Výsledky vyhledávání - ACM: E.: Data/E.2: DATA STORAGE REPRESENTATIONS

Upřesnit hledání
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    Zdroj: https://inria.hal.science/hal-00784379 ; Editions universitaires - Université de la Manouba. C&R : EDISCIENCES, 1, pp.332, 2012, SIIE : EDISCIENCES, Sahbi SIDHOM, 9978-9973868-19-0.

  6. 6
  7. 7
  8. 8

    Přispěvatelé: Noé, Laurent Gîrdea, Marta Kucherov, Gregory a další

    Zdroj: Adv Bioinformatics

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

    1. Baytas, I. M., Xiao, C., Zhang, X., Wang, F., Jain, A. K., & Zhou, J. (2017). Patient subtyping via time-aware LSTM networks. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 65–74). ACM. 2. Rahman, M., Al Amin, M., Hasan, R., Hossain, S. T., Rahman, M. H., & Rashed, R. A. M. (2025). A Predictive AI Framework for Cardiovascular Disease Screening in the US: Integrating EHR Data with Machine and Deep Learning Models. British Journal of Nursing Studies, 5(2), 40-48. 3. ZakirHossain, M., Khan, M. M., Thapa, S., Uddin, R., Meem, E. J., Niloy, S. K., ... & Bhavani, G. D. (2025, February). Advanced Deep Learning Techniques for Precision Diagnosis of Tea Leaf Diseases. In 2025 IEEE International Conference on Emerging Technologies and Applications (MPSec ICETA) (pp. 1-6). IEEE. 4. Che, Z., Purushotham, S., Cho, K., Sontag, D., & Liu, Y. (2018). Recurrent neural networks for multivariate time series with missing values. Scientific Reports, *8*(1), 6085. 5. Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F., & Sun, J. (2016). Doctor AI: Predicting clinical events via recurrent neural networks. In Proceedings of the 1st Machine Learning for Healthcare Conference (pp. 301–318). PMLR. 6. Esteban, C., Hyland, S. L., & Rätsch, G. (2017). Real-valued (medical) time series generation with recurrent conditional GANs. arXiv preprint arXiv:1706.02633. 7. Harutyunyan, H., Khachatrian, H., Kale, D. C., Ver Steeg, G., & Galstyan, A. (2019). Multitask learning and benchmarking with clinical time series data. Scientific Data, *6*(1), 96. 8. Li, Y., Rao, S., Solares, J. R. A., Hassaine, A., Ramakrishnan, R., Canoy, D., Zhu, Y., Rahimi, K., & Salimi-Khorshidi, G. (2020). BEHRT: Transformer for electronic health records. Scientific Reports, *10*(1), 7155. 9. Lipton, Z. C., Kale, D. C., Elkan, C., & Wetzel, R. (2016). Learning to diagnose with LSTM recurrent neural networks. In 4th International Conference on Learning Representations (ICLR). 10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems 26 (pp. 3111–3119). 11. Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016). Deep patient: An unsupervised representation to predict the future of patients from the electronic health records. Scientific Reports, *6*(1), 26094. 12. Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G., Duggan, G. E., Irvine, J., Le, Q., & Litsch, K. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, *1*(1), 18. 13. Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, *22*(5), 1589–1604. 14. Tonekaboni, S., Joshi, S., McCradden, M. D., & Goldenberg, A. (2019). What clinicians want: Contextualizing explainable machine learning for clinical end use. In Proceedings of the 4th Machine Learning for Healthcare Conference (pp. 359–380). PMLR. 15. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems 30 (pp. 5998–6008). 16. Wang, S., McDermott, M. B. A., Chauhan, G., Ghassemi, M., Hughes, M. C., & Naumann, T. (2020). MIMIC-Extract: A data extraction, preprocessing, and representation pipeline for MIMIC-III. In Proceedings of the ACM Conference on Health, Inference, and Learning (pp. 222–235). 17. Yoon, J., Zame, W. R., & van der Schaar, M. (2018). Deep sensing: Active sensing using deep learning. IEEE Transactions on Signal Processing, *66*(19), 5078–5092

    Autoři: Billy, Elly

  14. 14

    Zdroj: ISSN: 1843-5920.

    Témata: GRASS GIS, transect, profile, topography, Fiji, Pacific Ocean, bathymetry, ACM: I.: Computing Methodologies, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS, ACM: H.: Information Systems/H.3: INFORMATION STORAGE AND RETRIEVAL, ACM: H.: Information Systems/H.2: DATABASE MANAGEMENT, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.6: Methodology and Techniques, ACM: H.: Information Systems/H.1: MODELS AND PRINCIPLES, ACM: H.: Information Systems/H.1: MODELS AND PRINCIPLES/H.1.2: User/Machine Systems, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.6: Methodology and Techniques/I.3.6.2: Graphics data structures and data types, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.6: Methodology and Techniques/I.3.6.3: Interaction techniques, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.6: Methodology and Techniques/I.3.6.4: Languages, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.5: Computational Geometry and Object Modeling, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.5: Computational Geometry and Object Modeling/I.3.5.5: Modeling packages, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.3: Picture/Image Generation, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.5: Computational Geometry and Object Modeling/I.3.5.2: Curve, surface, solid, and object representations, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.4: Graphics Utilities, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.2: Graphics Systems, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.4: Graphics Utilities/I.3.4.3: Graphics packages, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.4: Graphics Utilities/I.3.4.5: Paint systems, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.4: Graphics Utilities/I.3.4.0: Application packages, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.4: Graphics Utilities/I.3.4.1: Device drivers

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20