p22-1-22-1, 1p
-
16
-
17
Authors:
Resource Type: eBook.
Categories: COMPUTERS / Computer Science, BUSINESS & ECONOMICS / Careers / General, COMPUTERS / General, COMPUTERS / Artificial Intelligence / General, COMPUTERS / Computer Architecture, COMPUTERS / Software Development & Engineering / General, MATHEMATICS / Discrete Mathematics
PDF Full Text ePub Full Text -
18
Authors: et al.
Contributors: et al.
Source: ISSN: 0747-7171.
Subject Terms: Rational invariants, Algebraic group actions, Cross-section, Gröbner basis, Differential invariants, Moving frame, MSC: 13A50, 13P10, 14L24, 14Q99, 53A55, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.2: Algorithms/I.1.2.0: Algebraic algorithms, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
Availability: https://inria.hal.science/inria-00198847
https://doi.org/10.1016/j.jsc.2006.03.005 -
19
Authors: et al.
Contributors: et al.
Source: https://inria.hal.science/inria-00194528 ; 2007.
Subject Terms: Lie group actions, Differential invariants, Moving frame, Maurer-Cartan forms, MSC: 14L30, 70G65, 58D19, 53A55, 12H05, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.4: Applications, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
Availability: https://inria.hal.science/inria-00194528
https://inria.hal.science/inria-00194528v2/document
https://inria.hal.science/inria-00194528v2/file/hal.inria00194528v2.pdf -
20
Authors: Dai Shi-qiang
Source: Applied Mathematics & Mechanics; Mar2001, Vol. 22 Issue 3, p261-269, 9p
Full Text Finder
Nájsť tento článok vo Web of Science