Výsledky vyhledávání - ACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.3: Efficiency

Upřesnit hledání
  1. 1
  2. 2

    Zdroj: ISSN: 0098-3500 ; ACM Transactions on Mathematical Software ; https://hal.archives-ouvertes.fr/hal-02419121 ; ACM Transactions on Mathematical Software, Association for Computing Machinery, 2012, 38 (4), pp.1-20. ⟨10.1145/2331130.2331131⟩.

  3. 3

    Zdroj: Twelfth International Symposium on Practical Aspects of Declarative Languages ; https://inria.hal.science/inria-00434282 ; Twelfth International Symposium on Practical Aspects of Declarative Languages, Jan 2010, Madrid, Spain

    Geografické téma: Spain

    Time: Madrid, Spain

  4. 4
  5. 5
  6. 6
  7. 7

    Zdroj: SCAN 2010: 14th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics ; https://inria.hal.science/inria-00544805 ; SCAN 2010: 14th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, Revol, Nathalie and de Dinechin, Florent and Jeannerod, Claude-Pierre and Lefèvre, Vincent and Louvet, Nicolas and Morin, Sèverine and Nguyen, Hong Diep, Sep 2010, Lyon, France

    Geografické téma: Lyon, France

  8. 8

    Zdroj: SCAN 2010: 14th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics ; https://inria.hal.science/inria-00544808 ; SCAN 2010: 14th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, Revol, Nathalie and de Dinechin, Florent and Jeannerod, Claude-Pierre and Lefèvre, Vincent and Louvet, Nicolas and Morin, Sèverine and Nguyen, Hong Diep, Sep 2010, Lyon, France

    Geografické téma: Lyon, France

  9. 9
  10. 10
  11. 11

    Zdroj: https://inria.hal.science/inria-00147450 ; [Research Report] 2007, pp.16.

    Témata: Abstraction, Constraint, Narrowing, Probability, Termination, ACM: F.: Theory of Computation/F.3: LOGICS AND MEANINGS OF PROGRAMS/F.3.1: Specifying and Verifying and Reasoning about Programs/F.3.1.2: Logics of programs, ACM: F.: Theory of Computation/F.3: LOGICS AND MEANINGS OF PROGRAMS/F.3.1: Specifying and Verifying and Reasoning about Programs/F.3.1.3: Mechanical verification, ACM: D.: Software/D.3: PROGRAMMING LANGUAGES/D.3.1: Formal Definitions and Theory, ACM: D.: Software/D.2: SOFTWARE ENGINEERING/D.2.4: Software/Program Verification/D.2.4.2: Correctness proofs, ACM: D.: Software/D.2: SOFTWARE ENGINEERING/D.2.4: Software/Program Verification/D.2.4.3: Formal methods, ACM: D.: Software/D.2: SOFTWARE ENGINEERING/D.2.4: Software/Program Verification/D.2.4.8: Validation, ACM: F.: Theory of Computation/F.3: LOGICS AND MEANINGS OF PROGRAMS/F.3.1: Specifying and Verifying and Reasoning about Programs/F.3.1.5: Specification techniques, ACM: F.: Theory of Computation/F.4: MATHEMATICAL LOGIC AND FORMAL LANGUAGES/F.4.2: Grammars and Other Rewriting Systems, ACM: F.: Theory of Computation/F.4: MATHEMATICAL LOGIC AND FORMAL LANGUAGES/F.4.3: Formal Languages/F.4.3.0: Algebraic language theory, ACM: G.: Mathematics of Computing/G.3: PROBABILITY AND STATISTICS, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.3: Languages and Systems/I.1.3.0: Evaluation strategies, ACM: I.: Computing Methodologies/I.2: ARTIFICIAL INTELLIGENCE/I.2.3: Deduction and Theorem Proving/I.2.3.1: Deduction (e.g., natural, rule-based), ACM: I.: Computing Methodologies/I.2: ARTIFICIAL INTELLIGENCE/I.2.3: Deduction and Theorem Proving/I.2.3.2: Inference engines, ACM: I.: Computing Methodologies/I.2: ARTIFICIAL INTELLIGENCE/I.2.3: Deduction and Theorem Proving/I.2.3.4: Mathematical induction, [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO]

  12. 12

    Zdroj: https://theses.hal.science/tel-01708791 ; Numerical Analysis [math.NA]. Université Paul Sabatier - Toulouse III, 2017. English. ⟨NNT : ⟩.

    Témata: sparse matrices, direct methods for linear systems, multifrontal method, low-rank approximations, high-performance computing, parallel computing, partial differential equations, matrices creuses, systèmes linéaires creux, méthodes directes, mé- thode multifrontale, approximations de rang-faible, équations aux dérivées par- tielles elliptiques, calcul haute performance, calcul parallèle, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra/G.1.3.8: Sparse, structured, and very large systems (direct and iterative methods), ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra/G.1.3.4: Linear systems (direct and iterative methods), ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.0: General/G.1.0.6: Parallel algorithms, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.0: General/G.1.0.5: Numerical algorithms, ACM: D.: Software/D.1: PROGRAMMING TECHNIQUES/D.1.3: Concurrent Programming/D.1.3.1: Parallel programming, ACM: D.: Software/D.1: PROGRAMMING TECHNIQUES/D.1.3: Concurrent Programming/D.1.3.0: Distributed programming, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.8: Partial Differential Equations/G.1.8.1: Elliptic equations, [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA], [INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], [INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA], [INFO.INFO-MS]Computer Science [cs]/Mathematical Software [cs.MS]

  13. 13

    Zdroj: https://hal.inria.fr/inria-00135013 ; [Technical Report] RT-0331, INRIA. 2007, pp.35.

    Relation: info:eu-repo/semantics/altIdentifier/arxiv/cs.MS/0703025; Report N°: RT-0331; inria-00135013; https://hal.inria.fr/inria-00135013; https://hal.inria.fr/inria-00135013v2/document; https://hal.inria.fr/inria-00135013v2/file/RT-0331.pdf; ARXIV: cs.MS/0703025

  14. 14

    Zdroj: https://inria.hal.science/hal-04176838 ; [Technical Report] INRIA. 2007, pp.47.

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20