Výsledky vyhledávání - Clasificación AMS::26 Real functions::26B Functions of several variables*

Upřesnit hledání
  1. 1
  2. 2
  3. 3

    Autoři: 盧欽昌 Cin-Chang Lu 程守慶 a další

    Přispěvatelé: 盧欽昌 Cin-Chang Lu 程守慶 a další

    Time: 32

    Popis souboru: 155 bytes; text/html

    Relation: References [1] F. F. Bonsall, Domination of the supremum of a bounded harmonic function by its supremum over a countable subset, Proceeding of the Edinburgh Mathematical Society. 30, 471-477(1987). [2] L. Brown, A. Shields and K. Zeller, On absolutely convergent exponential sums, Trans. Amer. Math. Soc. 96, 162-183(1960). [3] J. B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, 1990. [4] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloquium Publications, vol. 31, 1957. [5] S. G. Krantz, Function theory of several complex variables, AMS Chelsea Publish- ing, 2000. [6] R. Narasimhan, Several complex variables, University of Chicago, 1971. [7] W. Rudin, Function theory in the unit ball of Cn; Springer-Verlag, New York, 1980. [8] W. Rudin, Real and complex analysis, McGraw-Hill, 1987.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/34701

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

    Popis souboru: application/pdf

    Relation: mr:MR3895260; zbl:Zbl 06997370; reference:[1] Bandura, A.: New criteria of boundedness of L-index in joint variables for entire functions.Mat. Visn. Nauk. Tov. Im. Shevchenka 13 (2016), 58-67 Ukrainian. Zbl 06742099; reference:[2] Bandura, A. I., Bordulyak, M. T., Skaskiv, O. B.: Sufficient conditions of boundedness of L-index in joint variables.Mat. Stud. 45 (2016), 12-26. Zbl 1353.30030, MR 3561322, 10.15330/ms.45.1.12-26; reference:[3] Bandura, A. I., Skaskiv, O. B.: Entire Functions of Several Variables of Bounded Index.Chyslo, Lviv (2015). Zbl 1342.32001, MR 3725018; reference:[4] Bandura, A. I., Skaskiv, O. B.: Analytic in the unit ball functions of bounded $L$-index in direction.Avaible at https://arxiv.org/abs/1501.04166. MR 3702166; reference:[5] Bandura, A. I., Petrechko, N. V., Skaskiv, O. B.: Analytic functions in a polydisc of bounded L-index in joint variables.Mat. Stud. 46 (2016), 72-80. Zbl 1373.30043, MR 3649050, 10.15330/ms.46.1.72-80; reference:[6] Bordulyak, M. T.: The space of entire functions in ${\Bbb C}^n$ of bounded $L$-index.Mat. Stud. 4 (1995), 53-58. Zbl 1023.32500, MR 1692641; reference:[7] Bordulyak, M. T., Sheremeta, M. M.: Boundedness of the $L$-index of an entire function of several variables.Dopov./Dokl. Akad. Nauk Ukraï ni 9 (1993), 10-13 Ukrainian. MR 1300779; reference:[8] Krishna, J. Gopala, Shah, S. M.: Functions of bounded indices in one and several complex variables.Math. Essays dedicated to A. J. Macintyre Ohio Univ. Press, Athens, Ohio (1970), 223-235. Zbl 0205.09302, MR 0271345; reference:[9] Hayman, W. K.: Differential inequalities and local valency.Pac. J. Math. 44 (1973), 117-137. Zbl 0248.30026, MR 0316693, 10.2140/pjm.1973.44.117; reference:[10] Kushnir, V. O., Sheremeta, M. M.: Analytic functions of bounded $l$-index.Mat. Stud. 12 (1999), 59-66. Zbl 0948.30031, MR 1737831; reference:[11] Lepson, B.: Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index.Entire Funct. and Relat. Parts of Anal., La Jolla, Calif. 1966 Proc. Sympos. Pure Math. 11, AMS, Providence, Rhode Island (1968), 298-307. Zbl 0199.12902, MR 0237788; reference:[12] Nuray, F., Patterson, R. F.: Multivalence of bivariate functions of bounded index.Matematiche 70 (2015), 225-233. Zbl 1342.32006, MR 3437188, 10.4418/2015.70.2.14; reference:[13] Salmassi, M.: Functions of bounded indices in several variables.Indian J. Math. 31 (1989), 249-257. Zbl 0699.32004, MR 1042643; reference:[14] Sheremeta, M.: Analytic Functions of Bounded Index.Mathematical Studies Monograph Series 6. VNTL Publishers, Lviv (1999). Zbl 0980.30020, MR 1751042; reference:[15] Strochyk, S. N., Sheremeta, M. M.: Analytic in the unit disc functions of bounded index.Dopov./Dokl. Akad. Nauk Ukraï ni 1 (1993), 19-22 Ukrainian. Zbl 0783.30025, MR 1222997

  10. 10
  11. 11
  12. 12
  13. 13

    Popis souboru: application/pdf

    Relation: mr:MR2657969; zbl:Zbl 1224.26040; reference:[1] Agronsky, S. J., Ceder, J. G., Pearson, T. L.: Some characterizations of Darboux Baire 1 functions.Real Anal. Exch. 23 (1997), 421-430. Zbl 0943.26004, MR 1640015, 10.2307/44153971; reference:[2] Bruckner, A. M.: Differentiation of Real Functions. CRM Monograph Series, Vol. 5.American Mathematical Society (AMS) (1994). MR 1274044; reference:[3] Cavaretta, A. S., Dahmen, W., Micchelli, C. A.: Stationary Subdivision.Mem. Am. Math. Soc. 453 (1991). Zbl 0741.41009, MR 1079033; reference:[4] Evans, M. J., Humke, P. D.: A characterization of Baire one functions of two variables.J. Math. Anal. Appl. 335 (2007), 1-6. Zbl 1127.26003, MR 2340300, 10.1016/j.jmaa.2007.01.034; reference:[5] Evans, M. J., Humke, P. D.: Revisiting a century-old characterization of Baire class one, Darboux functions.Am. Math. Mon. 116 (2009), 451-455. MR 2510842, 10.4169/193009709X470344; reference:[6] Evans, M. J., Humke, P. D.: Collections of Darboux-like, Baire one functions of two variables.(to appear) in J. Appl. Anal. MR 2680539; reference:[7] Kuratowski, K.: Topology, Vol. I.Academic Press New York (1966). Zbl 0158.40901, MR 0217751; reference:[8] Malý, J.: The Darboux property for gradients.Real Anal. Exch. 22 (1996), 167-173. MR 1433604, 10.2307/44152741; reference:[9] Micchelli, C. A., Prautzsch, H.: Uniform refinement of curves.Linear Algebra Appl. 114/115 (1989), 841-870. Zbl 0668.65011, MR 0986909; reference:[10] Young, W. H.: A theorem in the theory of functions of a real variable.Rend. Circ. Mat. Palermo 24 (1907), 187-192. 10.1007/BF03015058; reference:[11] Young, W. H.: A theorem in the theory of functions of a real variable.Rend. Circ. Mat. Palermo 24 (1907), 187-192. 10.1007/BF03015058

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20