Výsledky vyhľadávania - Advanced Soft Computing Methodologies and Applications in Social Media Big Data Analytics*
-
1
Autori:
Zdroj: Expert Systems; Jun2022, Vol. 39 Issue 5, p1-23, 23p
-
2
Autori: a ďalší
Zdroj: Frontiers in Animal Science. 2025, p1-17. 17p.
Plný text vo formáte HTML Plný text ve formátu PDF -
3
Autori: a ďalší
Zdroj: Risk analysis : an official publication of the Society for Risk Analysis [Risk Anal] 2025 Sep 10. Date of Electronic Publication: 2025 Sep 10.
Spôsob vydávania: Journal Article
Informácie o časopise: Publisher: Blackwell Publishers Country of Publication: United States NLM ID: 8109978 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1539-6924 (Electronic) Linking ISSN: 02724332 NLM ISO Abbreviation: Risk Anal Subsets: MEDLINE
-
4
Autori:
Zdroj: International Journal of Pharmaceutical Research (09752366); Jan-Mar2019, Vol. 11 Issue 1, p649-656, 8p
Predmety: MEDICAL databases, PUBLIC health, BIOINFORMATICS, MEDICAL informatics, BIG data
-
5
Autori: a ďalší
Zdroj: Journal of Knowledge Management; 2020, Vol. 24 Issue 4, p799-821, 23p
-
6
Autori:
Zdroj: Systems; Oct2025, Vol. 13 Issue 10, p869, 23p
-
7
Autori: a ďalší
Zdroj: Cluster Computing; Jul2024, Vol. 27 Issue 4, p5047-5073, 27p
-
8
Autori:
Zdroj: Nutrients. Aug2024, Vol. 16 Issue 16, p2601. 10p.
Plný text vo formáte HTML Plný text ve formátu PDF -
9
Autori: a ďalší
Zdroj: Computer Science & Information Systems; 2017, Vol. 14 Issue 3, p805-821, 17p
-
10
Autori:
Zdroj: Journal of Advanced Zoology. 2024, Vol. 45 Issue 2, p42-44. 3p.
Plný text ve formátu PDF -
11
Autori:
Zdroj: International Journal of Advanced Research in Computer Science; May/Jun2017, Vol. 8 Issue 5, p831-835, 5p
-
12
Autori:
Zdroj: Revista CEA; Vol. 2 No. 4 (2016); 27-45 ; Revista CEA; Vol. 2 Núm. 4 (2016); 27-45 ; 2422-3182 ; 2390-0725
Predmety: Big data, Information Systems, Tendency, Innovation, Decision making, Administrative Model, Technology Management, sistemas de información, tendencias, innovación, toma de decisiones, modelo administrativo, gestión tecnológica
Popis súboru: application/pdf
Relation: https://revistas.itm.edu.co/index.php/revista-cea/article/view/169/172; Adhikari, A.; Hojjati, A.; Shen, J.; Hsu, J.-T.; King, W. P. y Winslett, M. (2016). Trust Issues for Big Data about High-Value Manufactured Parts. En 2016 IEEE 2nd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS) (pp. 24–29). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7502259; Agahi, F. y Dmytrenko, N. (2016). Chunking decision information: a way to make big data actionable. Journal of Decision Systems, 25(sup1), 11–22.; Ahmad, A.; Ahmad, R. y Hashim, K. F. (2016). Innovation Traits for Business Inteligence Succesful inteligence Deployment. Journal of Theoretical and Applied Information Technology, 89(1). Recuperado de http://www.jatit.org/volumes/Vol89No1/11Vol89No1.pdf; At, L. (2016). Xiaoyi Lu at OSU. Recuperado de http://web.cse.ohio-state.edu/~luxi/; Bacca, G. (2013). Blog de Innovación. Recuperado de http://www.educacionline.com/instituto-de-marketing-online/big-data-y-marketing-digital-una-relacion-imprescindible/; Baillie, J. (2016). How’Big data’will drive future innovation. Health estate, 70(3), 59–64.; Banerjee, S. (2016). Influence of consumer personality, brand personality, and corporate personality on brand preference: An empirical investigation of interaction effect. Asia Pacific Journal of Marketing and Logistics, 28(2), 198–216.; Barranco, R. (2012). ¿Qué es Big Data? [CT316]. Recuperado de https://www.ibm.com/developerworks/ssa/local/im/que-es-big-data/; Bhukya, R. y Gyani, J. (2015). Fuzzy associative classification algorithm based on MapReduce framework. En 2015 International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT) (pp. 357–360). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7456909; Bondarev, A. y Zakirov, D. (2015). Data warehouse on Hadoop platform for decision support systems in education. En 2015 Twelve International Conference on Electronics Computer and Computation (ICECCO) (pp. 1–4). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7416884; Brown, L. (2016). Vertical and horizontal approaches to the making of racial statistics in Britain. Ethnic and Racial Studies, 1–19.; Calvard, T. S. (2015a). Big data, organizational learning, and sensemaking: Theorizing interpretive challenges under conditions of dynamic complexity. Management learning, 1350507615592113.; Calvard, T. S. (2015b). Big data, organizational learning, and sensemaking: Theorizing interpretive challenges under conditions of dynamic complexity. Management learning, 1350507615592113.; Campion, M. C.; Campion, M. A.; Campion, E. D. y Reider, M. H. (2016). Initial Investigation Into Computer Scoring of Candidate Essays for Personnel Selection. Recuperado de http://psycnet.apa.org/psycinfo/2016-18130-001/; Cawley, A. (2016). Is There a Press Release on That? The Challenges and Opportunities of Big Data for News Media. En Big Data Challenges (pp. 49–58). Springer. Recuperado de http://link.springer.com/chapter/10.1057/978-1-349-94885-7_5; Chang, V.; Ramachandran, M.; Wills, G.; Walters, R. J., Li, C.-S. y Watters, P. (2016). Editorial for FGCS special issue: Big Data in the cloud. Future Generation Computer Systems. Recuperado de http://www.sciencedirect.com/science/article/pii/S0167739X1630084X; Chianese, A.; Marulli, F. y Piccialli, F. (2016). Cultural Heritage and Social Pulse: A Semantic Approach for CH Sensitivity Discovery in Social Media Data. En 2016 IEEE Tenth International Conference on Semantic Computing (ICSC) (pp. 459–464). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7439386; Costantini, E. A.; Lorenzetti, R. y Malorgio, G. (2016). A multivariate approach for the study of environmental drivers of wine economic structure. Land Use Policy, 57, 53–63.; Cowls, J. y Schroeder, R. (2015a). Causation, correlation, and big data in social science research. Policy & Internet, 7(4), 447–472.; Cowls, J. y Schroeder, R. (2015b). Causation, correlation, and big data in social science research. Policy & Internet, 7(4), 447–472.; Deutsch, R.; Leed, A. P. y others. (2015). Leveraging data Across the Building Lifecycle. Procedia Engineering, 118, 260–267.; Gim, J.; Lee, J.; Jang, Y.; Jeong, D.-H. y Jung, H. (2016). A Trend Analysis Method for IoT Technologies Using Patent Dataset with Goal and Approach Concepts. Wireless Personal Communications, 1–16.; Hill, C. y Jones, G. (1996). Hill, C. y Jones, G. (1996). Administración estratégica. Estados Unidos: Mc Graw Hill. Recuperado de https://www.google.com.co/gfe_rd=cr&ei=Lc_IV7WzCIaDmAGjv4H4Bw&gws_rd=ssl#q=Hill,+C.,+%26+Jones,+G.+(1996).+Administraci%C3%B3n+estrat%C3%A9gica.+Estados+Unidos:+Mc+Graw+Hill; IBM (2016). IBM Data Magazine: Its Value and Its Vision. Recuperado de http://www.ibmbigdatahub.com/blog/ibm-data-magazine-its-value-and-its-vision; Islam, N. (2015). Nusrat Islam. Recuperado de http://web.cse.ohio-state.edu/~islamn/; Islam, N. S.; Lu, X.; Wasi-ur-Rahman, M.; Jose, J. y Panda, D. K. D. (2014). A micro-benchmark suite for evaluating HDFS operations on modern clusters. En Specifying Big Data Benchmarks (pp. 129–147). Springer. Recuperado de http://link.springer.com/chapter/10.1007/978-3-642-53974-9_12; Islam, N. S.; Lu, X.; Wasi-ur-Rahman, M.; Rajachandrasekar, R. y Panda, D. K. D. (2014). In-memory i/o and replication for hdfs with memcached: Early experiences. En Big Data (Big Data), 2014 IEEE International Conference on (pp. 213–218). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7004235; Islam, N. S.; Lu, X.; Wasi-ur-Rahman, M.; Shankar, D. y Panda, D. K. (2015). Triple-H: A hybrid approach to accelerate HDFS on HPC clusters with heterogeneous storage architecture. En Cluster, Cloud and Grid Computing (CCGrid), 2015 15th IEEE/ACM International Symposium on (pp. 101–110). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7152476; Islam, N. S.; Shankar, D.; Lu, X.; Wasi-Ur-Rahman, M. y Panda, D. K. (2015). Accelerating I/O Performance of Big Data Analytics on HPC Clusters through RDMA-Based Key-Value Store. En Parallel Processing (ICPP), 2015 44th International Conference on (pp. 280–289). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7349583; Islam, N. S.; Wasi-ur-Rahman, M.; Lu, X.; Shankar, D. y Panda, D. K. (2015). Performance characterization and acceleration of in-memory file systems for Hadoop and Spark applications on HPC clusters. En Big Data (Big Data), 2015 IEEE International Conference on (pp. 243–252). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7363761; Jang, K.; Lee, K.; Jang, G.; Jung, S.; Seo, M. G. y Myaeng, S.H. (2016). Food hazard event extraction based on news and social media: A preliminary work. En 2016 International Conference on Big Data and Smart Computing (BigComp) (pp. 466–469). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7425972; Jianqiang, Z. y Xueliang, C. (2015). Combining Semantic and Prior Polarity for Boosting Twitter Sentiment Analysis. En 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity) (pp. 832–837). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7463826; Kaivo-oja, J.; Virtanen, P. Jalonen, H. y Stenvall, J. (2015a). The effects of the internet of Things and big data to organizations and their knowledge management practices. En International Conference on Knowledge Management in Organizations (pp. 495–513). Springer. Recuperado de http://link.springer.com/chapter/10.1007/978-3-319-21009-4_38; Kaivo-oja, J.; Virtanen, P.; Jalonen, H. Stenvall, J. (2015b). The effects of the internet of Things and big data to organizations and their knowledge management practices. En International Conference on Knowledge Management in Organizations (pp. 495–513). Springer. Recuperado de http://link.springer.com/chapter/10.1007/978-3-319-21009-4_38; Kallinikos, J. y Constantiou, I. D. (2015). Big data revisited: a rejoinder. Journal of Information Technology, 30(1), 70–74.; Khade, A. A. (2016). Performing Customer Behavior Analysis using Big Data Analytics. Procedia Computer Science, 79, 986–992.; Klievink, B.; Romijn, B.-J.; Cunningham, S. y de Bruijn, H. (2016). Big data in the public sector: Uncertainties and readiness. Information Systems Frontiers, 1–17.; Larson, D. y Chang, V. (2016). A review and future direction of agile, business intelligence, analytics and data science. International Journal of Information Management, 36(5), 700–710.; Lewis, J.; Liaw, S.-T. y Ray, P. (2015). Applying «big data» and business intelligence insights to improving clinical care for cancer. En 2015 IEEE International Symposium on Technology and Society (ISTAS) (pp. 1–4). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7439399; Lomotey, R. K. y Deters, R. (2013a). Real-Time Effective Framework for Unstructured Data Mining. En 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (pp. 1081–1088). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6680952; Lomotey, R. K. y Deters, R. (2013b). RSenter: tool for topics and terms extraction from unstructured data debris. En 2013 IEEE International Congress on Big Data (pp. 395–402). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6597163; Lomotey, R. K. y Deters, R. (2013c). Topics and terms mining in unstructured data stores. En Computational Science and Engineering (CSE), 2013 IEEE 16th International Conference on (pp. 854–861). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6755309; Lomotey, R. K. y Deters, R. (2014a). Analytics-as-a-service (aaas) tool for unstructured data mining. En Cloud Engineering (IC2E), 2014 IEEE International Conference on (pp. 319–324). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6903489; Lomotey, R. K. y Deters, R. (2014b). Towards knowledge discovery in big data. En Service Oriented System Engineering (SOSE), 2014 IEEE 8th International Symposium on (pp. 181–191). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6830904; López, D. (2012). Análisis de las posibilidades de uso de Big Data en las organizaciones. Santander, España. Recuperado de https://www.google.com.co/gfe_rd=cr&ei=Lc_IV7WzCIaDmAGjv4H4Bw&gws_rd=ssl#q=L%C3%B3pez,+D.+(2012).+An%C3%A1lisis+de+las+posibilidades+de+uso+de+Big+Data+en+las+Organizaciones.+Santander,+Espa%C3%B1a.; López, V.; Mi, G.; Gonz, B.; Valverde, G.; Caro, R. and others. (2015). Big+ Open Data: Some applications for a Smartcity. En 2015 IEEE International Conference on Progress in Informatics and Computing (PIC) (pp. 384–389). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7489874; Lu, Y. y Sinnott, R. O. (s. f.). Semantic Security for e-Health: A Case Study in Enhanced Access Control. challenge, 6, 7.; Marfo, J. S. y Boateng, R. (2015a). Big Data and Organizational Learning: Conceptualizing the Link. En International Conference on E-Learning, E-Education, and Online Training (pp. 159–164). Springer. Recuperado de http://link.springer.com/chapter/10.1007/978-3-319-28883-3_20; Marfo, J. S. y Boateng, R. (2015b). Big Data and Organizational Learning: Conceptualizing the Link. En International Conference on E-Learning, E-Education, and Online Training (pp. 159–164). Springer. Recuperado de http://link.springer.com/chapter/10.1007/978-3-319-28883-3_20; Md. Wasi-ur-Rahman (2016). Md. Wasi-ur- Rahman. Recuperado de http://web.cse.ohio-state.edu/~rahmanmd/ Mihály, F. (2016). An objective corruption risk index using public procurement data. Recuperado de https://www.repository.cam.ac.uk/handle/1810/254009; Mix News Colombia (2015). Mix News Colombia: «Big Data World Insights 2015». Recuperado de http://mixnewscolombia.blogspot.com/2015/07/big-data-world-insights-2015.html; Motta, G.; Puccinelli, R.; Reggiani, L. y Saccone, M. (2016a). Extracting Value from Grey Literature: processes and technologies for aggregating and analyzing the hidden «big data» treasure of organizations. Grey Journal (TGJ), 12(1). Recuperado de https://www.researchgate.net/profile/Massimiliano_Saccone/publication/298713220_Extracting_Value_from_Grey_Literature_processes_and_technologies_for_aggregating_and_analyzing_the_hidden_big_data_treasure_of_organizations/links/56ea70ed08aec8bc0781bc92.pdf; Motta, G.; Puccinelli, R.; Reggiani, L. y Saccone, M. (2016b). Extracting Value from Grey Literature: processes and technologies for aggregating and analyzing the hidden «big data» treasure of organizations. Grey Journal (TGJ), 12(1). Recuperado de https://www.researchgate.net/profile/Massimiliano_Saccone/publication/298713220_Extracting_Value_from_Grey_Literature_processes_and_technologies_for_aggregating_and_analyzing_the_hidden_big_data_treasure_of_organizations/links/56ea70ed08aec8bc0781bc92.pdf; MSP Comunications (2016). IBM Systems Magazine - Data Management. Recuperado de http://www.ibmsystemsmag.com/power/Systems-Management/Data-Management/; Mwilu, O. S.; Comyn-Wattiau, I. y Prat, N. (2015). Design science research contribution to business intelligence in the cloud—A systematic literature review. Future Generation Computer Systems. Recuperado de http://www.sciencedirect.com/science/article/pii/S0167739X15003623; Nambiar, R. (2014). Benchmarking big data systems: introducing TPC express benchmark HS. En Workshop on Big Data Benchmarks (pp. 24–28). Springer. Recuperado de http://link.springer.com/chapter/10.1007/978-3-319-20233-4_3; Nambiar, R.; Chitor, R. y Joshi, A. (2014). Data Management–A Look Back and a Look Ahead. En Specifying Big Data Benchmarks (pp. 11–19). Springer. Recuperado de http://link.springer.com/chapter/10.1007/978-3-642-53974-9_2; Nambiar, R. y Poess, M. (2015). Reinventing the TPC: From Traditional to Big Data to Internet of Things. En R. Nambiar & M. Poess (Eds.). Performance Evaluation and Benchmarking: Traditional to Big Data to Internet of Things (pp. 1-7). Springer International Publishing. https://doi.org/10.1007/978-3-319-31409-9_1; Nambiar, R.; Poess, M.; Masland, A.; Taheri, H. R.; Bond, A.; Carman, F. y Majdalany, M. (2013). TPC State of the Council 2013. En Technology Conference on Performance Evaluation and Benchmarking (pp. 1–15). Springer. Recuperado de http://link.springer.com/chapter/10.1007/978-3-319-04936-6_1; Netten, N.; van den Braak, S.; Choenni, S. y van Someren, M. (2016). A Big Data Approach to Support Information Distribution in Crisis Response. En Proceedings of the 9th International Conference on Theory and Practice of Electronic Governance (pp. 266–275). ACM. Recuperado de http://dl.acm.org/citation.cfm?id=2910033; Olivares, J. (2016). Big Data: la explosión del universo digital y oportunidad de negocio. Recuperado de 2016, a partir de http://www.docpath.com/es/art-big-data-document-technology-software.aspx; Oracle (s. f.). Business Intelligence (BI) %7C Oracle España. Recuperado de 2016, a partir de https://www.oracle.com/es/solutions/business-analytics/business-intelligence/index.html; Osuszek, L.; Stanek, S. y Twardowski, Z. (2016). Leverage big data analytics for dynamic informed decisions with advanced case management. Journal of Decision Systems, 25(sup1), 436–449.; Panda, D. (2016a). Dhabaleswar K. Panda. Recuperado de http://web.cse.ohio-state.edu/~panda/; Panda, D. (2016b). NOWLAB: Network Based Computing Lab- Home. Recuperado de http://nowlab.cse.ohio-state.edu/; Prasad, S.; Zakaria, R. y Altay, N. (2016). Big data in humanitarian supply chain networks: a resource dependence perspective. Annals of Operations Research, 1–31.; Rady, S. (2015). A business intelligent technique for sentiment estimation by management sectors. En 2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS) (pp. 370–376). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7397247; Ramannavar, M. y Sidnal, N. S. (2016). Big Data and Analytics—A Journey Through Basic Concepts to Research Issues. En Proceedings of the International Conference on Soft Computing Systems (pp. 291–306). Springer. Recuperado de http://link.springer.com/chapter/10.1007/978-81-322-2674-1_29; Sachdeva, N.; Singh, O.; Kapur, P. K. y Galar, D. (s. f.). Multi-criteria intuitionistic fuzzy group decision analysis with TOPSIS method for selecting appropriate cloud solution to manage big data projects. International Journal of System Assurance Engineering and Management, 1–9.; Santos, M. Y. y Costa, C. (2016). Data Warehousing in Big Data: From Multidimensional to Tabular Data Models. En Proceedings of the Ninth International C* Conference on Computer Science & Software Engineering (pp. 51–60). ACM. Recuperado de http://dl.acm.org/citation.cfm?id=2949024; Severiens, T. (2015). Quality Measurement beyond Bibliometry. En Advanced Applied Informatics (IIAI-AAI), 2015 IIAI 4th International Congress on (pp. 483–486). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7373957; Singhal, R.; Nambiar, M.; Sukhwani, H. y Trivedi, K. (2014). Performability Comparison of Lustre and HDFS for MR Applications. En Software Reliability Engineering Workshops (ISSREW), 2014 IEEE International Symposium on (pp. 51–51). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6983800; Sinnott, R. O. (2016). The Australian Data-Driven Urban Research Platform: Systems Paper. Australian Economic Review, 49(2), 208–223.; Sinnott, R. O.; Bayliss, C.; Bromage, A.; Galang, G.; Gong, Y.; Greenwood, P. and others (2016). Privacy Preserving Geo-Linkage in the Big Urban Data Era. Journal of Grid Computing, 1–16.; Sinnott, R. O. y Chen, W. (2016). Estimating crowd sizes through social media. En 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops) (pp. 1–6). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7457123; Sinnott, R. O.; Morandini, L. y Wu, S. (2015). SMASH: A Cloud-based Architecture for Big Data Processing and Visualization of Traffic Data. En 2015 IEEE International Conference on Data Science and Data Intensive Systems (pp. 53–60). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7396481; Soergel, D. (2015). Unleashing the Power of Data Through Organization: Structure and Connections for Meaning, Learning and Discovery. Knowledge Organization, 42(6), 401–427.; Springer. (2016). Lecture Notes in Computer Science LNCS %7C Springer. Recuperado de http://www.springer.com/gp/computer-science/lncs; Tan, K. H.; Ortiz-Gallardo, V. G. y Perrons, R. K. (2016). Using Big Data to manage safety-related risk in the upstream oil & gas industry: A research agenda. Energy Exploration & Exploitation, 34(2), 282–289.; TICbeat (2012). Cómo deben usar las empresas Twitter (según Twitter). Recuperado de http://www.ticbeat.com/socialmedia/como-usar-twitter-empresas/; Vashisht, P. y Gupta, V. (2015). Big data analytics techniques: A survey. En Green Computing and Internet of Things (ICGCIoT), 2015 International Conference on (pp. 264–269). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7380470; Verma, S.; Verma, S.; Sekhar Bhattacharyya, S. y Sekhar Bhattacharyya, S. (2016). Micro-foundation strategies of IOT, BDA, Cloud Computing: Do they really matter in bottom of pyramid? Strategic Direction, 32(8), 36–38.; Viaña, E. (2015). El vértigo del «big data» y algunas empresas que lo utilizan bien. Recuperado de http://www.expansion.com/directivos/2015/05/20/555cde3b1.html; Wang, G.; Gunasekaran, A.; Ngai, E. W. y Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176, 98–110.; Wasi-ur-Rahman, M.; Lu, X.; Islam, N. S.; Rajachandrasekar, R. y Panda, D. K. (2015). High-performance design of YARN MapReduce on modern HPC clusters with Lustre and RDMA. En Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE International (pp. 291–300). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7161518; Wise, C.; Friedrich, C.; Nepal, S.; Chen, S. y Sinnott, R. O. (2015). Cloud Docs: Secure Scalable Document Sharing on Public Clouds. En 2015 IEEE 8th International Conference on Cloud Computing (pp. 532–539). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7214087; Wu, W.; Lu, X.; Cox, B.; Li, G.; Lin, L.; Yang, Q. y others. (2014). Retrieving Information and Discovering Knowledge from Unstructured Data Using Big Data Mining Technique: Heavy Oil Fields Example. En International Petroleum Technology Conference. International Petroleum Technology Conference. Recuperado de https://www.onepetro.org/conference-paper/IPTC-17805-MS; Yu, X. y Wu, S. (2015). Typical Applications of Big Data in Education. En 2015 International Conference of Educational Innovation through Technology (EITT) (pp. 103–106). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7446158; Zeng, J. y Plale, B. (2016). KVLight: A Lightweight Key-Value Store for Distributed Access in Cloud. En 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (pp. 473–482). IEEE. Recuperado de http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7515724; Zhu, Y.; Zhan, J.; Weng, C.; Nambiar, R.; Zhang, J.; Chen, X. y Wang, L. (2014). Bigop: Generating comprehensive big data workloads as a benchmarking framework. En International Conference on Database Systems for Advanced Applications (pp. 483–492). Springer. Recuperado de http://link.springer.com/chapter/10.1007/978-3-319-05813-9_32; https://revistas.itm.edu.co/index.php/revista-cea/article/view/169
-
13
Autori:
Prispievatelia:
Predmety: 000 - Ciencias de la computación, información y obras generales, 510 - Matemáticas, 370 - Educación::378 - Educación superior (Educación terciaria), Educación Virtual, Matemáticas - Enseñanza, Analítica del Aprendizaje, Evaluación Formativa, Ambientes Virtuales de Aprendizaje, Descubrimiento de Conocimiento en Bases de Datos, Cursos de Matemáticas, Formative Assessment, Knowledge Database Discovery, Educational Data Mining, Mathematics Courses, Virtual Learning Environments, ADDIE, Learning Analytics
Popis súboru: xiv, 144 páginas; application/pdf
Relation: Abdullah, W. M., Kabir, K. L., Hasan, N., & Islam, S. (2016). Development of a smart learning analytics system using Bangla word recognition and an improved document driven DSS. 1st International Conference on Computer and Information Engineering, ICCIE 2015, 75–78. https://doi.org/10.1109/CCIE.2015.7399321; Agudo-Peregrina, Á. F., Iglesias-Pradas, S., Conde-González, M. Á., & Hernández-Garcíaa, Á. (2014). Can we predict success from log data in VLEs? Classification of interactions for learning analytics and their relation with performance in VLE-supported F2F and online learning II. Computers in Human Behavior, 31(1), 542–550. https://doi.org/10.1016/j.chb.2013.05.031; Ali, L., Asadi, M., Gasevic, D., Jovanovic, J., & Hatala, M. (2013). Factors influencing beliefs for adoption of a learning analytics tool: An empirical study. Computers and Education, 62, 130–148. https://doi.org/10.1016/j.compedu.2012.10.023; Ali, L., Hatala, M., Gašević, D., & Jovanović, J. (2012). A Qualitative Evaluation of Evolution of a Learning Analytics Tool. Comput. Educ., 58(1), 1–23. https://doi.org/10.1016/j.compedu.2011.08.030; Almenara, J. C., & Llorente, C. (2014). Las tipologías de MOOC: Su diseño e implicaciones educativas. Revista de Curriculum y Formación de Profesorado, 18(1).; Alsultanny, Y. (2011). Selecting a suitable method of data mining for successful forecasting. Journal of Targeting, Measurement and Analysis for Marketing, 19(3–4), 207–225. https://doi.org/10.1057/jt.2011.21; Altujjar, Y., Altamimi, W., Al-Turaiki, I., & Al-Razgan, M. (2016). Predicting Critical Courses Affecting Students Performance: A Case Study. Procedia Computer Science, 82(March), 65–71. https://doi.org/10.1016/j.procs.2016.04.010; Andrews, R., & Haythornthwaite, C. (2007). Introduction to E-learning Research. The Sage Handbook of E-Learning Research, London: Sage Publication Ltd, 1–59.; Angeli, C., Howard, S. K., Ma, J., Yang, J., & Kirschner, P. A. (2017). Data mining in educational technology classroom research: Can it make a contribution? COMPUTERS & EDUCATION, 113, 226–242. https://doi.org/10.1016/j.compedu.2017.05.021; Archambault, L. M., & Barnett, J. H. (2010). Revisiting technological pedagogical content knowledge: Exploring the TPACK framework. Computers & Education, 55(4), 1656–1662. https://doi.org/10.1016/j.compedu.2010.07.009; Arkorful, V., & Abaidoo, N. (2015). The role of e-learning, advantages and disadvantages of its adoption in higher education. International Journal of Instructional Technology and Distance Learning, 12(1), 29–42. https://doi.org/10.3991/ijac.v3i2.1322; Avella, J. T., Kebritchi, M., Nunn, S., & Kanai, T. (2016). Learning Analytics Methods, Benefits, and Challenges in Higher Education: A Systematic Literature Review. Online Learning Journal, 20(2), 13–29.; Ayub, M., Toba, H., Yong, S., & Wijanto, M. C. (2017). Modelling students’ activities in programming subjects through educational data mining. Global Journal of Engineering Education, 19(3), 249–255.; Badr, G., Algobail, A., Almutairi, H., & Almutery, M. (2016). Predicting Students’ Performance in University Courses: A Case Study and Tool in KSU Mathematics Department. Procedia Computer Science, 82(March), 80–89. https://doi.org/10.1016/j.procs.2016.04.012; Baneres, D., Caballe, S., & Clariso, R. (2016). Towards a Learning Analytics Support for Intelligent Tutoring Systems on MOOC Platforms. Proceedings - 2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems, CISIS 2016, 103–110. https://doi.org/10.1109/CISIS.2016.48; Baradwaj, B., & Pal, S. (2012). Mining educational data to analyze student’s performance. Internation Journal On Advanced Computer Science and Applications, 2(6), 63–69. https://doi.org/vol.2,No.6; Barana, A., & Marchisio, M. (2016). Ten good reasons to adopt an automated formative assessment model for learning and teaching Mathematics and scientific disciplines. Procedia - Social and Behavioral Sciences - 2nd International Conference on Higher Education Advances, 228, 608–613. https://doi.org/10.1016/j.sbspro.2016.07.093; BBC. (2019). Pruebas PISA: qué dice de la educación en América Latina los malos resultados obtenidos por los países de la región. Https://Www.Bbc.Com/Mundo/Noticias-America-Latina-50685470.; Bennett, S., Agostinho, S., & Lockyer, L. (2017). The process of designing for learning: understanding university teachers’ design work. Educational Technology Research and Development, 65(1), 125–145. https://doi.org/10.1007/s11423-016-9469-y; Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis, D. (2013). Using Learning Analytics to Understand the Learning Pathways of Novice Programmers. Journal of the Learning Sciences, 22(4), 564–599. https://doi.org/10.1080/10508406.2013.836655; Bienkowski, M., Feng, M., & Means, B. (2012). Enhancing teaching and learning through educational data mining and learning analytics: An issue brief. Washington, DC: SRI International, 1–57. http://www.ed.gov/edblogs/technology/files/2012/03/edm-la-brief.pdf; Bruner, J. S. (1960). The process of education. Cambridge: Harvard University Press, Behavioral. https://doi.org/doi:10.1002/bs.3830090108; Burrow, M., Evdorides, H., Hallam, B., & Freer-hewish, R. (2005). Developing formative assessment for postgraduate students in engineering. European Journal of Engineering Education, 30(2), 255–263. https://doi.org/10.1080/03043790500087563; Calvert, C. E. (2014). Developing a model and applications for probabilities of student success: a case study of predictive analytics. Open Learning, 29(2), 160–173. https://doi.org/10.1080/02680513.2014.931805; Calvet Liñán, L., & Juan Pérez, Á. A. (2015). Educational Data Mining and Learning Analytics: differences, similarities, and time evolution. RUSC. Universities and Knowledge Society Journal, 12(3), 98. https://doi.org/10.7238/rusc.v12i3.2515; Campagni, R., Merlini, D., Sprugnoli, R., & Verri, M. C. (2015). Data mining models for student careers. Expert Systems with Applications, 42(13), 5508–5521. https://doi.org/10.1016/j.eswa.2015.02.052; Cano, A. R., Fernandez-Manjon, B., & Garcia-Tejedor, A. J. (2016). Downtown, a subway adventure: Using Learning analytics to improve the development of a learning game for people with intellectual disabilities. Proceedings - IEEE 16th International Conference on Advanced Learning Technologies, ICALT 2016, 125–129. https://doi.org/10.1109/ICALT.2016.46; Chalaris, M., Gritzalis, S., Maragoudakis, M., Sgouropoulou, C., & Tsolakidis, A. (2014). ScienceDirect ICININFO Improving Quality of Educational Processes Providing New Knowledge using Data Mining Techniques. Procedia - Social and Behavioral Sciences, 147, 390–397. https://doi.org/10.1016/j.sbspro.2014.07.117; Chatti, M. A., Dyckhoff, A. L., Schroeder, U., Thus, H., & Thüs, H. (2012). A reference model for learning analytics. International Journal of Technology Enhanced Learning, 4(5/6), 318–331. https://doi.org/DOI:10.1504/IJTEL.2012.051815; Chen, I. H., Gamble, J. H., Lee, Z. H., & Fu, Q. L. (2020). Formative assessment with interactive whiteboards: A one-year longitudinal study of primary students’ mathematical performance. Computers and Education, 150(February 2019), 103833. https://doi.org/10.1016/j.compedu.2020.103833; Chen, J., Xu, J., Tang, T., & Chen, R. (2017). WebIntera-classroom: an interaction-aware virtual learning environment for augmenting learning interactions. Interactive Learning Environments, 25(6), 792–807. https://doi.org/10.1080/10494820.2016.1188829; Chu, H. C., Chen, J. M., & Tsai, C. L. (2017). Effects of an online formative peer-tutoring approach on students’ learning behaviors, performance and cognitive load in mathematics. Interactive Learning Environments, 25(2), 203–219. https://doi.org/10.1080/10494820.2016.1276085; Clow, D. (2013). An overview of learning analytics. Teaching in Higher Education, 18(6), 683–695. https://doi.org/10.1080/13562517.2013.827653; COEC. (2001). The eLearning Action Plan: Designing tomorrow’s education. 1–19.; Conde, M. Á., García-peñalvo, F. J., Gómez-, D. A., & Theron, R. (2014). Visual learning analytics techniques applied in software engineering subjects. https://doi.org/10.1109/FIE.2014.7044486; Correia, C. F., & Harrison, C. (2020). Teachers’ beliefs about inquiry-based learning and its impact on formative assessment practice. Research in Science and Technological Education, 38(3), 355–376. https://doi.org/10.1080/02635143.2019.1634040; Cort, L., Alfredo, C., Gonz, Z., Men, H., Jos, P., & Herrera, C. (2015). El estudio de los hábitos de conexión en redes sociales virtuales, por medio de la minería de datos. 15.; Costa, E. B., Fonseca, B., Santana, M. A., de Araujo, F. F., & Rego, J. (2017). Evaluating the effectiveness of educational data mining techniques for early prediction of students’ academic failure in introductory programming courses. Computers in Human Behavior, 73, 247–256. https://doi.org/10.1016/j.chb.2017.01.047; Crippen, K. (2014). Examining TPACK Among K-12 Online Distance Educators in the United States. April.; Darius, P. S. H., Gundabattini, E., & Solomon, D. G. (2021). A Survey on the Effectiveness of Online Teaching–Learning Methods for University and College Students. Journal of The Institution of Engineers (India): Series B. https://doi.org/10.1007/s40031-021-00581-x; Dawson, S., & Siemens, G. (2014). Analytics to Literacies: The Development of a Learning Analytics Framework for Multiliteracies Assessment. International Review of Research in Open and Distance Learning, 15(4), 284–305. https://doi.org/10.19173/irrodl.v15i4.1878; Dick, W., & Carey, L. (1996). The systematic design of instruction (4th ed.). Harper Collins College Publishers.; Dietz-Uhler, B., & Hurn, J. (2013). Using learning analytics to predict (and improve) student success: a faculty perspective. Journal of Interactive Online Learning, 12(1), 17–26. http://www.ncolr.org/jiol/issues/pdf/12.1.2.pdf; Dodero, J. M., González-Conejero, E. J., Gutierrez-Herrera, G., Peinado, S., Tocino, J. T., & Ruiz-Rube, I. (2017). Trade-off between interoperability and data collection performance when designing an architecture for learning analytics. Future Generation Computer Systems, 68, 31–37. https://doi.org/10.1016/j.future.2016.06.040; Duval, E. (2011). Attention please!: Learning analytics for visualization and recommendation. LAK ’11 Proceedings of the 1st International Conference on Learning Analytics and Knowledge, 9–17. https://doi.org/10.1145/2090116.2090118; Dyckhoff, A. L., Zielke, D., Bültmann, M., Chatti, M. A., Schroeder, U., Bueltmann, M., Chatti, M. A., & Schroeder, U. (2012). Design and implementation of a learning analytics toolkit for teachers. Educational Technology and Society, 15(3), 58–76.; Ebner, M. (2016). Engaging Learning Analytics in MOOCS : the good , the bad , and the ugly. International Conference on Education and New Developments, June, 2–7.; Echeverria, L., Benitez, A., Buendia, S., Cobos, R., & Morales, M. (2016). Using a learning analytics manager for monitoring of the collaborative learning activities and students’ motivation into the Moodle system. 2016 IEEE 11th Colombian Computing Conference, CCC 2016 - Conference Proceedings. https://doi.org/10.1109/ColumbianCC.2016.7750772; Eckert, K. B. (2015). Análisis de Deserción-Permanencia de Estudiantes Universitarios Utilizando Técnica de Clasificación en Minería de Datos Analysis of Attrition-Retention of College Students Using Classification Technique in Data Mining. 8, 3–12. https://doi.org/10.4067/S0718-50062015000500002; Eddy, C. M., Harrell, P., & Heitz, L. (2017). An observation protocol of short-cycle formative assessment in the mathematics classroom. Investigations in Mathematics Learning, 9(3), 130–147. https://doi.org/10.1080/19477503.2017.1308699; Efklides, A. (2006). Metacognition and affect: What can metacognitive experiences tell us about the learning process? Educational Research Review, 1, 3–14.; Faber, J. M., & Visscher, A. J. (2018). The effects of a digital formative assessment tool on spelling achievement: Results of a randomized experiment. Computers and Education, 122(March), 1–8. https://doi.org/10.1016/j.compedu.2018.03.008; Ferguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304–317. https://doi.org/10.1504/IJTEL.2012.051816; Ferguson, Rebecca, & Shum, S. B. (2012). Social Learning Analytics: Five Approaches. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12, May, 23. https://doi.org/10.1145/2330601.2330616; Fernandez-Delgado, M., Mucientes, M., Vazquez-Barreiros, B., & Lama, M. (2015). Learning analytics for the prediction of the educational objectives achievement. Proceedings - Frontiers in Education Conference, FIE, 2015-Febru(February), 0–3. https://doi.org/10.1109/FIE.2014.7044402; Fernández-Gallego, B., Lama, M., Vidal, J. C., & Mucientes, M. (2013). Learning analytics framework for educational virtual worlds. Procedia Computer Science, 25, 443–447. https://doi.org/10.1016/j.procs.2013.11.056; Fernández-Pampillón Cesteros, A. M. (2009). Las plataformas e-learning para la enseñanza y el aprendizaje universitario en Internet. Las Plataformas de Aprendizaje. Del Mito a La Realidad. Biblioteca Nueva, 45–73.; Fidalgo-Blanco, Á., Sein-Echaluce, M. L., García-Peñalvo, F. J., & Conde, M. Á. (2015). Using Learning Analytics to improve teamwork assessment. Computers in Human Behavior, 47, 149–156. https://doi.org/10.1016/j.chb.2014.11.050; Foorman, B. R., York, M., Santi, K. L., & Francis, D. (2008). Contextual effects on predicting risk for reading difficulties in first and second grade. Reading and Writing, 21(4), 371–394. https://doi.org/10.1007/s11145-007-9079-5; Foster, B., Perfect, C., & Youd, A. (2012). A completely client-side approach to e-assessment and e-learning of mathematics and statistics. International Journal of E-Assessment, 2(2). https://doi.org/10.1016/j.ijproman.2014.03.004; Gameel, B. G. (2017). Learner Satisfaction with Massive Open Online Courses. American Journal of Distance Education, 31(2), 98–111. https://doi.org/10.1080/08923647.2017.1300462; García, O. A., & Secades, V. A. (2013). Big data and learning analytics: A potential way to optimize elearning technological tools. Proceedings of the International Conference E-Learning 2013, 313–317. http://www.scopus.com/inward/record.url?eid=2-s2.0-84886911408&partnerID=tZOtx3y1; Gaševi, D., Dawson, S., & Siemens, G. (2015). Let’s not forget : Learning Analytics are about Learning Course Signals : Lessons Learned. TechTrends, 59(1), 64–71.; Gašević, D., Dawson, S., Rogers, T., & Gasevic, D. (2016). Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success. Internet and Higher Education, 28, 68–84. https://doi.org/10.1016/j.iheduc.2015.10.002; Giannakos, M. N., Sampson, D. G., & Kidziński, Ł. (2016). Introduction to smart learning analytics: foundations and developments in video-based learning. Smart Learning Environments, 3(1), 12. https://doi.org/10.1186/s40561-016-0034-2; Gikandi, J. W., Morrow, D., & Davis, N. E. (2011). Online formative assessment in higher education: A review of the literature. Computers and Education, 57(4), 2333–2351. https://doi.org/10.1016/j.compedu.2011.06.004; Govindarajan, K., Kumar, V. S., & Kinshuk. (2017). Dynamic Learning Path Prediction - A Learning Analytics Solution. Proceedings - IEEE 8th International Conference on Technology for Education, T4E 2016, 188–193. https://doi.org/10.1109/T4E.2016.047; Graham, C. R. (2011). Theoretical considerations for understanding technological pedagogical content knowledge (TPACK). Computers & Education, 57(3), 1953–1960. https://doi.org/10.1016/j.compedu.2011.04.010; Greller, W., & Drachsler, H. (2012). Translating Learning into Numbers: A Generic Framework for Learning Analytics. EDUCATIONAL TECHNOLOGY & SOCIETY, 15(3), 42–57. https://doi.org/http://hdl.handle.net/1820/4506; Gunness, S., & Singh, U. (2016). Integrating Learning Analytics for higher-order thinking e-Assessments. 2015 International Conference on Computing, Communication and Security, ICCCS 2015. https://doi.org/10.1109/CCCS.2015.7374143; Haj-Yahya, A., & Olsher, S. (2020). Preservice teachers’ experiences with digital formative assessment in mathematics. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2020.1842527; Hansen, G. (2020). Formative assessment as a collaborative act. Teachers` intention and students` experience: Two sides of the same coin, or? Studies in Educational Evaluation, 66(September 2019), 100904. https://doi.org/10.1016/j.stueduc.2020.100904; Heinich, R., Michael, M., & James, R. (1985). Instructional media and the new technologies of instruction / Robert Heinich, Michael Molenda, James D. Russell. In Instructional media and the new technologies of instruction (2nd ed.). Wiley.; Heritage, M., & Niemi, D. (2006). Toward a framework for using student mathematical representations as formative assessments. Educational Assessment, 11(3–4), 265–282. https://doi.org/10.1080/10627197.2006.9652992; Hernandez-Garcia, A., Gonzalez-Gonzalez, I., Jimenez-Zarco, A. I., & Chaparro-Pelaez, J. (2015). Applying social learning analytics to message boards in online distance learning: A case study. Computers in Human Behavior, 47, 68–80. https://doi.org/10.1016/j.chb.2014.10.038; Hernández, D., López, C., & Mejía, M. (2008). Utilización de una plataforma tecnológica para el desarrollo de los contenidos de la asignatura de relaciones públicas de la Facultad de Ciencias Económicas de la Universidad Francisco Gavidia, para su aplicación en la enseñanza moderna. Universidad Francisco Gavidia. http://hdl.handle.net/11592/7259; Hošková-Mayerová, Š., & Rosická, Z. (2015). E-Learning Pros and Cons: Active Learning Culture? Procedia - Social and Behavioral Sciences, 191, 958–962. https://doi.org/10.1016/j.sbspro.2015.04.702; Hughes, G., & Dobbins, C. (2015). The utilization of data analysis techniques in predicting student performance in massive open online courses (MOOCs). Research and Practice in Technology Enhanced Learning, 10(1), 10. https://doi.org/10.1186/s41039-015-0007-z; Hung, J., Hsu, Y.-C., & Rice, K. (2012). Integrating Data Mining in Program Evaluation of K-12 Online Education. Educational Technology & Society, 15(3), 27–41. https://doi.org/10.1207/s15327752jpa8502; Hwang, G.-J., Sung, H.-Y., Hung, C.-M., Yang, L.-H., & Huang, I. (2013). A knowledge engineering approach to developing educational computer games for improving students’ differentiating knowledge. British Journal of Educational Technology, 44(2), 183–196. https://doi.org/10.1111/j.1467-8535.2012.01285.x; Ifenthaler, D. (2017). Designing Effective Digital Learning Environments: Toward Learning Analytics Design. Technology, Knowledge and Learning, 22(3), 401–404. https://doi.org/10.1007/s10758-017-9333-0; Ihantola, P., Butler, M., Edwards, S. H., Tech, V., Korhonen, A., Petersen, A., Rivers, K., Rubio, M. Á., Sheard, J., Spacco, J., Szabo, C., & Toll, D. (2015). Educational Data Mining and Learning Analytics in Programming : Literature Review and Case Studies. ITiCSE. https://doi.org/10.1145/2858796.2858798; ISO. (2016). SC36 / WG8 N80 Learning Analytics Interoperability - Reference model. International Organization for Standardization, 2016.; Kappe, R., & Van Der Flier, H. (2012). Predicting academic success in higher education: What’s more important than being smart? European Journal of Psychology of Education, 27(4), 605–619. https://doi.org/10.1007/s10212-011-0099-9; Kaur, P., Singh, M., & Josan, G. S. (2015). Classification and Prediction Based Data Mining Algorithms to Predict Slow Learners in Education Sector. Procedia Computer Science, 57, 500–508. https://doi.org/10.1016/j.procs.2015.07.372; Kawazoe, M., & Arts, L. (n.d.). CASE STUDY E-learning / e-assessment systems based on webMathematica for university mathematics education. 15(2), 17–24.; Kleftodimos, A., & Evangelidis, G. (2016). Using open source technologies and open internet resources for building an interactive video based learning environment that supports learning analytics. Smart Learning Environments, 3(1), 9. https://doi.org/10.1186/s40561-016-0032-4; Kurt, S. (2017). ADDIE Model: Instructional Design. Educational Technology. https://educationaltechnology.net/the-addie-model-instructional-design/; Kurvinen, E., Lokkila, E., Lindén, R., Kaila, E., & Laakso, M. (2016). Automatic Assessment and Immediate Feedback in Third Grade Mathematics. Proceedings of Ireland International Conference on Education. https://doi.org/10.1145/2674683.2674685; Kyaruzi, F., Strijbos, J. W., Ufer, S., & Brown, G. T. L. (2019). Students’ formative assessment perceptions, feedback use and mathematics performance in secondary schools in Tanzania. Assessment in Education: Principles, Policy and Practice, 26(3), 278–302. https://doi.org/10.1080/0969594X.2019.1593103; Laveti, R. N., Kuppili, S., Ch, J., Pal, S. N., & Babu, N. S. C. (2017). Implementation of learning analytics framework for MOOCs using state-of-the-art in-memory computing. 2017 5th National Conference on E-Learning & E-Learning Technologies (ELELTECH), 1, 1–6. https://doi.org/10.1109/ELELTECH.2017.8074997; Lebron, D., & Shahriar, H. (2015). Comparing MOOC Based Platforms : Reflection on Pedagogical Support , Framework and Learning Analytics. International Conference on Collaboration Technologies and Systems (CTS) 2015, 167–174. https://doi.org/10.1109/CTS.2015.7210417; Lee, D. (2021). The process of designing for online learning. Educational Technology Research and Development, 69(1), 289–293. https://doi.org/10.1007/s11423-020-09915-w; Liu, Q., & Fan, G. (2014). Using learning analytics technologies to find learning structures from online examination system. Proceedings - 2014 International Conference of Educational Innovation Through Technology, EITT 2014, 192–196. https://doi.org/10.1109/EITT.2014.38; Lonn, S., Aguilar, S. J., & Teasley, S. D. (2015). Investigating student motivation in the context of a learning analytics intervention during a summer bridge program. Computers in Human Behavior, 47, 90–97. https://doi.org/10.1016/j.chb.2014.07.013; Lu, O., Huang, J., Huang, A., & Yang, S. (2017). Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interactive Learning Environments, 25(2), 220–234. https://doi.org/10.1080/10494820.2016.1278391; Ma, J., Han, X., Yang, J., & Cheng, J. (2015). Examining the necessary condition for engagement in an online learning environment based on learning analytics approach: The role of the instructor. The Internet and Higher Education, 24, 26–34. https://doi.org/10.1016/j.iheduc.2014.09.005; Maldonado, J. J., Palta, R., Vázquez, J., Bermeo, J. L., Pérez-sanagustín, M., & Munoz-gama, J. (2016). MOOCs Based on Self-Regulated Learning and Learning Styles.; Mansor, M. S. A., & Ismail, A. (2012). Learning Styles and Perception of Engineering Students Towards Online Learning. Procedia - Social and Behavioral Sciences, 69, 669–674. https://doi.org/10.1016/j.sbspro.2012.11.459; Mardikyan, S., & Badur, B. (2011). Analyzing teaching performance of instructors using data mining techniques. Informatics in Education, 10(2), 245–257.; Martín-Monje, E., Castrillo, M. D., & Mañana-Rodríguez, J. (2017). Understanding online interaction in language MOOCs through learning analytics. Computer Assisted Language Learning, 8221(November), 1–22. https://doi.org/10.1080/09588221.2017.1378237; Martinez, M. E., & Lipson, J. I. (1989). Assessment for Learning Formative Assessment. OECD/CERI International Conference “Learning in the 21st Century: Research, Innovation and Policy,” April, 73. https://doi.org/10.5959/eimj.3.2.2011.e1; Masoumi, D. (2012). Quality in e-learning : a framework for promoting and assuring quality in virtual institutions. Journal of Computer Assited Learning, 28, 27–41. https://doi.org/10.1111/j.1365-2729.2011.00440.x; Meira, R., Llamas-Nistal, M., & Iglesias, M. J. F. (2017). Enhancing learners’ experience in e-learning based scenarios using Intelligent tutoring systems and learning analytics: First results from a perception survey. 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), 1–4. https://doi.org/10.23919/CISTI.2017.7975976; Merceron, A., & Yacef, K. (2005). Educational data mining: A case study. Artificial Intelligence in Education: Supporting Learning through Intelligent and Sociall Informed Technology, 467–474. https://doi.org/10.1504/IJKESDP.2009.022718; Mohamadi, Z. (2018). Comparative effect of online summative and formative assessment on EFL student writing ability. Studies in Educational Evaluation, 59(February), 29–40. https://doi.org/10.1016/j.stueduc.2018.02.003; Morris, S. P., Seymour, K., & Limmer, H. (2019). Research protocol: Evaluating the impact of Eedi formative assessment online platform (formerly Diagnostic Questions or DQ) on attainment in mathematics at GCSE and teacher workload. International Journal of Educational Research, 93(July 2018), 188–196. https://doi.org/10.1016/j.ijer.2018.11.007; Morrison, G., Ross, R., & Kemp, J. (2004). Designing effective instruction. John Wiley & Sons.; Nassif, A. B., Azzeh, M., Banitaan, S., & Neagu, D. (2016). Guest editorial: special issue on predictive analytics using machine learning. Neural Computing and Applications, 27(8), 2153–2155. https://doi.org/10.1007/s00521-016-2327-3; Ní Fhloinn, E., & Carr, M. (2017). Formative assessment in mathematics for engineering students. European Journal of Engineering Education, 42(4), 458–470. https://doi.org/10.1080/03043797.2017.1289500; Njeru, A. M., & Paracha, S. (2017). Learning analytics: Supporting at-risk student through eye-Tracking and a robust intelligent tutoring system. Proceedings of the 2017 IEEE International Conference on Applied System Innovation: Applied System Innovation for Modern Technology, ICASI 2017, 1002–1005. https://doi.org/10.1109/ICASI.2017.7988616; Nopiah, Z. M., Farhana, N., Fuaad, A., Rosli, N. S., Othman, H., & Omar, Z. (2013). Predicting the Performance of the Diploma Engineering Students Using the Pre-test method. Procedia - Social and Behavioral Sciences, 102(Ifee 2012), 153–157. https://doi.org/10.1016/j.sbspro.2013.10.727; Núñez-Peña, M. I., Bono, R., & Suárez-Pellicioni, M. (2015). Feedback on students’ performance: A possible way of reducing the negative effect of math anxiety in higher education. International Journal of Educational Research, 70, 80–87. https://doi.org/10.1016/j.ijer.2015.02.005; Oliveiar, L., & Figueira, A. (2017). Visualization of sentiment spread on social networked content: Learning analytics for integrated learning environments. IEEE Global Engineering Education Conference, EDUCON, April, 1290–1298. https://doi.org/10.1109/EDUCON.2017.7943014; Pacheco-Venegas, N. D., López, G., & Andrade-Aréchiga, M. (2015). Conceptualization, development and implementation of a web-based system for automatic evaluation of mathematical expressions. Computers and Education, 88, 15–28. https://doi.org/10.1016/j.compedu.2015.03.021; Papamitsiou, Z., & Economides, A. A. (2015). Temporal learning analytics visualizations for increasing awareness during assessment. RUSC. Universities and Knowledge Society Journal, 12(3), 129. https://doi.org/10.7238/rusc.v12i3.2519; Park, Y., & Jo, I. H. (2017). Using log variables in a learning management system to evaluate learning activity using the lens of activity theory. Assessment and Evaluation in Higher Education, 42(4), 531–547. https://doi.org/10.1080/02602938.2016.1158236; Pauna, M. (2017). Calculus Courses’ Assessment Data. Journal of Learning Analytics, 4(2), 12–21. https://doi.org/10.18608/jla.2017.42.3; Pereira, H. A., De Souza, A. F., & De Menezes, C. S. (2016). A computational architecture for learning analytics in game-based learning. Proceedings - IEEE 16th International Conference on Advanced Learning Technologies, ICALT 2016, 191–193. https://doi.org/10.1109/ICALT.2016.3; Pezzino, M. (2018). Online assessment, adaptive feedback and the importance of visual learning for students. The advantages, with a few caveats, of using MapleTA. International Review of Economics Education, 28(March), 11–28. https://doi.org/10.1016/j.iree.2018.03.002; Phelan, J., Choi, K., Vendlinski, T., Baker, E., & Herman, J. (2011). Differential improvement in student understanding of mathematical principles following formative assessment intervention. Journal of Educational Research, 104(5), 330–339. https://doi.org/10.1080/00220671.2010.484030; Philip Chen, C. L., Tao, D., & You, X. (2016). Big learning in social media analytics. Neurocomputing, 204, 1–2. https://doi.org/10.1016/j.neucom.2016.02.069; Picciano, A. G. (2012). The Evolution of Big Data and Learning Analytics in American Higher Education. Journal of Asynchronous Learning Networks, 16(3), 9–20. http://files.eric.ed.gov/fulltext/EJ982669.pdf; Pinger, P., Rakoczy, K., Besser, M., & Klieme, E. (2018). Implementation of formative assessment–effects of quality of programme delivery on students’ mathematics achievement and interest. Assessment in Education: Principles, Policy and Practice, 25(2), 160–182. https://doi.org/10.1080/0969594X.2016.1170665; Puddey, I. B., & Mercer, A. (2014). Predicting academic outcomes in an Australian graduate entry medical programme. BMC Medical Education, 14(1), 31. https://doi.org/10.1186/1472-6920-14-31; Quinn, D., Albrecht, A., Webby, B., & White, K. (2015). Learning from experience: the realities of developing mathematics courses for an online engineering programme. International Journal of Mathematical Education in Science and Technology, 46(7), 991–1003. https://doi.org/10.1080/0020739X.2015.1076895; Rabelo, T., Lama, M., Amorim, R. R., & Vidal, J. C. (2015). SmartLAK: A Big Data Architecture for Supporting Learning Analytics Services. Frontiers in Education Conference (FIE), 2015. 32614 2015. IEEE, 1–5. https://doi.org/10.1109/FIE.2015.7344147; Radmehr, F., & Drake, M. (2018). An assessment-based model for exploring the solving of mathematical problems: Utilizing revised bloom’s taxonomy and facets of metacognition. Studies in Educational Evaluation, 59, 41–51. https://doi.org/10.1016/j.stueduc.2018.02.004; Rakoczy, K., Pinger, P., Hochweber, J., Klieme, E., Schütze, B., & Besser, M. (2018). Formative assessment in mathematics: Mediated by feedback’s perceived usefulness and students’ self-efficacy. Learning and Instruction. https://doi.org/10.1016/j.learninstruc.2018.01.004; Rakoczy, K., Pinger, P., Hochweber, J., Klieme, E., Schütze, B., & Besser, M. (2019). Formative assessment in mathematics: Mediated by feedback’s perceived usefulness and students’ self-efficacy. Learning and Instruction, 60(January 2018), 154–165. https://doi.org/10.1016/j.learninstruc.2018.01.004; Reigeluth, C. M. (1983). Meaningfulness and instruction: Relating what is being learned to what a student knows. Instructional Science, 12(3), 197–218. https://doi.org/10.1007/BF00051745; Retalis, S., Papasalouros, A., Psaromiligkos, Y., Siscos, S., & Kargidis, T. (2006). Towards Networked Learning Analytics – A concept and a tool. 1–8.; Rojas, I. G., & García, R. M. C. (2012). Towards efficient provision of feedback supported by learning analytics. 12th IEEE International Conference on Advanced Learning Technologies, ICALT, 599–603.; Roldan, J. F., & Atehortúa, R. (2016). La Educación Virtual un Campo para el Análisis: Ventajas y Desventajas.; Roman, D. (2011). Impacto del e-learning en el proceso de aprendizaje de estudiantes de educación a distancia Propuesta de diseño de metodología para evaluar el impacto del e-learning en el proceso de aprendizaje de estudiantes de educación a distancia. Universidad Nacional de Colombia.; Romero, C., López, M. I., Luna, J. M., & Ventura, S. (2013). Predicting students’ final performance from participation in on-line discussion forums. Computers and Education, 68, 458–472. https://doi.org/10.1016/j.compedu.2013.06.009; Romero, C., Ventura, S., & García, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers and Education, 51(1), 368–384. https://doi.org/10.1016/j.compedu.2007.05.016; Rubio, F., Thomas, J. M., & Li, Q. (2017). The role of teaching presence and student participation in Spanish blended courses. Computer Assisted Language Learning, 8221(November), 1–25. https://doi.org/10.1080/09588221.2017.1372481; Ruipérez-Valiente, J. A., Muñoz-Merino, P. J., Leony, D., & Delgado Kloos, C. (2015). ALAS-KA: A learning analytics extension for better understanding the learning process in the Khan Academy platform. Computers in Human Behavior, 47, 139–148. https://doi.org/10.1016/j.chb.2014.07.002; Schildkamp, K., van der Kleij, F. M., Heitink, M. C., Kippers, W. B., & Veldkamp, B. P. (2020). Formative assessment: A systematic review of critical teacher prerequisites for classroom practice. International Journal of Educational Research, 103(May), 101602. https://doi.org/10.1016/j.ijer.2020.101602; Serrano-Laguna, Á., Torrente, J., Moreno-Ger, P., & Manjón, B. F. (2012). Tracing a little for big improvements: Application of learning analytics and videogames for student assessment. Procedia Computer Science, 15, 203–209. https://doi.org/10.1016/j.procs.2012.10.072; Shen, C., & Kuo, C.-J. (2015). Learning in massive open online courses: Evidence from social media mining. Computers in Human Behavior, 51, 568–577. https://doi.org/10.1016/j.chb.2015.02.066; Shimada, A., Mouri, K., & Ogata, H. (2017). Real-Time Learning Analytics of e-Book Operation Logs for On-site Lecture Support. Proceedings - IEEE 17th International Conference on Advanced Learning Technologies, ICALT 2017, 274–275. https://doi.org/10.1109/ICALT.2017.74; Siemens, G., & Latour, —bruno. (2015). Learning Analytics: The Emergence of a Discipline. American Behavioral Scientist, 57(10), 1380–1400. https://doi.org/10.1177/0002764213498851; Sin, K., & Muthu, L. (2015). Application of big data in education data mining and learning analytics-A literature review. Ictact Journal on Soft Computing: Special Issue on Soft Computing Models for Big Data, 5(4), 1035–1049.; Singleton, A. D. (2009). Data mining course choice sets and behaviours for target marketing of higher education. Journal of Targeting, Measurement and Analysis for Marketing, 17(3), 157–170. https://doi.org/10.1057/jt.2009.13; Sladek, R. M., Bond, M. J., Frost, L. K., Prior, K. N., Prideaux, D., Roberts, C., Eva, K., Centeno, A., McCrorie, P., McManus, C., Mercer, A., Puddey, I., Ferguson, E., James, D., Madeley, L., Patterson, F., Knight, A., Dowell, J., Nicholson, S., … Rosenthal, J. (2016). Predicting success in medical school: a longitudinal study of common Australian student selection tools. BMC Medical Education, 16(1), 187. https://doi.org/10.1186/s12909-016-0692-3; Snodgrass Rangel, V., Bell, E. R., Monroy, C., & Whitaker, J. R. (2015). Toward a New Approach to the Evaluation of a Digital Curriculum Using Learning Analytics. Journal of Research on Technology in Education, 47(2), 89–104. https://doi.org/10.1080/15391523.2015.999639; Srilekshmi, M., Sindhumol, S., Chatterjee, S., & Bijlani, K. (2017). Learning Analytics to Identify Students At-risk in MOOCs. Proceedings - IEEE 8th International Conference on Technology for Education, T4E 2016, 194–199. https://doi.org/10.1109/T4E.2016.048; Tempelaar, D., Rienties, B., Mittelmeier, J., & Nguyen, Q. (2018). Student profiling in a dispositional learning analytics application using formative assessment. Computers in Human Behavior, 78, 408–420. https://doi.org/10.1016/j.chb.2017.08.010; Tempelaar, D. T., Rienties, B., & Giesbers, B. (2015). In search for the most informative data for feedback generation: Learning analytics in a data-rich context. Computers in Human Behavior, 47, 157–167. https://doi.org/10.1016/j.chb.2014.05.038; Teresinha, M., & Steiner, A. (2016). Proposed methodology for the creation of a classification label : a school performance case study. 177–191.; Thai-Nghe, N., Drumond, L., Krohn-Grimberghe, A., & Schmidt-Thieme, L. (2010). Recommender system for predicting student performance. Procedia Computer Science, 1(2), 2811–2819. https://doi.org/10.1016/j.procs.2010.08.006; Tlili, A., Essalmi, F., Ayed, L. J. Ben, Jemni, M., & Kinshuk. (2017). A Smart Educational Game to Model Personality Using Learning Analytics. 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT), 131–135. https://doi.org/10.1109/ICALT.2017.65; Tlili, A., Essalmi, F., Jemni, M., & Kinshuk. (2015). An educational game for teaching computer architecture: Evaluation using learning analytics. 2015 5th International Conference on Information & Communication Technology and Accessibility (ICTA), 1–6. https://doi.org/10.1109/ICTA.2015.7426881; Tormey, R., Hardebolle, C., Pinto, F., & Jermann, P. (2020). Designing for impact: a conceptual framework for learning analytics as self-assessment tools. Assessment and Evaluation in Higher Education, 45(6), 901–911. https://doi.org/10.1080/02602938.2019.1680952; Tseng, S.-F., Tsao, Y.-W., Yu, L.-C., Chan, C.-L., & Lai, K. R. (2016). Who will pass? Analyzing learner behaviors in MOOCs. Research & Practice in Technology Enhanced Learning, 11(1), 1–11. https://doi.org/10.1186/s41039-016-0033-5; van den Herik, H. J., Plaat, A., Levy, D. N. L., & Dimov, D. (2014). Plagiarism in game programming competitions. Entertainment Computing, 5(3), 173–187. https://doi.org/10.1016/j.entcom.2014.02.002; Van der Kleij, F. M. (2019). Comparison of teacher and student perceptions of formative assessment feedback practices and association with individual student characteristics. Teaching and Teacher Education, 85, 175–189. https://doi.org/10.1016/j.tate.2019.06.010; Van Leeuwen, A., Janssen, J., Erkens, G., & Brekelmans, M. (2014). Supporting teachers in guiding collaborating students: Effects of learning analytics in CSCL. Computers and Education, 79, 28–39. https://doi.org/10.1016/j.compedu.2014.07.007; Van Leeuwen, A., Janssen, J., Erkens, G., & Brekelmans, M. (2015). Teacher regulation of cognitive activities during student collaboration: Effects of learning analytics. Computers and Education, 90, 80–94. https://doi.org/10.1016/j.compedu.2015.09.006; van Leeuwen, A., van Wermeskerken, M., Erkens, G., & Rummel, N. (2017). Measuring teacher sense making strategies of learning analytics: a case study. Learning: Research and Practice, 3(1), 42–58. https://doi.org/10.1080/23735082.2017.1284252; Virvou, M., Alepis, E., & Sidiropoulos, S. C. (2016). A learning analytics tool for supporting teacher decision. IISA 2015 - 6th International Conference on Information, Intelligence, Systems and Applications, 8–10. https://doi.org/10.1109/IISA.2015.7388012; Wang, S. M. (2014). A module-based learning analytics system for facebook supported collaborative creativity learning. Proceedings - IEEE 14th International Conference on Advanced Learning Technologies, ICALT 2014, 495–496. https://doi.org/10.1109/ICALT.2014.146; Xing, W., Guo, R., Petakovic, E., & Goggins, S. (2015). Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theory. Computers in Human Behavior, 47, 168–181. https://doi.org/10.1016/j.chb.2014.09.034; Yasmin. (2013). Application of the classification tree model in predicting learner dropout behaviour in open and distance learning. Distance Education, 34(2), 218–231. https://doi.org/10.1080/01587919.2013.793642; Yassine, S., Kadry, S., & Sicilia, M. (2016). A Framework for Learning Analytics in Moodle for Assessing Course Outcomes A Framework for Learning Analytics in Moodle for Assessing Course Outcomes. April, 261–266. https://doi.org/10.1109/EDUCON.2016.7474563; Yeh, Y. C. (2009). Integrating e-learning into the direct-instruction model to enhance the effectiveness of critical-thinking instruction. Instructional Science, 37(2), 185–203. https://doi.org/10.1007/s11251-007-9048-z; Yi, B., Wang, Y., Zhang, D., Liu, H., Shu, J., Zhang, Z., & Lv, Y. (2017). Learning Analytics-Based Evaluation Mode for Blended Learning and Its Applications. 2017 International Symposium on Educational Technology (ISET), 147–149. https://doi.org/10.1109/ISET.2017.42; Zakharov, A., & Carnoy, M. (2015). Are teachers accurate in predicting their students’ performance on high stakes’ exams? The case of Russia. International Journal of Educational Development, 43, 1–11. https://doi.org/10.1016/j.ijedudev.2015.04.007; Zengin, K., Esgi, N., Erginer, E., & Aksoy, M. E. (2011). A sample study on applying data mining research techniques in educational science: Developing a more meaning of data. Procedia - Social and Behavioral Sciences, 15, 4028–4032. https://doi.org/10.1016/j.sbspro.2011.04.408; Zhai, X., Li, M., & Guo, Y. (2018). Teachers’ use of learning progression-based formative assessment to inform teachers’ instructional adjustment: a case study of two physics teachers’ instruction. International Journal of Science Education, 40(15), 1832–1856. https://doi.org/10.1080/09500693.2018.1512772; Zhang, X., Meng, Y., Ordóñez de Pablos, P., & Sun, Y. (2017). Learning analytics in collaborative learning supported by Slack: From the perspective of engagement. Computers in Human Behavior. https://doi.org/10.1016/j.chb.2017.08.012; Zhou, Q., Han, X., Yang, J., & Cheng, J. (2014). Design and implementation of learning analytics system for teachers and learners based on the specified LMS. Proceedings - 2014 International Conference of Educational Innovation Through Technology, EITT 2014, 79–82. https://doi.org/10.1109/EITT.2014.21; Zhou, X., Wu, B., & Jin, Q. (2015). Open Learning Platform Based on Personal and Social Analytics for Individualized Learning Support. 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), 1741–1745. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.316; Zhu, M., Liu, O. L., & Lee, H. S. (2020). The effect of automated feedback on revision behavior and learning gains in formative assessment of scientific argument writing. Computers and Education, 143(September 2018), 103668. https://doi.org/10.1016/j.compedu.2019.103668; https://repositorio.unal.edu.co/handle/unal/80892; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https:/repositorio.una.edu.co
Dostupnosť: https://repositorio.unal.edu.co/handle/unal/80892
https:/repositorio.una.edu.co -
14
Autori:
Predmety: Administración de empresas, Análisis de datos, Inteligencia artificial, Tecnología de la información, Toma de decisiones, Sistema experto, Artificial intelligence, Business administration, Data analysis, Decision making, Expert systems, Information technology
Geografické téma: Vol. 24.
Popis súboru: 226 - 251; application/pdf
Relation: https://revistas.udenar.edu.co/index.php/rtend/article/view/7918; Tendencias; Ahmad, H. & Mustafa, H. (2022). The impact of artificial intelligence, big data analytics and business intelligence on transforming capability and digital transformation in Jordanian telecommunication firms. International Journal of Data and Network Science, 6(3), 727-732. https://doi.org/10.5267/j.ijdns.2022.3.009; Ahumada, E. y Perusquia, J. M. (2016). Inteligencia de Negocios: Estrategia para el Desarrollo de Competitividad en Empresas de Base Tecnológica en Tijuana, B.C. Contaduría y Administración, 61(1), 127-158. https://doi.org/10.1016/j.cya.2015.09.006; Ain, N., Vaia, G., DeLone, W. H. & Waheed, M. (2019). Two decades of research on business intelligence system adoption, utilization and success – A systematic literature review. Decision Support Systems, 125, 113113. https://doi.org/10.1016/j.dss.2019.113113; Al-edenat, M. & Alhawamdeh, N. (2022). Reconsidering individuals’ competencies in business intelligence and business analytics toward process effectiveness: mediationmoderation model. Business: Theory and Practice, 23(2), 239-251. https://doi.org/10.3846/btp.2022.16548; Ali, I., Balta, M. & Papadopoulos, T. (2022). Social media platforms and social enterprise: Bibliometric analysis and systematic review. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2022.102510; Arnott, D., Lizama, F. & Song, Y. (2017). Patterns of business intelligence systems use in organizations. Decision Support Systems, 97, 58-68. https://doi.org/10.1016/J.DSS.2017.03.005; Asokan, D. R., Huq, F. A., Smith, C. M. & Stevenson, M. (2022). Socially responsible operations in the Industry 4.0 era: post-COVID-19 technology adoption and perspectives on future research. International Journal of Operations & Production Management, 42(13), 185- 217. https://doi.org/10.1108/IJOPM-01-2022-0069; Awawdeh, H., Abulaila, H., Alshanty, A. & Alzoubi, A. (2022). Digital entrepreneurship and its impact on digital supply chains: The mediating role of business intelligence applications. International Journal of Data and Network Science, 6(1), 233-242. https://doi.org/10.5267/J.IJDNS.2021.9.005; Bag, S., Yadav, G., Dhamija, P. & Kataria, K. (2021). Key resources for industry 4.0 adoption and its effect on sustainable production and circular economy: An empirical study. Journal of Cleaner Production, 281, 125233. https://doi.org/10.1016/j.jclepro.2020.125233; Balamurugan, S., Ayyasamy, A. & Suresh, J. (2020). Iot based supply chain traceability using enhanced naive bayes approach for scheming the food safety issues. International Journal of Scientific and Technology Research, 9(3), 1184-1192 https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85084209108&partnerID=40&md5=56174787d3b52fa0e9f2b30997a614; Boonsiritomachai, W., McGrath, G. M. & Burgess, S. (2016). Exploring business intelligence and its depth of maturity in Thai SMEs. Cogent Business and Management, 3(1) https://doi.org/10.1080/23311975.2016.1220663; Bordeleau, F. E., Mosconi, E. & de Santa, L. A. (2020). Business intelligence and analytics value creation in Industry 4.0: a multiple case study in manufacturing medium enterprises. Production Planning and Control, 31(2-3), 173-185. https://doi.org/10.1080/09537287.2019.1631458; Brooks, P., El-Gayar, O. & Sarnikar, S. (2013, 7-10 de enero). Towards a business intelligence maturity model for healthcare [conferencia]. 46th Hawaii International Conference on System Sciences, Wailea, HI, EE. UU. https://ieeexplore.ieee.org/xpl/conhome/6479598/proceeding; Candra, S. & Nainggolan, A. (2022). Understanding Business Intelligence and Analytics System Success from Various Business Sectors in Indonesia. CommIT Journal, 16(1), 37-52.; Carbajal, A., Ninaquispe, J. & Cabanillas, M. (2022). Business Intelligence in Strategic Business Decision Making in Times of COVID-19: A Systematic Review of the Literature. In X. Yang, S. Sherratt, N. Dey & A. Joshi. (Eds.), Proceedings of Seventh International Congress on Information and Communication Technology (pp. 425-435). Editorial Springer. https://link.springer.com/book/10.1007/978-981-19-2394-4; Cardoso, E. & Su, X. (2022). Designing a Business Intelligence and Analytics Maturity Model for Higher Education: A Design Science Approach. Applied Sciences, 12(9), 4625. https://doi.org/10.3390/app12094625; Chugh, R. & Grandhi, S. (2013). Why Business Intelligence? Significance of Business Intelligence Tools and Integrating BI Governance with Corporate Governance. International Journal of E-Entrepreneurship and Innovation, 4(2), 1-14. https://doi.org/10.4018/ijeei.2013040101; Chung, W., Pauleen, D. & Taskin, N. (2022). Enterprise systems, emerging technologies, and the data-driven knowledge organisation. Knowledge Management Research & Practice, 20(1), 1-13. https://doi.org/10.1080/14778238.2022.2039571; Elbashir, M. Z., Collier, P. A. & Davern, M. J. (2008). Measuring the effects of business intelligence systems: The relationship between business process and organizational performance. International Journal of Accounting Information Systems, 9(3), 135–153. https://doi.org/10.1016/j.accinf.2008.03.001; García, C., Barón, E. y Sánchez, S. (2021). La inteligencia de negocios y la analítica de datos en los procesos empresariales. Revista Científica de Sistemas e Informática, 1(2), 38-53. https://doi.org/10.51252/rcsi.v1i2.167; Ghlala, R., Kodia, Z. & Said, L. B. (2022). Enhancing Decision-Making Consistency in Business Process using a Rule-Based Approach. Journal of Telecommunications and the Digital Economy, 10(2), 44-61. https://doi.org/10.18080/jtde.v10n2.539; Goldberg, D. M. & Abrahams, A. S. (2022). Sourcing product innovation intelligence from online reviews. Decision Support Systems, 157, 113751. https://doi.org/10.1016/j.dss.2022.113751; Hagendorff, T. (2022). A Virtue-Based Framework to Support Putting AI Ethics into Practice. Philosophy & Technology, 35(3). https://doi.org/10.1007/s13347-022-00553-z; Hsu, P. C., Huang, W. N., Kuo, K. M. & Yeh, Y. T. (2022). Application of Business Intelligence in Decision Support to Hospital Management: An Example of Outpatient Clinic Schedule Arrangement. In P. Otero, P. Scott, S. Martin & E. Huesing. (Eds.), MEDINFO 2021: One World, One Health-Global Partnership for Digital Innovation (pp. 1050-1051). Editorial IOS Press.; Huber, M., Meier, J. & Wallimann, H. (2022). Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets. Transportation Research Part B: Methodological, 163, 22-39. https://doi.org/10.1016/j.trb.2022.06.006; Jalali, S. M., Park, H., Vanani, I. & Pho, K. (2021). Research trends on big data domain using text mining algorithms. Digital Scholarship in the Humanities, 36(2), 361-370. https://doi.org/10.1093/llc/fqaa012; Janyapoon, S., Liangrokapart, J. & Tan, A. (2021). Critical Success Factors of Business Intelligence Implementation in Thai Hospitals. International Journal of Healthcare Information Systems and Informatics, 16(4), 19-21. https://doi.org/10.4018/IJHISI.20211001.oa19; Jourdan, Z., Rainer, R. K. & Marshall, T. E. (2008). Business intelligence: An analysis of the literature. Information Systems Management, 25(2), 121-131. https://doi.org/10.1080/10580530801941512; Kanchanapoom, K. & Chongwatpol, J. (2020). Applications of business intelligence and marketing analytics in the complementary and alternative medicine industry. Journal of Information Technology Teaching Cases, 11(1), 30-42. https://doi.org/10.1177/2043886920910430; Kapil, S., Sharma, K. & Bajaj, M. (2022). DeepWalk Based Influence Maximization (DWIM): Influence Maximization Using Deep Learning. Intelligent Automation & Soft Computing, 35(1), 1087-1101. https://doi.org/10.32604/iasc.2023.026134; Khaled, A. S., Sharma, D. K., Yashwanth, T., Reddy, V. M. K., Doewes, R. & Naved, M. (2022). Evaluating the Role of Robotics, Machine Learning and Artificial Intelligence in the Field of Performance Management. In S. Yadav, A. Haleem, P. Arora & H. Kumar. (Eds.), Proceedings of Second International Conference in Mechanical and Energy Technology (285- 299). Editorial Springer, Singapore. https://doi.org/10.1007/978-981-19-0108-9_30; Kumar, D., Kr Singh, R., Mishra, R. & Fosso, S. (2022). Applications of the internet of things for optimizing warehousing and logistics operations: A systematic literature review and future research directions. Computers & Industrial Engineering, 171, 108455. https://doi.org/10.1016/j.cie.2022.108455; Laqua, I. (2010). Der sinnvolle Einsatz von Business Intelligence-Systemen in der Produktion. Zeitschrift für wirtschaftlichen Fabrikbetrieb, 105(3), 237-240. https://doi.org/10.3139/104.110268; Li, J. & Lakzi, A. (2022). A new model for assessing the role of IT-based systems, public policies and business intelligence on the export competitiveness’s efficiency. Kybernetes, 51(1), 77-94. https://doi.org/10.1108/K-07-2020-0430; Mahayossanand, R., Chaipatnithikul, P., Chintrakul, N. & Nananukul, N. (2017). Business intelligence for online advertising. Advanced Science Letters, 23(5), 4091-4096. https://doi.org/10.1166/asl.2017.8326; Mangwayana, T. B. & Budree, A. (2021). Technical capabilities of business intelligence systems in South African medium to large organisations. International Journal of Business Intelligence and Data Mining, 20(1), 77-92. https://doi.org/10.1504/IJBIDM.2022.120032; Mashingaidze, K. & Backhouse, J. (2017). The relationships between definitions of big data, business intelligence and business analytics: A literature review. International Journal of Business Information Systems, 26(4), 488-505. https://doi.org/10.1504/IJBIS.2017.087749; Mezzour, G., Boudanga, Z. & Benhadou, S. (2020). Smart pandemic management through a smart, resilient and flexible decision-making system. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 44, 285-294. https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-285-2020; Mishra, B. K., Hazra, D., Tarannum, K., & Kumar, M. (2016, 25-27 de November). Business intelligence using data mining techniques and business analytics [conference]. 2016 International Conference System Modeling & Advancement in Research Trends (SMART), Moradabad, India. https://ieeexplore.ieee.org/xpl/conhome/7891863/proceeding; Mollekopf, H. (2009). Nutzen von Business Intelligence-Systemen. Zeitschrift für wirtschaftlichen Fabrikbetrieb, 104(5), 411-414. https://doi.org/10.3139/104.110077; Muthukumaran, K. & Hariharanath, K. (2022). Deep Learning Enabled Financial Crisis Prediction Model for Small-Medium Sized Industries. Intelligent Automation & Soft Computing, 35(1), 521-536. https://doi.org/10.32604/iasc.2023.025968; O’Donnell, P., Sipsma, S. & Watt, C. (2012). The critical issues facing business intelligence practitioners. Journal of Decision Systems, 21(3), 203-216. https://doi.org/10.1080/12460125.2012.731967; Paulino, E. (2022). Amplifying organizational performance from business intelligence: Business analytics implementation in the retail industry. Journal of Entrepreneurship, Management and Innovation, 18(2), 69-104. https://doi.org/10.7341/20221823; Souibgui, M., Atigui, F., Zammali, S., Cherfi, S. & Yahia, S. (2019). Data quality in ETL process: A preliminary study. Procedia Computer Science, 159, 676-687. https://doi.org/10.1016/j.procs.2019.09.223; Sriram, V. P., Sujith, A. V., Bharti, A., Jena, S. K., Sharma, D. K. & Naved, M. (2022). A Critical Analysis of Machine Learning’s Function in Changing the Social and Business Ecosystem. In S. Yadav, A. Haleem, P. Arora & H. Kumar. (Eds.), Proceedings of Second International Conference in Mechanical and Energy Technology (pp. 285-299). Editorial Springer, Singapore. https://doi.org/10.1007/978-981-19-0108-9_36; Tarek, B. H. & Adel, G. (2016). Business Intelligence versus Entrepreneurial Competitive Intelligence and International Competitiveness of North African SMEs. Journal of International Entrepreneurship, 14(4), 539-561. https://doi.org/10.1007/s10843-016-0194-8; Upadhyay, N., Upadhyay, S., Al-Debei, M. M., Baabdullah, A. M. & Dwivedi, Y. K. (2022). The influence of digital entrepreneurship and entrepreneurial orientation on intention of family businesses to adopt artificial intelligence: examining the mediating role of business innovativeness. International Journal of Entrepreneurial Behaviour and Research. https://doi.org/10.1108/IJEBR-02-2022-0154; Wee, M., Scheepers, H. & Tian, X. (2022). The role of leadership skills in the adoption of business intelligence and analytics by SMEs. Information Technology & People. https://doi.org/10.1108/ITP-09-2021-0669; Yang, M., Sulaiman, R., Yin, Y., Mallamaci, V. & Alrabaiah, H. (2022). The effect of business intelligence, organizational learning and innovation on the financial performance of innovative companies located in Science Park. Information Processing and Management, 59(2), 102852. https://doi.org/10.1016/j.ipm.2021.102852; Zheng, W., Wu, Y. C. & Chen, L. (2018). Business intelligence for patient-centeredness: A systematic review. Telematics and Informatics, 35(4), 665-676. https://doi.org/10.1016/J.TELE.2017.06.015; https://doi.org/10.22267/rtend.222302.222; https://hdl.handle.net/20.500.12494/52559; Martínez Zabaleta, M. E., & Rodríguez Luna, R. E. (2023). Inteligencia empresarial y su rol en la generación de valor en los procesos de negocios. Tendencias, 24(1), 226–251. https://doi.org/10.22267/rtend.222302.222
-
15
Autori: Stark, Luke
Zdroj: Social Studies of Science (Sage Publications, Ltd.); Apr2018, Vol. 48 Issue 2, p204-231, 28p
Predmety: PSYCHOMETRICS, SOCIAL media, PRESIDENTIAL elections, SELF-expression, COMPUTER science, PSYCHOLOGY
Reviews & Products: FACEBOOK (Web resource)
-
16
Autori: De Palo, Pasquale (AUTHOR)
Zdroj: Italian Journal of Animal Science. Jun2023 Supplement 1, Vol. 22, p1-320. 320p.
Plný text ve formátu PDF -
17
Autori: a ďalší
Zdroj: Diagnostics (2075-4418); Aug2025, Vol. 15 Issue 15, p1914, 40p
-
18
Autori:
Zdroj: Cuestiones de Fisioterapia; 2025, Vol. 54 Issue 2, p1334-1350, 17p
-
19
Autori: a ďalší
Zdroj: Cognitive Computation; Oct2025, Vol. 17 Issue 5, p1-28, 28p
-
20
Autori: a ďalší
Zdroj: Dentistry Journal; Jun2025, Vol. 13 Issue 6, p253, 16p
Predmety: IMPULSE response, DATA analytics, COVID-19 pandemic, DENTAL caries, PROPOLIS
Full Text Finder
Nájsť tento článok vo Web of Science