Suchergebnisse - Autoencoder-based phenotypic*
-
1
Autoren: et al.
Quelle: Genes; Nov2025, Vol. 16 Issue 11, p1246, 24p
-
2
Autoren: et al.
Quelle: NPJ Digital Medicine; 7/14/2025, Vol. 8 Issue 1, p1-16, 16p
Schlagwörter: VASCULAR disease diagnosis, RETINA abnormalities, RISK assessment, MYOCARDIAL infarction, RESEARCH funding, OPTICAL coherence tomography, MENDELIAN randomization, QUANTITATIVE research, DESCRIPTIVE statistics, GENETIC risk score, CHRONIC kidney failure, RETINA, MEDICAL screening, ATTRIBUTION (Social psychology), STROKE, DATA analysis software, VASCULAR diseases, PHENOTYPES, DISEASE risk factors
Firma/Körperschaft: UK Biobank Ltd.
-
3
Autoren: et al.
Quelle: bioRxiv
Schlagwörter: Article
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/38895267
-
4
Alternate Title: Klinik belirtilere dayalı ailesel ve sporadik hastalık vakalarını tahmin etmek için bir makine öğrenimi yaklaşımı: yeni bir veri kümesinin tanıtımı. (Turkish)
Autoren: et al.
Quelle: Turkish Bulletin of Hygiene & Experimental Biology / Türk Hijyen ve Deneysel Biyoloji; 2025, Vol. 82 Issue 1, p99-106, 8p
-
5
Autoren: et al.
Quelle: Ecology & Evolution (20457758); Sep2025, Vol. 15 Issue 9, p1-16, 16p
-
6
Autoren: et al.
Quelle: Cell Syst ; ISSN:2405-4720
Schlagwörter: anomaly detection, explainability, high-content image-based cell profiling
-
7
Deep Sparse Autoencoder-based Feature Selection for SNPs validation in Prostate Cancer Radiogenomics
Autoren: et al.
Schlagwörter: Deep Learning, Feature selection, Radiogenomics, Autoencoder, SNPs
Dateibeschreibung: application/pdf
Zugangs-URL: https://hdl.handle.net/11311/1150035
-
8
Autoren: et al.
Quelle: Bioinformatics; May2024, Vol. 40 Issue 5, p1-9, 9p
Schlagwörter: TRANSCRIPTOMES, RNA sequencing, DEEP learning, CANCER invasiveness, SENSITIVITY & specificity (Statistics)
Firma/Körperschaft: MASSACHUSETTS Institute of Technology
-
9
Autoren: et al.
Quelle: Frontiers in Digital Health; 2025, p1-17, 17p
Schlagwörter: FEDERATED learning, GENOME-wide association studies, MULTIOMICS, PRIVACY, BIOINFORMATICS, PROTEOMICS, MASS spectrometry, MEDICAL ethics, GENOTYPES, PHENOTYPES
Geografische Kategorien: UNITED States, SWITZERLAND, UNITED Kingdom, NETHERLANDS
Firma/Körperschaft: UK Biobank Ltd.
-
10
Autoren: et al.
Quelle: Biology (2079-7737); Nov2025, Vol. 14 Issue 11, p1622, 17p
-
11
Autoren: et al.
Quelle: Frontiers in Plant Science; 2025, p1-16, 16p
-
12
Autoren:
Quelle: Biomolecules (2218-273X); Oct2025, Vol. 15 Issue 10, p1401, 18p
-
13
Autoren: et al.
Quelle: Communications Biology; 10/2/2025, Vol. 8 Issue 1, p1-19, 19p
-
14
Autoren:
Quelle: Frontiers of Computer Science; Jun2023, Vol. 17 Issue 3, p1-18, 18p
-
15
Autoren: et al.
Quelle: Frontiers in Microbiology; 2025, p1-33, 33p
-
16
Autoren: et al.
Quelle: Quantitative Biology; Jun2025, Vol. 13 Issue 2, p1-19, 19p
Schlagwörter: DATA integration, RNA sequencing, TASK analysis, CLUSTER analysis (Statistics), METABOLOMICS
-
17
Autoren: et al.
Quelle: Briefings in Bioinformatics; Jul2021, Vol. 22 Issue 4, p1-16, 16p
Schlagwörter: DRUG interactions, KNOWLEDGE graphs, DRUG development, FORECASTING
-
18
Autoren: et al.
Quelle: Plant Genome; Jun2025, Vol. 18 Issue 2, p1-32, 32p
-
19
Autoren: et al.
Quelle: Plant Breeding; Apr2025, Vol. 144 Issue 2, p192-205, 14p
Schlagwörter: FEATURE selection, SUPPORT vector machines, MYCOSES, RANDOM forest algorithms, WHEAT
-
20
Autoren: et al.
Quelle: Advanced Science; 11/6/2024, Vol. 11 Issue 41, p1-21, 21p
Schlagwörter: ARTIFICIAL neural networks, CELL imaging, MACHINE learning, FEATURE extraction, CELL migration
Full Text Finder
Nájsť tento článok vo Web of Science