Search Results - ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness*
-
1
Authors: et al.
Contributors: et al.
Source: NSV-3: Third International Workshop on Numerical Software Verification. ; https://inria.hal.science/inria-00544798 ; NSV-3: Third International Workshop on Numerical Software Verification., Fainekos, Georgios and Goubault, Eric and Putot, Sylvie, Jul 2010, Edinburgh, United Kingdom
Subject Terms: iterative refinement, interval arithmetic, multiple precision, error bound, ACM: D.: Software/D.2: SOFTWARE ENGINEERING/D.2.4: Software/Program Verification/D.2.4.8: Validation, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic
Subject Geographic: Edinburgh, United Kingdom
-
2
Authors: et al.
Contributors: et al.
Source: NSV-3: Third International Workshop on Numerical Software Verification. ; https://inria.hal.science/inria-00544798 ; NSV-3: Third International Workshop on Numerical Software Verification., Fainekos, Georgios and Goubault, Eric and Putot, Sylvie, Jul 2010, Edinburgh, United Kingdom
Subject Terms: iterative refinement, interval arithmetic, multiple precision, error bound, ACM: D.: Software/D.2: SOFTWARE ENGINEERING/D.2.4: Software/Program Verification/D.2.4.8: Validation, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic
Subject Geographic: Edinburgh, United Kingdom
-
3
Authors: et al.
Contributors: et al.
Source: NSV-3: Third International Workshop on Numerical Software Verification. ; https://inria.hal.science/inria-00544798 ; NSV-3: Third International Workshop on Numerical Software Verification., Fainekos, Georgios and Goubault, Eric and Putot, Sylvie, Jul 2010, Edinburgh, United Kingdom
Subject Terms: iterative refinement, interval arithmetic, multiple precision, error bound, ACM: D.: Software/D.2: SOFTWARE ENGINEERING/D.2.4: Software/Program Verification/D.2.4.8: Validation, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic
Subject Geographic: Edinburgh, United Kingdom
-
4
Authors: et al.
Contributors: et al.
Source: NSV-3: Third International Workshop on Numerical Software Verification. ; https://hal.inria.fr/inria-00544798 ; NSV-3: Third International Workshop on Numerical Software Verification., Fainekos, Georgios and Goubault, Eric and Putot, Sylvie, Jul 2010, Edinburgh, United Kingdom
Subject Terms: iterative refinement, interval arithmetic, multiple precision, error bound, ACM: D.: Software/D.2: SOFTWARE ENGINEERING/D.2.4: Software/Program Verification/D.2.4.8: Validation, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic
Subject Geographic: Edinburgh, United Kingdom
Relation: inria-00544798; https://hal.inria.fr/inria-00544798; https://hal.inria.fr/inria-00544798/document; https://hal.inria.fr/inria-00544798/file/Nguyen-Revol-v2.pdf
-
5
Authors: et al.
Contributors: et al.
Source: NSV-3: Third International Workshop on Numerical Software Verification. ; https://inria.hal.science/inria-00544798 ; NSV-3: Third International Workshop on Numerical Software Verification., Fainekos, Georgios and Goubault, Eric and Putot, Sylvie, Jul 2010, Edinburgh, United Kingdom
Subject Terms: iterative refinement, interval arithmetic, multiple precision, error bound, ACM: D.: Software/D.2: SOFTWARE ENGINEERING/D.2.4: Software/Program Verification/D.2.4.8: Validation, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic
Subject Geographic: Edinburgh, United Kingdom
-
6
Authors: et al.
Contributors: et al.
Source: ISSN: 1385-3139.
Subject Terms: linear systems, interval arithmetic, error bound, iterative refinement, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra/G.1.3.4: Linear systems (direct and iterative methods), ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra/G.1.3.3: Error analysis, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic
-
7
Authors: et al.
Contributors: et al.
Source: ISSN: 1385-3139.
Subject Terms: linear systems, interval arithmetic, error bound, iterative refinement, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra/G.1.3.4: Linear systems (direct and iterative methods), ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra/G.1.3.3: Error analysis, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic
-
8
Authors: et al.
Contributors: et al.
Source: ISSN: 1385-3139.
Subject Terms: linear systems, interval arithmetic, error bound, iterative refinement, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra/G.1.3.4: Linear systems (direct and iterative methods), ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra/G.1.3.3: Error analysis, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic
-
9
Authors: et al.
Contributors: et al.
Source: ISSN: 1385-3139.
Subject Terms: linear systems, interval arithmetic, error bound, iterative refinement, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra/G.1.3.4: Linear systems (direct and iterative methods), ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra/G.1.3.3: Error analysis, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic
Relation: inria-00546856; https://hal.inria.fr/inria-00546856; https://hal.inria.fr/inria-00546856/document; https://hal.inria.fr/inria-00546856/file/Nguyen-Revol.pdf
-
10
Authors: et al.
Contributors: et al.
Source: ISSN: 1385-3139.
Subject Terms: linear systems, interval arithmetic, error bound, iterative refinement, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra/G.1.3.4: Linear systems (direct and iterative methods), ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra/G.1.3.3: Error analysis, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic
-
11
Authors: et al.
Contributors: et al.
Source: https://inria.hal.science/hal-00843992 ; [Research Report] RR-8324, INRIA. 2013, pp.36.
Subject Terms: Resilience, linear Krylov solvers, linear and least-square interpolation, monotonic convergence, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.4: Parallel and vector implementations, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA], [INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC]
-
12
Authors: et al.
Contributors: et al.
Source: https://hal.inria.fr/hal-00843992 ; [Research Report] RR-8324, INRIA. 2013, pp.36.
Subject Terms: monotonic convergence, Resilience, linear Krylov solvers, linear and least-square interpolation, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.4: Parallel and vector implementations, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA], [INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC]
Relation: Report N°: RR-8324; hal-00843992; https://hal.inria.fr/hal-00843992; https://hal.inria.fr/hal-00843992/document; https://hal.inria.fr/hal-00843992/file/RR-8324.pdf
-
13
Authors: et al.
Contributors: et al.
Source: https://inria.hal.science/inria-00405478 ; [Research Report] RR-7004, INRIA. 2009.
Subject Terms: Computational Geometry, Delaunay Triangulation, Voronoi Diagram, Sphere, Space of Circles, Exact Geometric Computing, CGAL, ACM: D.: Software/D.2: SOFTWARE ENGINEERING/D.2.13: Reusable Software/D.2.13.1: Reusable libraries, ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY/F.2.2: Nonnumerical Algorithms and Problems/F.2.2.2: Geometrical problems and computations, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.5: Computational Geometry and Object Modeling/I.3.5.3: Geometric algorithms, languages, and systems, [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]
-
14
Authors: et al.
Contributors: et al.
Source: https://inria.hal.science/inria-00405478 ; [Research Report] RR-7004, INRIA. 2009.
Subject Terms: Computational Geometry, Delaunay Triangulation, Voronoi Diagram, Sphere, Space of Circles, Exact Geometric Computing, CGAL, ACM: D.: Software/D.2: SOFTWARE ENGINEERING/D.2.13: Reusable Software/D.2.13.1: Reusable libraries, ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY/F.2.2: Nonnumerical Algorithms and Problems/F.2.2.2: Geometrical problems and computations, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.5: Computational Geometry and Object Modeling/I.3.5.3: Geometric algorithms, languages, and systems, [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]
-
15
Authors: et al.
Contributors: et al.
Source: https://hal.inria.fr/inria-00405478 ; [Research Report] RR-7004, INRIA. 2009.
Subject Terms: Computational Geometry, Delaunay Triangulation, Voronoi Diagram, Sphere, Space of Circles, Exact Geometric Computing, CGAL, ACM: D.: Software/D.2: SOFTWARE ENGINEERING/D.2.13: Reusable Software/D.2.13.1: Reusable libraries, ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY/F.2.2: Nonnumerical Algorithms and Problems/F.2.2.2: Geometrical problems and computations, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.5: Computational Geometry and Object Modeling/I.3.5.3: Geometric algorithms, languages, and systems, [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]
Relation: Report N°: RR-7004; inria-00405478; https://hal.inria.fr/inria-00405478; https://hal.inria.fr/inria-00405478v4/document; https://hal.inria.fr/inria-00405478v4/file/RR-7004.pdf
-
16
Authors: et al.
Contributors: et al.
Source: https://inria.hal.science/inria-00267077 ; [Research Report] 2008.
Subject Terms: Accurate polynomial evaluation, compensated algorithms, error-free transformations, floating point arithmetic, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic
-
17
Authors: et al.
Contributors: et al.
Source: https://inria.hal.science/inria-00267077 ; [Research Report] 2008.
Subject Terms: Accurate polynomial evaluation, compensated algorithms, error-free transformations, floating point arithmetic, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic
-
18
Authors: et al.
Contributors: et al.
Source: https://inria.hal.science/inria-00267077 ; [Research Report] 2008.
Subject Terms: Accurate polynomial evaluation, compensated algorithms, error-free transformations, floating point arithmetic, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic
-
19
Authors: et al.
Contributors: et al.
Source: https://hal.inria.fr/inria-00267077 ; [Research Report] 2008.
Subject Terms: Accurate polynomial evaluation, compensated algorithms, error-free transformations, floating point arithmetic, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic
Relation: inria-00267077; https://hal.inria.fr/inria-00267077; https://hal.inria.fr/inria-00267077/document; https://hal.inria.fr/inria-00267077/file/LaLo07.pdf
-
20
Authors: et al.
Contributors: et al.
Source: SCAN 2010: 14th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics ; https://inria.hal.science/inria-00544805 ; SCAN 2010: 14th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, Revol, Nathalie and de Dinechin, Florent and Jeannerod, Claude-Pierre and Lefèvre, Vincent and Louvet, Nicolas and Morin, Sèverine and Nguyen, Hong Diep, Sep 2010, Lyon, France
Subject Terms: iterative refinement, accuracy, certification, interval matrix multiplication, computing precision, efficiency, ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.6: Reliability and robustness, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic
Availability: https://inria.hal.science/inria-00544805
Nájsť tento článok vo Web of Science