Search Results - ACM: J.: Computer Applications/J.1: ADMINISTRATIVE DATA PROCESSING

Refine Results
  1. 1

    Source: Lecture Notes in Computer Science ISBN: 9783642380723

  2. 2
  3. 3

    1. American Heart Association. (2021). Heart disease and stroke statistics—2021 update. Circulation, 143(8), e254-e743. 2. Rahman, M., Al Amin, M., Hasan, R., Hossain, S. T., Rahman, M. H., & Rashed, R. A. M. (2025). A Predictive AI Framework for Cardiovascular Disease Screening in the US: Integrating EHR Data with Machine and Deep Learning Models. British Journal of Nursing Studies, 5(2), 40-48. 3. ZakirHossain, M., Khan, M. M., Thapa, S., Uddin, R., Meem, E. J., Niloy, S. K., ... & Bhavani, G. D. (2025, February). Advanced Deep Learning Techniques for Precision Diagnosis of Tea Leaf Diseases. In 2025 IEEE International Conference on Emerging Technologies and Applications (MPSec ICETA) (pp. 1-6). IEEE. 4. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785-794). ACM. 5. Damen, J. A., Hooft, L., Schuit, E., Debray, T. P., Collins, G. S., Tzoulaki, I., Lassale, C. M., Siontis, G. C., Chiocchia, V., Roberts, C., Schlüssel, M. M., Gerry, S., Black, J. A., Heus, P., van der Schouw, Y. T., Peelen, L. M., & Moons, K. G. (2016). Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ, 353, i2416. 6. Framingham Heart Study. (1948). Framingham Heart Study cohort research data. National Heart, Lung, and Blood Institute. 7. Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L. H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L. A., & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific Data, 3, 160035. 8. Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology, 69(21), 2657-2664. 9. Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems 30 (NIPS 2017) (pp. 4765-4774). 10. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. 11. Shameer, K., Johnson, K. W., Glicksberg, B. S., Dudley, J. T., & Sengupta, P. P. (2018). Machine learning in cardiovascular medicine: are we there yet? Heart, 104(14), 1156-1164. 12. Steyerberg, E. W., Vergouwe, Y., & van Calster, B. (2019). Towards better clinical prediction models: seven steps for development and an ABCD for validation. European Heart Journal, 40(15), 1255–1264. 13. Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., Sprosen, T., Peakman, T., & Collins, R. (2015). UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Medicine, 12(3), e1001779. 14. Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M., & Qureshi, N. (2017). Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLOS ONE, 12(4), e0174944. 15. World Health Organization. (2021). Cardiovascular diseases (CVDs). Retrieved from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) 16. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., ... Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16) (pp. 265–283). 17. Chollet, F. (2015). Keras (Version 2.4.0) [Computer software]. https://github.com/fchollet/keras

    Authors: Okunola, Abiodun

  4. 4
  5. 5
  6. 6
  7. 7

    Source: Communications of the ACM; Apr1967, Vol. 10 Issue 4, p248-249, 2p

    Geographic Terms: UNITED States

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16

    File Description: 10 páginas.; application/pdf

    Relation: 14-17 May 2019; Larnaca, Cyprus.; N/A; 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID); T. Manolio, "Collaborative genome-wide association studies of diverse diseases: programs of the nhgris office of population genomics", Pharmacogenomics, vol. 10, no. 2, 2009.; Y. Zhang, M. Blanton and G. Almashaqbeh, "Secure distributed genome analysis for gwas and sequence comparison computation", BMC medical informatics and decision making, vol. 15, no. 5, 2015.; Q. Li and T. Yang, "Large-scale collaborative imaging genetics studies of risk genetic factors for alzheimers disease across multiple institutions", Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, 2016.; C. Fuchsberger, J. Flannick et al., "The genetic architecture of type 2 diabetes", Nature, 2016.; J. Luo, M. Wu et al., "Big data application in biomedical research and health care: a literature review", Biomedical informatics insights, vol. 8, 2016.; G. Cattaneo, R. Giancarlo et al., "Mapreduce in computational biology-a synopsis", Italian WS on Artificial Life and Evolutionary Computation, 2016.; L. Dai, X. Gao et al., "Bioinformatics clouds for big data manipulation", Biology direct, vol. 7, no. 1, 2012.; R. Taylor, "An overview of the hadoop/mapreduce/hbase framework and its current applications in bioinformatics", BMC bioinformatics, vol. 11, no. 12, 2010.; N. Homer, S. Szelinger et al., "Resolving individuals contributing trace amounts of dna to highly complex mixtures using high-density snp genotyping microarrays", PLOS Genetics, vol. 4, no. 8, 08 2008.; F.-z. Boujdad and M. Sudholt, "Constructive Privacy for Shared Genetic Data", CLOSER 2018 -8th Int. Conf. on Cloud Computing and Services Science ser. Proceedings of CLOSER 2018, Mar. 2018.; J. S. Sousa et al., "Efficient and secure outsourcing of genomic data storage", BMC medical genomics, vol. 10(Suppl 2), pp. 46, 2017.; Y. Zhang, W. Dai et al., "Foresee: Fully outsourced secure genome study based on homomorphic encryption", ”BMC Medical Informatics and Decision Making, vol. 15, no. 5, Dec. 2015.; W. Lu, Y. Yamada and J. Sakuma, "Privacy-preserving genome-wide association studies on cloud environment using fully homomorphic encryption", BMC medical informatics and decision making, vol. 15 Suppl 5, 2015.; S. Wang et al., "Healer: homomorphic computation of exact logistic regression for secure rare disease variants analysis in gwas", Bioinformatics, vol. 32, no. 2, 2016.; A. Acar et al., "A survey on homomorphic encryption schemes: Theory and implementation", ACM Comput. Surv., vol. 51, no. 4, Jul. 2018.; M. Canim, M. Kantarcioglu and B. Malin, "Secure management of biomedical data with cryptographic hardware", Trans. Info. Tech. Biomed., vol. 16, no. 1, Jan. 2012.; F. Chen, C. Wang et al., "Presage: Privacy-preserving genetic testing via software guard extension", BMC medical genomics, vol. 10(Suppl 2), pp. 48, 2017.; N. Sadat, M. A. Aziz et al., "SAFETY: secure gwas in federated environment through a hybrid solution with intel SGX and homomorphic encryption", CoRR, vol. abs/1703.02577, 2017.; V. Ciriani, S. Vimercati et al., "Combining fragmentation and encryption to protect privacy in data storage", ACM Trans. Inf. Syst. Secur., vol. 13, no. 3, Jul. 2010.; X. Li, L. Zhang et al., "A novel workflow-level data placement strategy for data-sharing scientific cloud workflows", IEEE Trans. on Services Computing, 2016.; Z. Er-Dun, Q. Yong-Qiang et al., "A data placement strategy based on genetic algorithm for scientific workflows", 2012 Eighth Int. Conf. on Computational Intelligence and Security, 2012.; D. Yuan, Y. Yang et al., "A data placement strategy in scientific cloud workflows", Future Generation Computer Systems, vol. 26, no. 8, 2010.; R. Stewart, P. Trinder et al., "Comparing high level mapreduce query languages", Int. WS on Adv. Parallel Proc. Techn, 2011.; M. Ebrahimi, Data placement and task mapping optimization for big data workflows in the cloud, 2017.; D. Agrawal, A. El Abbadi et al., "Data management challenges in cloud computing infrastructures", Int. WS on Databases in Networked Information Systems, 2010.; M. Ebrahimi, A. Mohan et al., "Bdap: a big data placement strategy for cloud-based scientific workflows", 2015 IEEE First Int. Conf. on Big Data Computing Service and Applications, 2015.; C. Tan, L. Sun and K. Liu, "Big data architecture for pervasive healthcare: A literature review", ECIS, 2015.; K. Naganuma et al., "Privacy preserving analysis technique for secure cloud based big data analytics", Hitachi Rev, vol. 63, no. 9, 2014.; C. Hasti and A. Hasti, "Data security in cloud-based analytics", Big Data Analytics, 2018.; V. Kumar, R. Kumar et al., "Fully homomorphic encryption scheme with probabilistic encryption based on eulers theorem and application in cloud computing", Big Data Analytics, 2018.; T. Doel and D. o. Shakir, "Gift-cloud: A data sharing and collaboration platform for medical imaging research", computer methods and programs in biomedicine, vol. 139, 2017.; L. Ohno-Machado, V. Bafna et al., "idash: integrating data for analysis anonymization and sharing", J. of the American Medical Informatics Association, vol. 19, no. 2, 2011.; Y. Gil, W. Cheung et al., "Privacy enforcement in data analysis workflows", Proceedings of the 2007 Int. Conf. on Privacy Enforcement and Accountability with Semantics-Volume 320. Citeseer, 2007.; S. Davidson, S. Khanna et al., "Privacy issues in scientific workflow provenance", Proceedings of the 1st Int. WS on Workflow Approaches to New Data-centric Science, 2010.; A. Chebotko, S. Chang et al., "Scientific workflow provenance querying with security views", 2008 The Ninth Int. Conf. on Web-Age Information Management, 2008.; A. McKenna, M. Hanna et al., "The genome analysis toolkit: a mapreduce framework for analyzing next-generation dna sequencing data", Genome research, vol. 20, no. 9, 2010.; J. Gurtowski, M. Schatz and B. Langmead, "Genotyping in the cloud with crossbow", Current protocols in bioinformatics, vol. 39, no. 1, 2012.; R. Karim, A. Michel et al., "Improving data workflow systems with cloud services and use of open data for bioinformatics research", Briefings in bioinformatics, vol. 19, no. 5, 2017.; S. Cohen-Boulakia, K. Belhajjame et al., "Scientific workflows for computational reproducibility in the life sciences: Status challenges and opportunities", Future Generation Computer Systems, vol. 75, 2017.; M. Atkinson, S. Gesing et al., Scientific workflows: Past present and future, 2017.; V. Geoffroy, C. Pizot et al., "Varank: a simple and powerful tool for ranking genetic variants", PeerJ, vol. 3, 2015.; A. Dander, M. Handler et al., "[kd 3] a workflow-based application for exploration of biomedical data sets", Trans. on large-scale data-and knowledge-centered systems IV, 2011.; Y. Lu, K. Tang et al., "Cafe: accelerated alignment-free sequence analysis: Supplementary material", The University of Southern California, 2017.; M. Zytnicki and H. Quesneville, "S-mart a software toolbox to aid rnaseq data analysis", PloS one, vol. 6, no. 10, 2011.; https://repositorio.escuelaing.edu.co/handle/001/1797

  17. 17

    Source: EJDE "Electronic Journal of Digital Enterprise (ISSN: 1776-2960)" ; https://inria.hal.science/hal-00783274 ; Academic e-Journal eJ.D.E. EJDE "Electronic Journal of Digital Enterprise (ISSN: 1776-2960)", Mar 2011, Montpellier, France. pp.1-7

    Subject Geographic: Montpellier, France

  18. 18
  19. 19
  20. 20