Suchergebnisse - ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.1: Combinatorics*
-
1
Autoren: et al.
Weitere Verfasser: et al.
Quelle: https://hal.archives-ouvertes.fr/hal-01856470 ; Springer. Springer, 2014, Advanced Information and Knowledge Processing, 978-1-4471-6406-7. ⟨10.1007/978-1-4471-6407-4⟩ ; www.springer.com.
Schlagwörter: Data Mining, Mathematic, Book, ACM: I.: Computing Methodologies/I.2: ARTIFICIAL INTELLIGENCE/I.2.6: Learning, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS, [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI], [MATH]Mathematics [math]
Relation: hal-01856470; https://hal.archives-ouvertes.fr/hal-01856470
-
2
Autoren: et al.
Weitere Verfasser: et al.
Quelle: 27th International Workshop on Combinatorial Algorithms (IWOCA 2016)
27th International Workshop on Combinatorial Algorithms, IWOCA 2016
https://inria.hal.science/hal-01354996
27th International Workshop on Combinatorial Algorithms, IWOCA 2016, Aug 2016, Helsinki, Finland. pp.3-15, ⟨10.1007/978-3-319-44543-4_1⟩
http://iwoca2016.cs.helsinki.fi/Schlagwörter: ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS, [INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
-
3
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Scientific African, Vol 13, Iss, Pp e00932-(2021)
Scientific African
Scientific African, 2021, 13, pp.e00932. ⟨10.1016/j.sciaf.2021.e00932⟩Schlagwörter: [MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC], Science, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.5: Computational Geometry and Object Modeling, Circulant matrix, Pascal matrix, 0102 computer and information sciences, [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation, 01 natural sciences, Symmetry transformation, [MATH.MATH-AC] Mathematics [math]/Commutative Algebra [math.AC], [MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM], ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.7: Three-Dimensional Graphics and Realism, [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], Transformation matrix, [INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation, Bipartition
Dateibeschreibung: application/pdf
Zugangs-URL: https://hal.univ-lorraine.fr/hal-03321158v1/document
https://doi.org/10.1016/j.sciaf.2021.e00932
https://hal.univ-lorraine.fr/hal-03321158v1
https://doaj.org/article/c9f60d7a1eaa46c380b0494cdea06a02
https://www.sciencedirect.com/science/article/pii/S2468227621002362
https://hal.univ-lorraine.fr/hal-03321158
https://hal.univ-lorraine.fr/hal-03321158/document
https://hal.univ-lorraine.fr/hal-03321158/file/S2468227621002362.pdf
https://hal.univ-lorraine.fr/hal-03321158 -
4
Autoren: et al.
Weitere Verfasser: et al.
Quelle: ISSN: 0252-9742 ; Bulletin of Association for Theoretical Computer Science (BEATCS) ; https://hal.science/hal-02355621 ; Bulletin of Association for Theoretical Computer Science (BEATCS), 2018.
Schlagwörter: Words, Strings, Combinatorics, ACM: G.: Mathematics of Computing, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.1: Combinatorics, [INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
-
5
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Discrete Mathematics. 309:6092-6113
Schlagwörter: [INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM], ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS, Perfect graphs, perfect graph, Discrete Mathematics and Combinatorics, Partitionable graphs, Decomposition theorems, 0102 computer and information sciences, [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], 01 natural sciences, ACM: G.: Mathematics of Computing, coloring, Theoretical Computer Science
Dateibeschreibung: application/pdf
Zugangs-URL: https://inria.hal.science/inria-00475637v1
https://hal.inria.fr/inria-00475637
https://hal.archives-ouvertes.fr/inria-00475637
https://dl.acm .org/doi/abs/10.1016/j.disc.2009.05.024
https://www.sciencedirect.com/science/article/pii/S0012365X09002787
http://dblp.uni-trier.de/db/journals/dm/dm309.html#RousselRT09
https://hal.inria.fr/inria-00475637/document -
6
Autoren:
Weitere Verfasser:
Quelle: https://hal.archives-ouvertes.fr/hal-02485153 ; 2021.
Schlagwörter: ACM: G.: Mathematics of Computing, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.1: Combinatorics, [INFO]Computer Science [cs], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS], [MATH]Mathematics [math], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
Relation: hal-02485153; https://hal.archives-ouvertes.fr/hal-02485153; https://hal.archives-ouvertes.fr/hal-02485153v2/document; https://hal.archives-ouvertes.fr/hal-02485153v2/file/2021team.pdf
-
7
Autoren:
Weitere Verfasser:
Quelle: https://hal.archives-ouvertes.fr/hal-02485153 ; 2020.
Schlagwörter: ACM: G.: Mathematics of Computing, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.1: Combinatorics, [INFO]Computer Science [cs], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS], [MATH]Mathematics [math], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
Relation: hal-02485153; https://hal.archives-ouvertes.fr/hal-02485153; https://hal.archives-ouvertes.fr/hal-02485153/document; https://hal.archives-ouvertes.fr/hal-02485153/file/2020team.pdf
-
8
Autoren:
Weitere Verfasser:
Quelle: https://hal.archives-ouvertes.fr/hal-03615222 ; [Research Report] SASHESHA. 2022.
Schlagwörter: Optimization, Algorithm, Computational Complexity, Asymmetric Travelling Salesman Problem, Shortest Directed Hamiltonian Circuit, HexCycleSpanner, CycleExpander, Cyclic Permutation, AMS MSC Mathematics Subject Classification:05C38, 05C45, 90B10, 90C06, 90C27, 90C35 ACM CCS Computing Classification System: F.2.1, G.2.1, G.2.2, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.1: Combinatorics/G.2.1.0: Combinatorial algorithms, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.2: Graph Theory/G.2.2.0: Graph algorithms, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.2: Graph Theory/G.2.2.3: Network problems, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.2: Graph Theory/G.2.2.4: Path and circuit problems, [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO]
Relation: hal-03615222; https://hal.archives-ouvertes.fr/hal-03615222; https://hal.archives-ouvertes.fr/hal-03615222/document; https://hal.archives-ouvertes.fr/hal-03615222/file/CycleExpander%26HexCycleSpanner4aTSP.pdf
-
9
Autoren:
Weitere Verfasser:
Quelle: https://hal.archives-ouvertes.fr/hal-01816231 ; 2018.
Schlagwörter: ACM: G.: Mathematics of Computing, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.1: Combinatorics, [INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
Relation: hal-01816231; https://hal.archives-ouvertes.fr/hal-01816231; https://hal.archives-ouvertes.fr/hal-01816231/document; https://hal.archives-ouvertes.fr/hal-01816231/file/The%20Multicofact-Hal2018.pdf
-
10
Autoren: et al.
Weitere Verfasser: et al.
Quelle: COCOON 2018: Computing and Combinatorics ; COCOON 2018 - 24th International Computing and Combinatorics Conference ; https://hal.science/hal-01827893 ; COCOON 2018 - 24th International Computing and Combinatorics Conference, Jul 2018, Qingdao, China. pp.480-491, ⟨10.1007/978-3-319-94776-1_40⟩
Schlagwörter: ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS, ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY, [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
-
11
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Lecture Notes in Computer Science ISBN: 9783031159138
Bekos, M.A. & Kaufmann, M. (Eds.). Graph-Theoretic Concepts in Computer Science. WG 2022. : Springer, pp. 114-128, Lecture Notes in Computer Science, Vol.13453Schlagwörter: FOS: Computer and information sciences, Discrete Mathematics (cs.DM), fracture number, 0211 other engineering and technologies, 0102 computer and information sciences, 02 engineering and technology, [INFO] Computer Science [cs], Computational Complexity (cs.CC), 01 natural sciences, (locally constrained) graph homomorphism parameterized complexity fracture number, integer linear programming, Computer Science - Data Structures and Algorithms, FOS: Mathematics, Mathematics - Combinatorics, Data Structures and Algorithms (cs.DS), parameterized complexity, role assignment, 2012 ACM Subject Classification Mathematics of computing → Graph theory locally constrained homomorphism, deletion set/modulator to small components, 2012 ACM Subject Classification Mathematics of computing → Graph theory locally constrained homomorphism parameterized complexity deletion set/modulator to small components role assignment integer linear programming, Computer Science - Computational Complexity, Combinatorics (math.CO), Recherche opérationnelle, (locally constrained) graph homomorphism, Computer Science - Discrete Mathematics
Dateibeschreibung: application/pdf
-
12
Autoren: et al.
Weitere Verfasser: et al.
Quelle: 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD-2011
https://hal.inria.fr/inria-00623550
17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD-2011, Aug 2011, San Diego, United States. ⟨10.1145/2020408.2020612⟩Schlagwörter: Sequential Pattern Mining, Combinatorics, ACM: H.: Information Systems/H.2: DATABASE MANAGEMENT/H.2.8: Database Applications, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.1: Combinatorics, [INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB]
Geographisches Schlagwort: San Diego, United States
Relation: inria-00623550; https://hal.inria.fr/inria-00623550; https://hal.inria.fr/inria-00623550/document; https://hal.inria.fr/inria-00623550/file/p1379.pdf
-
13
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Journal of Combinatorial Theory, Series B. 160:15-35
Schlagwörter: Linear rank-width, path-width, 2012 ACM Subject Classification Mathematics of computing → Graph theory phrases path-width matroid linear rank-width graph forbidden minor vertex-minor pivot-minor, 0102 computer and information sciences, 01 natural sciences, Graph, forbidden minor, FOS: Mathematics, Vertex-minor, 2012 ACM Subject Classification Mathematics of computing → Graph theory phrases path-width, pivot-minor, Matroid, linear rank-width, Pivot-minor, graph, [INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM], Path-width, Combinatorics, vertex-minor, Forbidden minor, matroid, Combinatorics (math.CO), ddc:004, Recherche opérationnelle, 05B35 (Primary), 05C75 (Secondary)
Dateibeschreibung: application/pdf
Zugangs-URL: http://arxiv.org/abs/2109.12291
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.40
https://hal.science/hal-04056695v1
https://doi.org/10.1016/j.jctb.2022.12.004
https://hal.science/hal-04056545v2/document
https://hal.science/hal-04056545v2
https://doi.org/10.4230/lipics.stacs.2022.40 -
14
Autoren: et al.
Weitere Verfasser: et al.
Quelle: 9th International Symposium, SAGT 2016
https://hal.science/hal-01361056
9th International Symposium, SAGT 2016, Sep 2016, Liverpool, United Kingdom. pp.27-39, ⟨10.1007/978-3-662-53354-3_3⟩
http://sagt16.csc.liv.ac.uk/Schlagwörter: ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS, [INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
Geographisches Schlagwort: Liverpool, United Kingdom
-
15
Autoren: et al.
Weitere Verfasser: et al.
Quelle: ISSN: 0097-3165.
Schlagwörter: complexity, Species theory, analytic combinatorics, generating series, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.1: Combinatorics, [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
Relation: info:eu-repo/semantics/altIdentifier/arxiv/1109.2688; ARXIV: 1109.2688
-
16
Autoren: et al.
Weitere Verfasser: et al.
Quelle: ISSN: 1063-8539.
Schlagwörter: designs, Steiner systems, disjoint Steiner triple systems, data placement, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.1: Combinatorics, [INFO.INFO-RO]Computer Science [cs]/Operations Research [math.OC], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
Relation: PRODINRA: 356156; WOS: 000368283200001
-
17
Autoren: et al.
Weitere Verfasser: et al.
Quelle: https://inria.hal.science/inria-00305560 ; [Research Report] RR-6592, INRIA. 2008, pp.17.
Schlagwörter: strength of a graph, matroid, partition, connectivity, community detection, small-world, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.2: Graph Theory/G.2.2.0: Graph algorithms, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.1: Combinatorics/G.2.1.0: Combinatorial algorithms, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.2: Graph Theory, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.3: Applications, ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY/F.2.2: Nonnumerical Algorithms and Problems/F.2.2.6: Sorting and searching, [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI]
-
18
Autoren: et al.
Weitere Verfasser: et al.
Quelle: https://inria.hal.science/inria-00241842 ; [Research Report] PI 1883, 2008, pp.12.
Schlagwörter: Markov chains, maximal ascending run, self-stabilization, convergence time, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS, ACM: G.: Mathematics of Computing/G.3: PROBABILITY AND STATISTICS, ACM: C.: Computer Systems Organization/C.2: COMPUTER-COMMUNICATION NETWORKS, [MATH.MATH-PR]Mathematics [math]/Probability [math.PR], [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
Relation: Report N°: PI 1883
-
19
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshop, S+SSPR 2018 ; https://normandie-univ.hal.science/hal-01865194 ; Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshop, S+SSPR 2018, Aug 2018, Pékin, China
Schlagwörter: ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.2: Approximation/G.1.2.5: Linear approximation, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.6: Optimization/G.1.6.4: Integer programming, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.6: Optimization/G.1.6.0: Constrained optimization, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.2: Graph Theory, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.1: Combinatorics, [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
-
20
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Symposium on Computational Geometry 2015 ; https://inria.hal.science/hal-01172466 ; Symposium on Computational Geometry 2015, Jun 2015, Eindhoven, Netherlands. pp.876, ⟨10.4230/LIPIcs.SOCG.2015.300⟩
Schlagwörter: measure theory, sylvester problem, order types, limits, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.1: Combinatorics/G.2.1.1: Counting problems, [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]
Geographisches Schlagwort: Eindhoven, Netherlands
Relation: info:eu-repo/grantAgreement//339025/EU/Algorithmic Foundations of Geometry Understanding in Higher Dimensions/GUDHI
Nájsť tento článok vo Web of Science
Full Text Finder