Search Results - ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.9: Integral Equations
-
1
Authors: et al.
Contributors: et al.
Source: SIGGRAPH 2022 - ACM Conference and Exhibition on Computer Graphics and Interactive Techniques ; https://inria.hal.science/hal-03673578 ; SIGGRAPH 2022 - ACM Conference and Exhibition on Computer Graphics and Interactive Techniques, Aug 2022, Vancouver, Canada. pp.1-9, ⟨10.1145/3528233.3530725⟩
Subject Terms: Functional analysis, Compactness, Fredholm Equations, Light Transport Simulation, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.7: Three-Dimensional Graphics and Realism, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.9: Integral Equations, [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph], [INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR], [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]
Subject Geographic: Vancouver
Time: Vancouver, Canada
-
2
Authors: et al.
Contributors: et al.
Source: MTNS 2022 - 25th International Symposium on Mathematical Theory of Networks and Systems ; https://inria.hal.science/hal-03908541 ; MTNS 2022 - 25th International Symposium on Mathematical Theory of Networks and Systems, Sep 2022, Bayreuth, Germany. ⟨10.1016/j.ifacol.2022.11.054⟩
Subject Terms: Rings of integro-differential operators, Parametrization, Behaviour theory, Reachability, Algebraic analysis, Polynomial methods, Linear systems, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.9: Integral Equations/G.1.9.2: Integro-differential equations, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.1: Expressions and Their Representation, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.2: Algorithms/I.1.2.0: Algebraic algorithms, [SPI.AUTO]Engineering Sciences [physics]/Automatic, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA], [MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA]
-
3
Authors: et al.
Contributors: et al.
Source: SSSC 2022 - 8th IFAC Symposium on System Structure and Control ; https://inria.hal.science/hal-03908550 ; SSSC 2022 - 8th IFAC Symposium on System Structure and Control, Sep 2022, Montreal, Canada. ⟨10.1016/j.ifacol.2022.11.299⟩
Subject Terms: Linear systems, Continuous-time linear state-space models, Polynomial methods, Algebraic analysis, Rings of integro-differential operators, System equivalence, Behaviours, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.9: Integral Equations/G.1.9.2: Integro-differential equations, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.1: Expressions and Their Representation, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.2: Algorithms/I.1.2.0: Algebraic algorithms, [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP], [SPI.AUTO]Engineering Sciences [physics]/Automatic, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA], [MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA], [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Subject Geographic: Montreal
Time: Montreal, Canada
-
4
Authors: et al.
Contributors: et al.
Source: SSSC 2022 - 8th IFAC Symposium on System Structure and Control ; https://inria.hal.science/hal-03908561 ; SSSC 2022 - 8th IFAC Symposium on System Structure and Control, Sep 2022, Montréal, Canada. ⟨10.1016/j.ifacol.2022.11.301⟩
Subject Terms: Linear systems, Systems with time-delays, Polynomial methods, Delay compensation, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.7: Ordinary Differential Equations, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.9: Integral Equations/G.1.9.0: Delay equations, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.9: Integral Equations/G.1.9.2: Integro-differential equations, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.1: Expressions and Their Representation, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.2: Algorithms/I.1.2.0: Algebraic algorithms, [SPI.AUTO]Engineering Sciences [physics]/Automatic, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA], [MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA], [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Subject Geographic: Montréal
Time: Montréal, Canada
-
5
Authors: et al.
Contributors: et al.
Source: Accounting for Constraints in Delay Systems, Advances in Delays and Dynamics (ADD), volume 12, Springer, pp. 87-107 ; https://inria.hal.science/hal-03908643 ; Accounting for Constraints in Delay Systems, Advances in Delays and Dynamics (ADD), volume 12, Springer, pp. 87-107, ADD-2, Springer, pp. 87-107, 2022, Advances in Delays and Dynamics, 978-3-030-89014-8. ⟨10.1007/978-3-030-89014-8_5⟩
Subject Terms: ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.7: Ordinary Differential Equations, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.9: Integral Equations/G.1.9.0: Delay equations, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.1: Expressions and Their Representation, ACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.2: Algorithms/I.1.2.0: Algebraic algorithms, [SPI.AUTO]Engineering Sciences [physics]/Automatic, [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC], [MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA], [MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA], [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
-
6
Authors: et al.
Contributors: et al.
Source: Annual Reviews in Control. 30:143-158
Subject Terms: 0209 industrial biotechnology, Laplace transform, sliding mode, observer, 02 engineering and technology, variable structure, ACM: G.: Mathematics of Computing, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.9: Integral Equations/G.1.9.0: Delay equations, [INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering, network, 0202 electrical engineering, electronic engineering, information engineering, identification, [INFO.INFO-AU] Computer Science [cs]/Automatic Control Engineering, Delay-dependent
File Description: application/pdf
Access URL: https://hal.inria.fr/inria-00131003/file/delay-observers.pdf
https://inria.hal.science/inria-00131003v1
https://doi.org/10.1016/j.arcontrol.2006.08.001
https://inria.hal.science/inria-00131003v1/document
https://hal.inria.fr/inria-00131003/document
https://hal.inria.fr/inria-00131003
http://www.sciencedirect.com/science/article/pii/S1367578806000435
https://works.bepress.com/sergey_v_drakunov/17/
https://dblp.uni-trier.de/db/journals/arc/arc30.html#DrakunovPRB06
https://www.sciencedirect.com/science/article/pii/S1367578806000435 -
7
Authors: et al.
Contributors: et al.
Source: ISSN: 0898-1221 ; Computers & Mathematics with Applications ; https://hal.sorbonne-universite.fr/hal-02963587 ; Computers & Mathematics with Applications, 2019, 78 (8), pp.2719-2733. ⟨10.1016/j.camwa.2019.04.013⟩.
Subject Terms: Constrained stochastic Hamiltonian system, Rice's formula, Partial differential equations, nonlocal boundary conditions, ACM: G.: Mathematics of Computing, [INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA], [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
-
8
Authors:
Source: BIT: Numerical Mathematics; Jun2007, Vol. 47 Issue 2, p325-350, 26p
-
9
Authors: et al.
Contributors: et al.
Source: https://inria.hal.science/hal-00702802 ; [Research Report] RR-7983, INRIA. 2012, pp.28.
Subject Terms: discontinuous Galerkin spatial discretization, locally implicit time integration methods, time-domain Maxwell equations, ACM: G.: Mathematics of Computing, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS, [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
-
10
Authors: et al.
Contributors: et al.
Source: Reliable Computing. 6:193-205
Subject Terms: ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.7: Ordinary Differential Equations, Computation of special functions and constants, construction of tables, [INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic, ACM: B.: Hardware/B.2: ARITHMETIC AND LOGIC STRUCTURES/B.2.4: High-Speed Arithmetic, shift-and-add algorithms, [INFO.INFO-AO] Computer Science [cs]/Computer Arithmetic, Other functions coming from differential, difference and integral equations, Numerical methods for initial value problems involving ordinary differential equations, Special ordinary differential equations (Mathieu, Hill, Bessel, etc.)
File Description: application/xml
-
11
Authors: Bieniasz, L. K.
Source: Computing; Dec2008, Vol. 83 Issue 4, p163-174, 12p, 1 Chart, 2 Graphs
-
12
Authors: et al.
Contributors: et al.
Source: ISSN: 0378-4754 ; Mathematics and Computers in Simulation ; https://inria.hal.science/inria-00092408 ; Mathematics and Computers in Simulation, 2007, 73 (3), pp.351-363. ⟨10.1016/j.matcom.2006.06.011⟩.
Subject Terms: First eigenvalue of the Dirichlet problem, Euler scheme for Brownian motion, random walk on spheres, random walk on rectangles, AMS 65C05, 60F15, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.8: Partial Differential Equations, ACM: G.: Mathematics of Computing/G.3: PROBABILITY AND STATISTICS/G.3.7: Probabilistic algorithms (including Monte Carlo), [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP], [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA], [MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
-
13
Authors: et al.
Contributors: et al.
Source: https://inria.hal.science/hal-00738233 ; [Research Report] RR-8088, INRIA. 2012, pp.39.
Subject Terms: Prestressed Timoshenko system, Theta schemes, Implicit time discretization, Dispersion analysis, Stability analysis, Energy techniques, ACM: G.: Mathematics of Computing, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.8: Partial Differential Equations, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.8: Partial Differential Equations/G.1.8.2: Finite difference methods, [INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA]
-
14
Authors: et al.
Source: SIAM Journal on Scientific Computing; 2016, Vol. 38 Issue 5, pS123-S142, 20p
-
15
Authors: et al.
Contributors: et al.
Source: https://hal.inria.fr/inria-00481112 ; [Research Report] 2011.
Subject Terms: Diffusion equation, Anisotropic diffusion tensor, Cell-centered scheme, Linearity preserving criterion, Nonconforming mesh, ACM: G.: Mathematics of Computing, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.8: Partial Differential Equations/G.1.8.4: Finite volume methods, [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Relation: inria-00481112; https://hal.inria.fr/inria-00481112; https://hal.inria.fr/inria-00481112v2/document; https://hal.inria.fr/inria-00481112v2/file/fld2011.pdf
-
16
Authors:
Source: Numerical Algorithms; Oct2014, Vol. 67 Issue 2, p423-455, 33p
-
17
Authors: et al.
Contributors: et al.
Source: ISSN: 0029-599X.
-
18
Authors: et al.
Contributors: et al.
Source: [University works] 2009, pp.20
Subject Terms: Boltzmann equation, stiff source terms, asymptotic preserving scheme, ACM: G.: Mathematics of Computing, [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
-
19
Authors: et al.
Contributors: et al.
Source: https://hal.science/hal-04578092 ; 2014, ⟨swh:1:dir:f3220e47228abf06aa26ae5134b51114a3c46ea7.
Subject Terms: Eigen Solvers, Finite Element Method FEM, Boundary Element Method BEM, Discontinuous Galerkin Method, Mesh Generation, Multithreaded execution, Direct Solvers, Iterative Solvers, MSC65, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra/G.1.3.2: Eigenvalues and eigenvectors (direct and iterative methods), ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.3: Numerical Linear Algebra/G.1.3.4: Linear systems (direct and iterative methods), ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.8: Partial Differential Equations/G.1.8.3: Finite element methods, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.8: Partial Differential Equations/G.1.8.11: Spectral methods, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.9: Integral Equations, [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP], [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA], [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph], [SPI.ELEC]Engineering Sciences [physics]/Electromagnetism, [SPI.MECA.VIBR]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Vibrations [physics.class-ph]
Relation: https://hal.science/hal-01737555v1; info:eu-repo/grantAgreement//285549/EU/Simulation Platform for Non Destructive Evaluation of Structures and Materials/SIMPOSIUM; SWHID: swh:1:dir:f3220e47228abf06aa26ae5134b51114a3c46ea7;origin=https://gitlab.inria.fr/xlifepp/xlifepp.git;visit=swh:1:snp:37a0cb8615228b4d89d974b1615b4c8173733008;anchor=swh:1:rev:7944b0da164620fed2e68c325c89dfa0303d1806
-
20
Source: SIAM Journal on Scientific Computing; 2007, Vol. 29 Issue 6, p2305-2328, 24p, 2 Diagrams, 4 Charts, 7 Graphs
Nájsť tento článok vo Web of Science
Full Text Finder