Search Results - ACM: E.: Data/E.3: DATA ENCRYPTION/E.3.2: Public key cryptosystems
-
1
Authors: Denning, Dorothy E.
Source: Communications of the ACM; Apr1984, Vol. 27 Issue 4, p388-392, 5p
Subject Terms: PUBLIC key cryptography, DATA encryption, DIGITAL signatures, HASHING
-
2
Authors:
Source: Communications of the ACM. 26:96-99
Subject Terms: cryptography, Data encryption (aspects in computer science), factorization, public-key cryptosystems, Cryptography, authentication, digital signatures, security, message-passing, privacy, Authentication, digital signatures and secret sharing, electronic mail, prime number
File Description: application/xml
Access URL: http://people.csail.mit.edu/rivest/pubs/RSA78.pdf
http://math.univ-lyon1.fr/homes-www/thuillier/enseignements/2007-08/ATN/RivestShamirAdleman.pdf
http://www.cs.toronto.edu/~vinodv/COURSES/MAT302-S12/Rsapaper.pdf
http://www.selmer.uib.no/researchcourse2004/program/RonRivest/Rsapaper.pdf
http://courses.cs.vt.edu/cs5204/fall08-kafura/Papers/Security/RSA-Paper.pdf
http://langevin.univ-tln.fr/cours/MLC/extra/Rsapaper.pdf
http://www.math.tamu.edu/~rojas/rsapaper.pdf -
3
Authors:
Source: International Journal of Advanced Research in Computer Science; Mar/Apr2012, Vol. 3 Issue 2, p330-332, 3p
Subject Terms: PUBLIC key cryptography, CRYPTOGRAPHY, CRYPTOSYSTEMS, DATA encryption, COMPUTER security
-
4
Authors: et al.
Contributors: et al.
Subject Terms: 新型框架, 抗量子密碼, 關鍵字搜尋, 基於身分加密, 通用架構, 公開金鑰認證加密, Novel frameworks, Quantum-resistant cryptosystems, Keyword search, Identity-based encryption, Generic construction, Public-key authenticated encryption
File Description: 7991955 bytes; application/pdf
Relation: [AAB+19] F. Arute, K. Arya, R. Babbush, et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019 (cit. p. 7). [ABB10] S. Agrawal, D. Boneh, and X. Boyen, “Efficient lattice (H)IBE in the standard model,” in EUROCRYPT, 2010 (cit. pp. 25, 26, 117, 118). [ABC+05] M. Abdalla, M. Bellare, D. Catalano, et al., “Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and extensions,” in CRYPTO, 2005 (cit. p. 13). [ABC+08] ——, “Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and extensions,” J. Cryptol., vol. 21, no. 3, pp. 350–391, 2008 (cit. pp. 13, 83, 84). [ABN10] M. Abdalla, M. Bellare, and G. Neven, “Robust encryption,” in TCC, 2010 (cit. p. 14). [ABP15] M. Abdalla, F. Benhamouda, and D. Pointcheval, “Public-key encryption indistinguishable under plaintext-checkable attacks,” in PKC, 2015 (cit. p. 34). [ADM+20] M. H. Ameri, M. Delavar, J. Mohajeri, and M. Salmasizadeh, “A key-policy attribute-based temporary keyword search scheme for secure cloud storage,” IEEE Trans. Cloud Comput., vol. 8, no. 3, pp. 660–671, 2020 (cit. p. 15). [AFG+10] M. Armbrust, A. Fox, R. Griffith, et al., “A view of cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010 (cit. p. 2). [AFI06] N. Attrapadung, J. Furukawa, and H. Imai, “Forward-secure and searchable broadcast encryption with short ciphertexts and private keys,” in ASIACRYPT, 2006 (cit. p. 14). [AG10] N. Antonopoulos and L. Gillam, Cloud computing. Springer, 2010 (cit. p. 1). [AKM+18] H. Anada, A. Kanaoka, N. Matsuzaki, and Y. Watanabe, “Key-updatable public-key encryption with keyword search: Models and generic constructions,” in ACISP, 2018 (cit. p. 14). [AKM+20] ——, “Key-updatable public-key encryption with keyword search (Or: How to realize PEKS with efficient key updates for IoT environments),” Int. J. Inf. Sec., vol. 19, no. 1, pp. 15–38, 2020 (cit. p. 14). [AP03] S. S. Al-Riyami and K. G. Paterson, “Certificateless public key cryptography,” in ASIACRYPT, 2003 (cit. p. 6). [AP11] J. Alwen and C. Peikert, “Generating shorter bases for hard random lattices,” Theory Comput. Syst., vol. 48, no. 3, pp. 535–553, 2011 (cit. p. 24). [ASS21] G. Asharov, G. Segev, and I. Shahaf, “Tight tradeoffs in searchable symmetric encryption,” J. Cryptol., vol. 34, no. 2, p. 9, 2021 (cit. p. 3). [BB11] D. Boneh and X. Boyen, “Efficient selective identity-based encryption without random oracles,” J. Cryptol., vol. 24, no. 4, pp. 659–693, 2011 (cit. p. 6). [BBB+97] C. H. Bennett, E. Bernstein, G. Brassard, and U. V. Vazirani, “Strengths and weaknesses of quantum computing,” SIAM J. Comput., vol. 26, no. 5, pp. 1510–1523, 1997 (cit. p. 133). [BBD+18] F. Benhamouda, O. Blazy, L. Ducas, and W. Quach, “Hash proof systems over lattices revisited,” in PKC, 2018 (cit. p. 117). [BBM00] M. Bellare, A. Boldyreva, and S. Micali, “Public-key encryption in a multiuser setting: Security proofs and improvements,” in EUROCRYPT, 2000 (cit. p. 2). [BC18] O. Blazy and C. Chevalier, “Non-interactive key exchange from identity-based encryption,” in ARES, 2018 (cit. p. 94). [BCO+04] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public key encryption with keyword search,” in EUROCRYPT, 2004 (cit. pp. 3, 4, 13, 16, 39, 41, 42, 118, 119). [BCR19] E. Blum, M. Castillo-Martin, and M. Rosenberg. (2019). “Survey on the security of the quantum ROM,” [Online]. Available:https://mrosenberg.pub/assets/pdfs/qrom_survey.pdf (visited on Aug. 31, 2021) (cit. p. 133). [BDF+11] D. Boneh, O. Dagdelen, M. Fischlin, et al., “Random oracles in a quantum world,” in ASIACRYPT, 2011 (cit. p. 133). [BF01] D. Boneh and M. K. Franklin, “Identity-based encryption from the weil pairing,” in CRYPTO, 2001 (cit. p. 6). [BF03] ——, “Identity-based encryption from the weil pairing,” SIAM J. Comput., vol. 32, no. 3, pp. 586–615, 2003 (cit. p. 6). [BLS+15] F. Buccafurri, G. Lax, R. A. Sahu, and V. Saraswat, “Practical and secure integrated PKE+PEKS with keyword privacy,” in SECRYPT, 2015 (cit. p. 14). [BOY20] R. Behnia, M. O. Ozmen, and A. A. Yavuz, “Lattice-based public key searchable encryption from experimental perspectives,” IEEE Trans. Dependable Secur. Comput., vol. 17, no. 6, pp. 1269–1282, 2020 (cit. pp. 20, 26, 94, 106, 112, 118–120, 128, 129). [BR94] M. Bellare and P. Rogaway, “Optimal asymmetric encryption,” in EUROCRYPT, 1994 (cit. p. 2). [BRP+06] J. W. Byun, H. S. Rhee, H.-A. Park, and D. H. Lee, “Off-line keyword guessing attacks on recent keyword search schemes over encrypted data,” in SDM, 2006 (cit. pp. 4, 15, 42). [BSS05] J. Baek, R. Safavi-Naini, and W. Susilo, “Certificateless public key encryption without pairing,” in ISC, 2005 (cit. p. 6). [BSS06] ——, “On the integration of public key data encryption and public key encryption with keyword search,” in ISC, 2006 (cit. p. 14). [BSS08] ——,“Public key encryption with keyword search revisited,” in ICCSA, 2008 (cit. pp. 4, 16). [BW07] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on encrypted data,” in TCC, 2007 (cit. p. 14). [CD20] P. Chaudhari and M. L. Das, “KeySea: Keyword-based search with receiver anonymity in attribute-based searchable encryption,” IEEE Trans. Serv. Comput., 2020 (cit. p. 15). [CD21] ——, “Privacy preserving searchable encryption with fine-grained access control,” IEEE Trans. Cloud Comput., vol. 9, no. 2, pp. 753–762, 2021 (cit. p. 15). [CDV+12] R. Canetti, D. Dachman-Soled, V. Vaikuntanathan, and H. Wee, “Efficient password authenticated key exchange via oblivious transfer,” in PKC, 2012 (cit. p. 36). [CGK+06] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryption: Improved definitions and efficient constructions,” in CCS, 2006 (cit. p. 3). [Che15] Y.-C. Chen, “SPEKS: secure server-designation public key encryption with keyword search against keyword guessing attacks,” Comput. J., vol. 58, no. 4, pp. 922–933, 2015 (cit. p. 16). [Cho09] S. S. M. Chow, “Removing escrow from identity-based encryption,” in PKC, 2009 (cit. pp. 9, 46). [CKM11] M. Carroll, P. Kotze, and A.V. D. Merwe, “Secure cloud computing: Benefits, risks and controls,” in ISSA, 2011 (cit. p. 2). [CLC+19] L. Chen, W.-K. Lee, C.-C. Chang, K.-K. R. Choo, and N. Zhang, “Blockchain based searchable encryption for electronic health record sharing,” Future Gener. Comput. Syst., vol. 95, pp. 420–429, 2019 (cit. p. 15). [CLZ+21] J. Cui, J. Lu, H. Zhong, et al., “Parallel key-insulated multi-user searchable encryption for industrial Internet of things,” IEEE Trans. Ind. Informatics, 2021 (cit. p. 15). [CM21] L. Cheng and F. Meng, “Security analysis of Pan et al.’s “Public-key authenticated encryption with keyword search achieving both multi-ciphertext and multi-trapdoor indistinguishability”,” J. Syst. Archit., vol. 119, p. 102 248, 2021 (cit. p. 19). [CMS19] A. Chiesa, P. Manohar, and N. Spooner, “Succinct arguments in the quantum random oracle model,” in TCC, 2019 (cit. p. 133). [CMY+15] R. Chen, Y. Mu, G. Yang, F. Guo, and X. Wang, “A new general framework for secure public key encryption with keyword search,” in ACISP, 2015 (cit. pp. 5, 17, 18). [CMY+16a] ——, “Dual-server public-key encryption with keyword search for secure cloud storage,” IEEE Trans. Inf. Forensics Secur., vol. 11, no. 4, pp. 789–798, 2016 (cit. pp. 5, 17, 18). [CMY+16b] R. Chen, Y. Mu, G. Yang, et al., “Server-aided public key encryption with keyword search,” IEEE Trans. Inf. Forensics Secur., vol. 11, no. 12, pp. 2833–2842, 2016 (cit. pp. 5, 18). [CPP+18] J. G. Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili, “New constructions for forward and backward private symmetric searchable encryption,” in CCS, 2018 (cit. p. 3). [CS02] R. Cramer and V. Shoup, “Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption,” in EUROCRYPT, 2002 (cit. p. 36). [CS07] G. D. Crescenzo and V. Saraswat, “Public key encryption with searchable keywords based on Jacobi symbols,” in INDOCRYPT, 2007 (cit. p. 13). [CS98] R. Cramer and V. Shoup, “A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack,” in CRYPTO, 1998 (cit. p. 2). [CSA+21] S. Cui, X. Song, M. R. Asghar, S. D. Galbraith, and G. Russello, “Privacy-preserving dynamic symmetric searchable encryption with controllable leakage,” ACM Trans. Priv. Secur., vol. 24, no. 3, 18:1–18:35, 2021 (cit. p. 3). [CW21] P.-W. Chi and M.-H. Wang, “Deniable search of encrypted cloud-storage data,” J. Inf. Secur. Appl., vol. 58, p. 102 806, 2021 (cit. p. 15). [CWL+21] Z. Chen, A. Wu, Y. Li, Q. Xing, and S. Geng, “Blockchain-enabled public key encryption with multi-keyword search in cloud computing,” Secur. Commun. Networks, vol. 2021, 6619689:1–6619689:11, 2021 (cit. p. 15). [CWZ+19] B. Chen, L. Wu, S. Zeadally, and D. He, “Dual-server public-key authenticated encryption with keyword search,” IEEE Trans. Cloud Comput., 2019 (cit. pp. 5, 45, 47, 71–74, 98). [CZL+16] Y. Chen, J. Zhang, D. Lin, and Z. Zhang, “Generic constructions of integrated PKE and PEKS,” Des. Codes Cryptogr., vol. 78, no. 2, pp. 493–526, 2016 (cit. p. 14). [DCP+20] I. Demertzis, J. G. Chamani, D. Papadopoulos, and C. Papamanthou, “Dynamic searchable encryption with small client storage,” in NDSS, 2020 (cit. p. 3). [DGK+10] Y. Dodis, S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan, “Public-key encryption schemes with auxiliary inputs,” in TCC, 2010 (cit. p. 2). [DHP+18] P.-A. Dupont, J. Hesse, D. Pointcheval, L. Reyzin, and S. Yakoubov, “Fuzzy password-authenticated key exchange,” in EUROCRYPT, 2018 (cit. p. 36). [DLL+20] L. Du, K. Li, Q. Liu, Z. Wu, and S. Zhang, “Dynamic multi-client searchable symmetric encryption with support for Boolean queries,” Inf. Sci., vol. 506, pp. 234–257, 2020 (cit. p. 3). [DLP14] L. Ducas, V. Lyubashevsky, and T. Prest, “Efficient identity-based encryption over NTRU lattices,” in ASIACRYPT, 2014 (cit. pp. 26–28, 78, 94, 99, 100). [DR01] J. Daemen and V. Rijmen, “Reijndael: The advanced encryption standard,” Dr. Dobb’s Journal: Software Tools for the Professional Programmer, vol. 26, no. 3, pp. 137–139, 2001 (cit. p. 2). [DWC10] T. S. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and challenges,” in AINA, 2010 (cit. p. 2). [EIO20] K. Emura, K. Ito, and T. Ohigashi, “Secure-channel free searchable encryption with multiple keywords: A generic construction, an instantiation, and its implementation,” J. Comput. Syst. Sci., vol. 114, pp. 107–125, 2020 (cit. p. 17). [EKW19] K. Emura, S. Katsumata, and Y. Watanabe, “Identity-based encryption with security against the KGC: A formal model and its instantiation from lattices,” in ESORICS, 2019 (cit. pp. 9, 47, 51). [EMO11] K. Emura, A. Miyaji, and K. Omote, “Adaptive secure-channel free public-key encryption with keyword search implies timed release encryption,” in ISC, 2011 (cit. p. 17). [EMR+15] K. Emura, A. Miyaji, M. S. Rahman, and K. Omote, “Generic constructions of secure-channel free searchable encryption with adaptive security,” Secur. Commun. Networks, vol. 8, no. 8, pp. 1547–1560, 2015 (cit. p. 17). [Emu17] K. Emura, “A generic construction of secure-channel free searchable encryption with multiple keywords,” in NSS, 2017 (cit. p. 17). [ER12] K. Emura and M. S. Rahman, “Constructing secure-channel free searchable encryption from anonymous IBE with partitioned ciphertext structure,” in SECRYPT, 2012 (cit. p. 17). [FE+10] B. Furht, A. Escalante, et al., Handbook of cloud computing. Springer, 2010, vol. 3 (cit. p. 1). [FP07] T. Fuhr and P. Paillier, “Decryptable searchable encryption,” in ProvSec, 2007 (cit. p. 14). [FR19] O. Farras and J. Ribes-Gonzalez, “Provably secure public-key encryption with conjunctive and subset keyword search,” Int. J. Inf. Sec., vol. 18, no. 5, pp. 533–548, 2019 (cit. p. 15). [FSG+09] L. Fang, W. Susilo, C. Ge, and J. Wang, “A secure channel free public key encryption with keyword search scheme without random oracle,” in CANS, 2009 (cit. p. 16). [FV16] A. Faonio and D. Venturi, “Efficient public-key cryptography with bounded leakage and tamper resilience,” in ASIACRYPT, 2016 (cit. p. 2). [Gaj16] S. Gajek, “Dynamic symmetric searchable encryption from constrained functional encryption,” in CT-RSA, 2016 (cit. p. 3). [GCJ+20] C. Guo, X. Chen, Y. Jie, et al., “Dynamic multi-phrase ranked search over encrypted data with symmetric searchable encryption,” IEEE Trans. Serv. Comput., vol. 13, no. 6, pp. 1034–1044, 2020 (cit. p. 3). [Gen03] C. Gentry, “Certificate-based encryption and the certificate revocation problem,” in EUROCRYPT, 2003 (cit. p. 6). [GGH97] O. Goldreich, S. Goldwasser, and S. Halevi, “Public-key cryptosystems from lattice reduction problems,” in CRYPTO, 1997 (cit. p. 2). [GK10] A. Groce and J. Katz, “A new framework for efficient password-based authenticated key exchange,” in CCS, 2010 (cit. p. 36). [GL03] R. Gennaro and Y. Lindell, “A framework for password-based authenticated key exchange,” in EUROCRYPT, 2003 (cit. p. 36). [GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard lattices and new cryptographic constructions,” in STOC, 2008 (cit. pp. 24, 27). [GZP07] C. Gu, Y. Zhu, and H. Pan, “Efficient public key encryption with keyword search schemes from pairings,” in Inscrypt, 2007 (cit. p. 16). [Han20] W. A. Hanson, “The CORAL supercomputer systems,” IBM J. Res. Dev., vol. 64, no. 3/4, 1:1–1:10, 2020 (cit. p. 7). [Hay08] B. Hayes, “Cloud computing,” Commun. ACM, vol. 51, no. 7, pp. 9–11, 2008 (cit. p. 1). [HCZ+21] K. He, J. Chen, Q. Zhou, R. Du, and Y. Xiang, “Secure dynamic searchable symmetric encryption with constant client storage cost,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 1538–1549, 2021 (cit. p. 3). [HFP+18] G. Hatzivasilis, K. Fysarakis, I. Papaefstathiou, and C. Manifavas, “A review of lightweight block ciphers,” J. Cryptogr. Eng., vol. 8, no. 2, pp. 141–184, 2018 (cit. p. 2). [HHK17] D. Hofheinz, K. H.velmanns, and E. Kiltz, “A modular analysis of the Fujisaki-Okamoto transformation,” in TCC, 2017 (cit. p. 133). [HHP+03] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and W. Whyte, “NTRUSIGN: Digital signatures using the NTRU lattice,” in CT-RSA, 2003 (cit. p. 26). [HL07] Y. H. Hwang and P. J. Lee, “Public key encryption with conjunctive keyword search and its extension to a multi-user system,” in Pairing, 2007 (cit. pp. 14, 15). [HL17] Q. Huang and H. Li, “An efficient public-key searchable encryption scheme secure against inside keyword guessing attacks,” Inf. Sci., vol. 403, pp. 1–14, 2017 (cit. pp. 5, 18, 19, 39, 41, 45, 99, 102, 103, 118, 119). [HMZ+18] D. He, M. Ma, S. Zeadally, N. Kumar, and K. Liang, “Certificateless public key authenticated encryption with keyword search for industrial Internet of things,” IEEE Trans. Ind. Informatics, vol. 14, no. 8, pp. 3618–3627, 2018 (cit. pp. 5, 6, 19, 20, 46, 47, 71–74, 98, 99, 102, 103). [HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public key cryptosystem,” in ANTS, 1998 (cit. pp. 2, 25). [HRS17] T. H.ner, M. Roetteler, and K. M. Svore, “Factoring using 2𝑛 + 2 qubits with toffoli based modular multiplication,” Quantum Inf. Comput., vol. 17, no. 7&8, pp. 673–684, 2017 (cit. p. 8). [HW08] D. Hofheinz and E. Weinreb, Searchable encryption with decryption in the standard model, IACR ePrint, 2008 (cit. p. 14). [HYY21] Q. Huang, G. Yan, and Y. Yang, “Privacy-preserving traceable attribute-based keyword search in multi-authority medical cloud,” IEEE Trans. Cloud Comput., 2021 (cit. p. 15). [IKA+16] S. Iqbal, M. L. M. Kiah, N. B. Anuar, et al., “Service delivery models of cloud computing: Security issues and open challenges,” Secur. Commun. Networks, vol. 9, no. 17, pp. 4726–4750, 2016 (cit. p. 2). [INH+11] L. Ibraimi, S. Nikova, P. H. Hartel, and W. Jonker, “Public-key encryption with delegated search,” in ACNS, 2011 (cit. p. 14). [JKH+09] I. R. Jeong, J. O. Kwon, D. Hong, and D. H. Lee, “Constructing PEKS schemes secure against keyword guessing attacks is possible?” Comput. Commun., vol. 32, no. 2, pp. 394–396, 2009 (cit. pp. 14, 16). [JKX18] S. Jarecki, H. Krawczyk, and J. Xu, “OPAQUE: an asymmetric PAKE protocol secure against pre-computation attacks,” in EUROCRYPT, 2018 (cit. p. 36). [JMG+16] P. Jiang, Y. Mu, F. Guo, and Q. Wen, “Public key encryption with authorized keyword search,” in ACISP, 2016 (cit. p. 14). [JN03] A. Joux and K. Nguyen, “Separating decision Diffie-Hellman from computational Diffie-Hellman in cryptographic groups,” J. Cryptol., vol. 16, no. 4, pp. 239–247, 2003 (cit. p. 28). [KKK+13] A. N. Khan, M. L. M. Kiah, S. U. Khan, and S. A. Madani, “Towards secure mobile cloud computing: A survey,” Future Gener. Comput. Syst., vol. 29, no. 5, pp. 1278–1299, 2013 (cit. p. 2). [KL20] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Third Edition. CRC Press, 2020 (cit. p. 34). [KLH+18] A. Kobusinska, C. K.-S. Leung, C.-H. Hsu, R. S., and V. Chang, “Emerging trends, issues and challenges in Internet of things, big data and cloud computing,” Future Gener. Comput. Syst., vol. 87, pp. 416–419, 2018 (cit. p. 2). [KM14] F. Kiefer and M. Manulis, “Distributed smooth projective hashing and its application to two-server password authenticated key exchange,” in ACNS, 2014 (cit. p. 37). [KP13] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable symmetric encryption,” in FC, 2013 (cit. p. 3). [KPR12] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable symmetric encryption,” in CCS, 2012 (cit. p. 3). [KV09] J. Katz and V. Vaikuntanathan, “Smooth projective hashing and password-based authenticated key exchange from lattices,” in ASIACRYPT, 2009 (cit. p. 36). [KV10] R. L. Krutz and R. D. Vines, Cloud security: A comprehensive guide to secure cloud computing. 2010 (cit. p. 2). [KV11] J. Katz and V. Vaikuntanathan, “Round-optimal password-based authenticated key exchange,” in TCC, 2011 (cit. p. 36). [KV13] ——,“Round-optimal password-based authenticated key exchange,” J. Cryptol., vol. 26, no. 4, pp. 714–743, 2013 (cit. p. 36). [LFK+14] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,” Bus. Inf. Syst. Eng., vol. 6, no. 4, pp. 239–242, 2014 (cit. p. 2). [LHS+19] H. Li, Q. Huang, J. Shen, G. Yang, and W. Susilo, “Designated-server identity-based authenticated encryption with keyword search for encrypted emails,” Inf. Sci., vol. 481, pp. 330–343, 2019 (cit. pp. 5, 6, 19, 46, 47, 71–74, 98, 99, 102, 103). [LHS20] H. Li, Q. Huang, and W. Susilo, “A secure cloud data sharing protocol for enterprise supporting hierarchical keyword search,” IEEE Trans. Dependable Secur. Comput., 2020 (cit. p. 15). [LHW+21] J. Li, Y. Huang, Y. Wei, et al., “Searchable symmetric encryption with forward search privacy,” IEEE Trans. Dependable Secur. Comput., vol. 18, no. 1, pp. 460–474, 2021 (cit. p. 3). [LHY+21] X. Liu, K. He, G. Yang, et al., “Broadcast authenticated encryption with keyword search,” in ACISP, 2021 (cit. p. 20). [LL19] Y. Lu and J. Li, “Efficient searchable public key encryption against keyword guessing attacks for cloud-based EMR systems,” Clust. Comput., vol. 22, no. 1, pp. 285–299, 2019 (cit. pp. 5, 45, 98). [LL21] ——, “Lightweight public key authenticated encryption with keyword search against adaptively-chosen-targets adversaries for mobile devices,” IEEE Trans. on Mob. Comput., 2021 (cit. pp. 5, 19, 45, 98, 133). [LLW21] Y. Lu, J. Li, and F. Wang, “Pairing-free certificate-based searchable encryption supporting privacy-preserving keyword search function for IIoTs,” IEEE Trans. Ind. Informatics, vol. 17, no. 4, pp. 2696–2706, 2021 (cit. pp. 5, 6, 20, 46, 47, 71–74, 98). [LLY+19] X. Liu, H. Li, G. Yang, et al., “Towards enhanced security for certificateless public-key authenticated encryption with keyword search,” in ProvSec, 2019 (cit. pp. 5, 6, 19, 46, 98, 99, 102, 103). [LLZ19] Y. Lu, J. Li, and Y. Zhang, “Secure channel free certificate-based searchable encryption withstanding outside and inside keyword guessing attacks,” IEEE Trans. Serv. Comput., 2019 (cit. pp. 5, 6, 20, 46, 47, 71–74, 98). [LLZ20] Y. Lu, J. Li, and Y. Zhang, “Privacy-preserving and pairing-free multirecipient certificateless encryption with keyword search for cloud-assisted IIoT,” IEEE Internet Things J., vol. 7, no. 4, pp. 2553–2562, 2020 (cit. pp. 5, 6, 46, 98). [LP11] F. Lombardi and R. D. Pietro, “Secure virtualization for cloud computing,” J. Netw. Comput. Appl., vol. 34, no. 4, pp. 1113–1122, 2011 (cit. p. 2). [LPQ12] B. Libert, K. G. Paterson, and E. A. Quaglia, “Anonymous broadcast encryption: Adaptive security and efficient constructions in the standard model,” in PKC, 2012 (cit. p. 2). [LPR10] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with errors over rings,” in EUROCRYPT, 2010 (cit. p. 25). [LPR13] ——, “On ideal lattices and learning with errors over rings,” J. ACM, vol. 60, no. 6, 43:1–43:35, 2013 (cit. p. 25). [LQ06] B. Libert and J.-J. Quisquater, “On constructing certificateless cryptosystems from identity based encryption,” in PKC, 2006 (cit. p. 6). [LSQ+18] X. J. Lin, L. Sun, H. Qu, and D. Liu, “On the security of secure server-designation public key encryption with keyword search,” Comput. J., vol. 61, no. 12, pp. 1791–1793, 2018 (cit. p. 16). [LTM+11] F. Liu, J. Tong, J. Mao, et al., “NIST cloud computing reference architecture,” National Institute of Standards and Technology, Gaithersburg, MD, Tech. Rep. NIST Special Publication (SP) 500-292, 2011 (cit. p. 1). [LTT+22a] Z.-Y. Liu, Y.-F. Tseng, R. Tso, Y.-C. Chen, and M. Mambo, “Identity-certifying authority-aided identity-based searchable encryption framework in cloud systems,” IEEE Syst. J., vol. 16, no. 3, pp. 4629–4640, 2022 (cit. p. 11). [LTT+22b] Z.-Y. Liu, Y.-F. Tseng, R. Tso, M. Mambo, and Y.-C. Chen, “Public-key authenticated encryption with keyword search: A generic construction and its quantum-resistant instantiation,” Comput. J., vol. 65, no. 10, pp. 2828–2844, 2022 (cit. p. 11). [LTT+22c] ——,“Public-key authenticated encryption with keyword search: Cryptanalysis, enhanced security, and quantum-resistant instantiation,” in ASIACCS, 2022 (cit. p. 11). [LW19] Z. Li and D. Wang, “Achieving one-round password-based authenticated key exchange over lattices,” IEEE Trans. Serv. Comput., 2019 (cit. pp. 106, 112, 116, 118). [LWL19] Y. Lu, G. Wang, and J. Li, “Keyword guessing attacks on a public key encryption with keyword search scheme without random oracle and its improvement,” Inf. Sci., vol. 479, pp. 270–276, 2019 (cit. pp. 5, 45, 98). [LWQ+21] H. Li, T. Wang, Z. Qiao, et al., “Blockchain-based searchable encryption with efficient result verification and fair payment,” J. Inf. Secur. Appl., vol. 58, p. 102 791, 2021 (cit. p. 15). [LYD+20] H. Li, Y. Yang, Y. Dai, S. Yu, and Y. Xiang, “Achieving secure and efficient dynamic searchable symmetric encryption over medical cloud data,” IEEE Trans. Cloud Comput., vol. 8, no. 2, pp. 484–494, 2020 (cit. p. 3). [Lyn07] B. Lynn, “On the implementation of pairing-based cryptosystems,” https://crypto.stanford.edu/pbc/, Ph.D. dissertation, Stanford University, 2007 (cit. p. 100). [LZ08] J. K. Liu and J. Zhou, “Efficient certificate-based encryption in the standard model,” in SCN, 2008 (cit. p. 6). [Mer20] Merriam-Webster Incorporated, Merriam-Webster’s collegiate dictionary, 11th. Merriam-Webster Incorporated, 2020 (cit. p. 4). [MFF20] M. Ma, S. Fan, and D. Feng, “Multi-user certificateless public key encryption with conjunctive keyword search for cloud-based telemedicine,” J. Inf. Secur. Appl., vol. 55, p. 102 652, 2020 (cit. p. 15). [MG11] P. Mell and T. Grance, “The NIST definition of cloud computing,” National Institute of Standards and Technology, Gaithersburg, MD, Tech. Rep. NIST Special Publication (SP) 800-140, 2011 (cit. p. 1). [MH20] S. Ma and Q. Huang, “A new framework of IND-CCA secure public key encryption with keyword search,” Comput. J., vol. 63, no. 12, pp. 1849–1858, 2020 (cit. p. 14). [MHK+18] M. Ma, D. He, N. Kumar, K.-K. R. Choo, and J. Chen, “Certificateless searchable public key encryption scheme for industrial Internet of things,” IEEE Trans. Ind. Informatics, vol. 14, no. 2, pp. 759–767, 2018 (cit. p. 17). [MLB+11] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi, “Cloud computing - The business perspective,” Decis. Support Syst., vol. 51, no. 1, pp. 176–189, 2011 (cit. p. 1). [MLC20] A. Masood, D. S. Lakew, and S. Cho, “Security and privacy challenges in connected vehicular cloud computing,” IEEE Commun. Surv. Tutorials, vol. 22, no. 4, pp. 2725–2764, 2020 (cit. p. 2). [MMS+18] S. Ma, Y. Mu, W. Susilo, and B. Yang, “Witness-based searchable encryption,” Inf. Sci., vol. 453, pp. 364–378, 2018 (cit. p. 18). [MP12] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler, tighter, faster, smaller,” in EUROCRYPT, 2012 (cit. pp. 24, 112, 113, 117, 118). [MS13] T. Moataz and A. Shikfa, “Boolean symmetric searchable encryption,” in ASIACCS, 2013 (cit. p. 3). [NE19] M. Noroozi and Z. Eslami, “Public key authenticated encryption with keyword search: Revisited,” IET Inf. Secur., vol. 13, no. 4, pp. 336–342, 2019 (cit. pp. 5, 19, 45, 81, 98, 99, 102, 103, 133). [NE20] ——, “Public-key encryption with keyword search: A generic construction secure against online and offline keyword guessing attacks,” J. Ambient Intell. Humaniz. Comput., vol. 11, no. 2, pp. 879–890, 2020 (cit. p. 16). [NMO06] W. Nagao, Y. Manabe, and T. Okamoto, “A universally composable secure channel based on the KEM-DEM framework,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. 89-A, no. 1, pp. 28–38, 2006 (cit. p. 4). [NT21] S. K. Nayak and S. Tripathy, “SEPS: Efficient public-key based secure search over outsourced data,” J. Inf. Secur. Appl., vol. 61, p. 102 932, 2021 (cit. p. 15). [OK21] S. Oya and F. Kerschbaum, “Hiding the access pattern is not enough: Exploiting search pattern leakage in searchable encryption,” in USENIX Security, 2021 (cit. p. 3). [OOM+16] M. O’Neill, E. O’Sullivan, G. McWilliams, et al., “Secure architectures of future emerging cryptography SAFEcrypto,” in CF, 2016 (cit. p. 100). [OP92] T. Okamoto and D. Pointcheval, “The Gap-Problems: A new class of problems for the security of cryptographic schemes,” in PKC, 1992 (cit. p. 28). [PGM+19] E. Pednault, J. Gunnels, D. Maslov, and J. Gambetta. (2019). “On “quantum supremacy”,” [Online]. Available: https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/ (visited on Aug. 30, 2021) (cit. p. 7). [PKL04] D. J. Park, K. Kim, and P. J. Lee, “Public key encryption with conjunctive field keyword search,” in WISA, 2004 (cit. p. 14). [PL21] X. Pan and F. Li, “Public-key authenticated encryption with keyword search achieving both multi-ciphertext and multi-trapdoor indistinguishability,” J. Syst. Archit., vol. 115, p. 102 075, 2021 (cit. pp. 5, 19, 45, 98). [PM21] S. Patranabis and D. Mukhopadhyay, “Forward and backward private conjunctive searchable symmetric encryption,” in NDSS, 2021 (cit. p. 3). [PSE20] N. Pakniat, D. Shiraly, and Z. Eslami, “Certificateless authenticated encryption with keyword search: Enhanced security model and a concrete construction for industrial IoT,” J. Inf. Secur. Appl., vol. 53, p. 102 525, 2020 (cit. pp. 5, 6, 20, 45–47, 71–74, 98, 99, 102, 103). [QCA+20] G. A. Quantum, Collaborators, F. Arute, et al., “Hartree-Fock on a superconducting qubit quantum computer,” Science, vol. 369, no. 6507, pp. 1084–1089, 2020 (cit. p. 7). [QCH+20] B. Qin, Y. Chen, Q. Huang, X. Liu, and D. Zheng, “Public-key authenticated encryption with keyword search revisited: Security model and constructions,” Inf. Sci., vol. 516, pp. 515–528, 2020 (cit. pp. 5, 19, 39, 45, 47, 51, 52, 71–74, 98, 99, 102, 103, 118, 119, 133). [QCZ+21] B. Qin, H. Cui, X. Zheng, and D. Zheng, “Improved security model for public-key authenticated encryption with keyword search,” in ProvSec, 2021 (cit. pp. 19, 133). [Qu99] M. Qu, “SEC 2: Recommended elliptic curve domain parameters,” Certicom Res., Mississauga, ON, Canada, Tech. Rep. SEC2-Ver-0.6, 1999 (cit. p. 74). [Reg05] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” in STOC, 2005 (cit. p. 118). [Reg09] ——, “On lattices, learning with errors, random linear codes, and cryptography,” J. ACM, vol. 56, no. 6, 34:1–34:40, 2009 (cit. p. 118). [Res18] E. Rescorla, “RFC 8446: The transport layer security (TLS) protocol version 1.3,” Internet Engineering Task Force (IETF), p. 25, 2018 (cit. pp. 4, 49). [RNS+17] M. Roetteler, M. Naehrig, K. M. Svore, and K. E. Lauter, “Quantum resource estimates for computing elliptic curve discrete logarithms,” in ASIACRYPT, 2017 (cit. p. 8). [RPL12] H. S. Rhee, J. H. Park, and D. H. Lee, “Generic construction of designated tester public-key encryption with keyword search,” Inf. Sci., vol. 205, pp. 93–109, 2012 (cit. p. 16). [RPS+09] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee, “Improved searchable public key encryption with designated tester,” in ASIACCS, 2009 (cit. pp. 4, 16). [RPS+10] ——, “Trapdoor security in a searchable public-key encryption scheme with a designated tester,” J. Syst. Softw., vol. 83, no. 5, pp. 763–771, 2010 (cit. pp. 4, 16). [RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, 1978 (cit. p. 2). [RSA83] ——, “A method for obtaining digital signatures and public-key cryptosystems (reprint),” Commun. ACM, vol. 26, no. 1, pp. 96–99, 1983 (cit. p. 2). [RSK09] H. S. Rhee, W. Susilo, and H.-J. Kim, “Secure searchable public key encryption scheme against keyword guessing attacks,” IEICE Electron. Express, vol. 6, no. 5, pp. 237–243, 2009 (cit. pp. 4, 16). [SBS+21] M. R. Senouci, I. Benkhaddra, A. Senouci, and F. Li, “An efficient and secure certificateless searchable encryption scheme against keyword guessing attacks,” J. Syst. Archit., vol. 119, p. 102 271, 2021 (cit. p. 6). [Sho94a] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and factoring,” in FOCS, 1994 (cit. pp. 7, 78). [Sho94b] ——, “Polynomial time algorithms for discrete logarithms and factoring on a quantum computer,” in ANTS, 1994 (cit. pp. 7, 78). [Sho99] ——, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Rev., vol. 41, no. 2, pp. 303–332, 1999 (cit. pp. 7, 78). [SLC+21] Q. Song, Z. Liu, J. Cao, et al., “SAP-SSE: protecting search patterns and access patterns in searchable symmetric encryption,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 1795–1809, 2021 (cit. p. 3). [SPK+18] C. Stergiou, K. E. Psannis, B.-G. Kim, and B. B. Gupta, “Secure integration of IoT and cloud computing,” Future Gener. Comput. Syst., vol. 78, pp. 964–975, 2018 (cit. p. 2). [SS11] D. Stehle and R. Steinfeld, “Making NTRU as secure as worst-case problems over ideal lattices,” in EUROCRYPT, 2011 (cit. p. 25). [SS17] V. Saraswat and R. A. Sahu, “Short integrated PKE+PEKS in standard model,” in SPACE, 2017 (cit. p. 14). [SSS+19] V. Saraswat, R. A. Sahu, G. Sharma, V. Kuchta, and O. Markowitch, “Public-key encryption with integrated keyword search,” J. Hardw. Syst. Secur., vol. 3, no. 1, pp. 12–25, 2019 (cit. p. 14). [SWP00] D. X. Song, D. A. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data,” in IEEE S&P, 2000 (cit. p. 3). [SYL+18] S. Sun, X. Yuan, J. K. Liu, et al., “Practical backward-secure searchable encryption from symmetric puncturable encryption,” in CCS, 2018 (cit. p. 3). [TC09] Q. Tang and L. Chen, “Public-key encryption with registered keyword search,” in EuroPKI, 2009 (cit. p. 17). [TJA10] H. Takabi, J. B. D. Joshi, and G.-J. Ahn, “Security and privacy challenges in cloud computing environments,” IEEE Secur. Priv., vol. 8, no. 6, pp. 24–31, 2010 (cit. p. 2). [TMC15] Q. Tang, H. Ma, and X. Chen, “Extend the concept of public key encryption with delegated search,” Comput. J., vol. 58, no. 4, pp. 724–734, 2015 (cit. p. 14). [Wat05] B. Waters, “Efficient identity-based encryption without random oracles,” in EUROCRYPT, 2005 (cit. p. 6). [WAW16] T. Wang, M. H. Au, and W. Wu, “An efficient secure channel free searchable encryption scheme with multiple keywords,” in NSS, 2016 (cit. p. 17). [WCX+21] P. Wang, B. Chen, T. Xiang, and Z. Wang, “Lattice-based public key searchable encryption with fine-grained access control for edge computing,” Future Gener. Comput. Syst., 2021 (cit. p. 21). [WCZ+18] L. Wu, B. Chen, S. Zeadally, and D. He, “An efficient and secure searchable public key encryption scheme with privacy protection for cloud storage,” Soft Comput., vol. 22, no. 23, pp. 7685–7696, 2018 (cit. pp. 5, 45, 98). [WMS+12] W. Wu, Y. Mu, W. Susilo, X. Huang, and L. Xu, “A provably secure construction of certificate-based encryption from certificateless encryption,” Comput. J., vol. 55, no. 10, pp. 1157–1168, 2012 (cit. p. 6). [WTT14] T.-Y. Wu, T.-T. Tsai, and Y.-M. Tseng, “Efficient searchable ID-based encryption with a designated server,” Ann. des Telecommunications, vol. 69, no. 7-8, pp. 391–402, 2014 (cit. p. 17). [WvLY+10] L. Wang, G. von Laszewski, A. J. Younge, et al., “Cloud computing: A perspective study,” New Gener. Comput., vol. 28, no. 2, pp. 137–146, 2010 (cit. p. 2). [WWR+12] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward secure and dependable storage services in cloud computing,” IEEE Trans. Serv. Comput., vol. 5, no. 2, pp. 220–232, 2012 (cit. p. 2). [WXL+20] P. Wang, T. Xiang, X. Li, and H. Xiang, “Public key encryption with conjunctive keyword search on lattice,” J. Inf. Secur. Appl., vol. 51, p. 102 433, 2020 (cit. p. 20). [WZ11] W. Wu and L. Zhang, “LBlock: A lightweight block cipher,” in ACNS, 2011 (cit. p. 2). [WZM+19] L. Wu, Y. Zhang, M. Ma, N. Kumar, and D. He, “Certificateless searchable public key authenticated encryption with designated tester for cloud-assisted medical Internet of things,” Ann. des Telecommunications, vol. 74, no. 7-8, pp. 423–434, 2019 (cit. pp. 5, 6, 20, 46, 98, 99, 102, 103). [XHW+18] P. Xu, S. He, W. Wang, W. Susilo, and H. Jin, “Lightweight searchable public-key encryption for cloud-assisted wireless sensor networks,” IEEE Trans. Ind. Informatics, vol. 14, no. 8, pp. 3712–3723, 2018 (cit. p. 15). [XJW+13] P. Xu, H. Jin, Q. Wu, and W. Wang, “Public-key encryption with fuzzy keyword search: A provably secure scheme under keyword guessing attack,” IEEE Trans. Computers, vol. 62, no. 11, pp. 2266–2277, 2013 (cit. p. 17). [XLC+19] L. Xu, J. Li, X. Chen, et al., “Tc-PEDCKS: Towards time controlled public key encryption with delegatable conjunctive keyword search for Internet of things,” J. Netw. Comput. Appl., vol. 128, pp. 11–20, 2019 (cit. p. 15). [XLZ+20] L. Xu, W. Li, F. Zhang, R. Cheng, and S. Tang, “Authorized keyword searches on public key encrypted data with time controlled keyword privacy,” IEEE Trans. Inf. Forensics Secur., vol. 15, pp. 2096–2109, 2020 (cit. pp. 14, 15). [XYS+19] L. Xu, X. Yuan, R. Steinfeld, C. Wang, and C. Xu, “Multi-writer searchable encryption: An LWE-based realization and implementation,” in ASIACCS, 2019 (cit. p. 20). [YDG+21] Y. Yang, R. Deng, W. Guo, et al., “Dual traceable distributed attribute-based searchable encryption and ownership transfer,” IEEE Trans. Cloud Comput., 2021 (cit. p. 15). [YNY+14] Y. Yu, J. Ni, H. Yang, Y. Mu, and W. Susilo, “Efficient public key encryption with revocable keyword search,” Secur. Commun. Networks, vol. 7, no. 2, pp. 466–472, 2014 (cit. p. 14). [YPH+13] W.-C. Yau, R. C.-W. Phan, S.-H. Heng, and B.-M. Goi, “Keyword guessing attacks on secure searchable public key encryption schemes with a designated tester,” Int. J. Comput. Math., vol. 90, no. 12, pp. 2581–2587, 2013 (cit. p. 16). [YSL+20] Y. Yu, J. Shi, H. Li, et al., “Key-policy attribute-based encryption with keyword search in virtualized environments,” IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 1242–1251, 2020 (cit. p. 15). [Zha19] M. Zhandry, “How to record quantum queries, and applications to quantum indifferentiability,” in CRYPTO, 2019 (cit. p. 133). [ZI07] R. Zhang and H. Imai, “Generic combination of public key encryption with keyword search and public key encryption,” in CANS, 2007 (cit. p. 14). [ZL12] D. Zissis and D. Lekkas, “Addressing cloud computing security issues,” Future Gener. Comput. Syst., vol. 28, no. 3, pp. 583–592, 2012 (cit. p. 2). [ZLW+21] K. Zhang, J. Long, X. Wang, et al., “Lightweight searchable encryption protocol for industrial Internet of things,” IEEE Trans. Ind. Informatics, vol. 17, no. 6, pp. 4248–4259, 2021 (cit. p. 15). [ZM16] J. Zhang and J. Mao, “Efficient public key encryption with revocable keyword search in cloud computing,” Clust. Comput., vol. 19, no. 3, pp. 1211–1217, 2016 (cit. p. 14). [ZQD+21] W. Zhang, B. Qin, X. Dong, and A. Tian, “Public-key encryption with bidirectional keyword search and its application to encrypted emails,” Comput. Stand. Interfaces, vol. 78, p. 103 542, 2021 (cit. p. 15). [ZSL+19] C. Zuo, S. Sun, J. K. Liu, J. Shao, and J. Pieprzyk, “Dynamic searchable symmetric encryption with forward and stronger backward privacy,” in ESORICS, 2019 (cit. p. 3). [ZTW+19] X. Zhang, Y. Tang, H. Wang, et al., “Lattice-based proxy-oriented identity-based encryption with keyword search for cloud storage,” Inf. Sci., vol. 494, pp. 193–207, 2019 (cit. pp. 106, 118–121, 125, 127–129). [ZWD+20] H.-S. Zhong, H. Wang, Y.-H. Deng, et al., “Quantum computational advantage using photons,” Science, vol. 370, no. 6523, pp. 1460–1463, 2020 (cit. p. 7). [ZXA14] Q. Zheng, S. Xu, and G. Ateniese, “VABKS: Verifiable attribute-based keyword search over outsourced encrypted data,” in INFOCOM, 2014 (cit. p. 15). [ZXN+19] Y. Zhang, C. Xu, J. Ni, H. Li, and X. S. Shen, “Blockchain-assisted public-key encryption with keyword search against keyword guessing attacks for cloud storage,” IEEE Trans. Cloud Comput., 2019 (cit. pp. 5, 45, 98). [ZXW+21] X. Zhang, C. Xu, H. Wang, Y. Zhang, and S. Wang, “FS-PEKS: Lattice-based forward secure public-key encryption with keyword search for cloud-assisted industrial Internet of things,” IEEE Trans. Dependable Secur. Comput., vol. 18, no. 3, pp. 1019–1032, 2021 (cit. pp. 20, 106, 118–122, 124, 128, 129). [ZZ11] B. Zhang and F. Zhang, “An efficient public key encryption with conjunctive-subset keywords search,” J. Netw. Comput. Appl., vol. 34, no. 1, pp. 262–267, 2011 (cit. p. 15).; G0108753501; https://nccur.lib.nccu.edu.tw//handle/140.119/148472; https://nccur.lib.nccu.edu.tw/bitstream/140.119/148472/1/350101.pdf
-
5
Authors:
Source: SIAM Journal on Computing; 2012, Vol. 41 Issue 4, p772-814, 43p
Subject Terms: CRYPTOGRAPHY, DATA encryption, PUBLIC key cryptography, LATTICE theory, GROUP theory
-
6
Authors:
Source: Security & Communication Networks; Nov2015, Vol. 8 Issue 17, p2992-3001, 10p
Subject Terms: CRYPTOSYSTEMS, PUBLIC key cryptography, DATA encryption, CRYPTOGRAPHY research, COST effectiveness
-
7
Authors:
Source: Sādhanā: Academy Proceedings in Engineering Sciences; Sep2018, Vol. 43 Issue 9, p1-1, 1p
Subject Terms: DATA encryption, TELECONFERENCING, CRYPTOSYSTEMS, PUBLIC key cryptography, INTERNET security
-
8
Authors:
Source: International Journal of Advanced Research in Computer Science; Sep/Oct2011, Vol. 2 Issue 5, p616-619, 4p
Subject Terms: CRYPTOSYSTEMS, INTEGERS, LOGARITHMS, PUBLIC key cryptography, DATA encryption
-
9
Authors:
Source: Communications of the ACM; Jan1983, Vol. 26 Issue 1, p96-99, 4p
Subject Terms: DIGITAL signatures, DATA encryption
-
10
Authors: et al.
Source: International Journal of Information Security; Aug2022, Vol. 21 Issue 4, p917-935, 19p
-
11
Authors:
Source: Groups Complexity Cryptology; May2018, Vol. 10 Issue 1, p17-27, 11p
Subject Terms: DATA encryption, CRYPTOGRAPHY, COMPUTER network security, CRYPTOSYSTEMS, COMPUTER programming
-
12
Authors: et al.
Source: IEEE Transactions on Circuits & Systems. Part I: Regular Papers; Jul2005, Vol. 52 Issue 7, p1382-1393, 12p
-
13
Authors:
Source: New Generation Computing; 2005, Vol. 23 Issue 3, p259-275, 17p
-
14
Authors:
Source: Security & Communication Networks; Aug2016, Vol. 9 Issue 12, p1769-1785, 17p
Subject Terms: DATA encryption, PROXY servers, CRYPTOSYSTEMS, COMPUTER security software, COMPUTER network security
-
15
Authors: Tatsuaki Okamoto
Source: ACM Transactions on Computer Systems. 6:432-441
Subject Terms: Cryptography, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, data encryption, public key cryptosystems, multiple electronic signatures
File Description: application/xml
-
16
Authors:
Source: Journal of Mathematical Extension; 2020, Vol. 14 Issue 4, p1-20, 20p
Subject Terms: RSA algorithm, PUBLIC key cryptography, CRYPTOSYSTEMS, CRYPTOGRAPHY, DATA encryption
-
17
Authors: et al.
Contributors: et al.
Source: WCC 2011 - Workshop on coding and cryptography ; https://hal.inria.fr/inria-00607767 ; WCC 2011 - Workshop on coding and cryptography, Apr 2011, Paris, France. pp.163-172
Subject Terms: cryptography, Generalized Birthday Attack, quasi-cyclic, quasi-dyadic, codes, post quantum, ACM: E.: Data/E.3: DATA ENCRYPTION, ACM: E.: Data/E.4: CODING AND INFORMATION THEORY, ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS, [INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR], [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM], [INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT], [MATH.MATH-IT]Mathematics [math]/Information Theory [math.IT], stat, edu
-
18
Authors: et al.
Source: Security & Communication Networks; Jul2013, Vol. 6 Issue 7, p912-922, 11p
Subject Terms: PUBLIC key cryptography, DATA encryption, ALGORITHMS, SYMMETRIC-key algorithms, ORACLE software
-
19
Authors: et al.
Source: PLoS ONE; 4/12/2018, Vol. 13 Issue 4, p1-76, 76p
Subject Terms: CRYPTOSYSTEMS, DATA encryption, THEORY of knowledge, COMPUTER simulation, PROBABILITY theory
-
20
Authors:
Source: SIAM Review; 2004, Vol. 46 Issue 4, p599-634, 36p, 5 Diagrams
Subject Terms: CRYPTOGRAPHY, ELLIPTIC curves, PUBLIC key cryptography, DATA encryption, CIPHERS
Full Text Finder
Nájsť tento článok vo Web of Science