Search Results - ACM: E.: Data/E.1: DATA STRUCTURES/E.1.1: Distributed data structures

Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    1. Baytas, I. M., Xiao, C., Zhang, X., Wang, F., Jain, A. K., & Zhou, J. (2017). Patient subtyping via time-aware LSTM networks. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 65–74). ACM. 2. Rahman, M., Al Amin, M., Hasan, R., Hossain, S. T., Rahman, M. H., & Rashed, R. A. M. (2025). A Predictive AI Framework for Cardiovascular Disease Screening in the US: Integrating EHR Data with Machine and Deep Learning Models. British Journal of Nursing Studies, 5(2), 40-48. 3. ZakirHossain, M., Khan, M. M., Thapa, S., Uddin, R., Meem, E. J., Niloy, S. K., ... & Bhavani, G. D. (2025, February). Advanced Deep Learning Techniques for Precision Diagnosis of Tea Leaf Diseases. In 2025 IEEE International Conference on Emerging Technologies and Applications (MPSec ICETA) (pp. 1-6). IEEE. 4. Che, Z., Purushotham, S., Cho, K., Sontag, D., & Liu, Y. (2018). Recurrent neural networks for multivariate time series with missing values. Scientific Reports, *8*(1), 6085. 5. Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F., & Sun, J. (2016). Doctor AI: Predicting clinical events via recurrent neural networks. In Proceedings of the 1st Machine Learning for Healthcare Conference (pp. 301–318). PMLR. 6. Esteban, C., Hyland, S. L., & Rätsch, G. (2017). Real-valued (medical) time series generation with recurrent conditional GANs. arXiv preprint arXiv:1706.02633. 7. Harutyunyan, H., Khachatrian, H., Kale, D. C., Ver Steeg, G., & Galstyan, A. (2019). Multitask learning and benchmarking with clinical time series data. Scientific Data, *6*(1), 96. 8. Li, Y., Rao, S., Solares, J. R. A., Hassaine, A., Ramakrishnan, R., Canoy, D., Zhu, Y., Rahimi, K., & Salimi-Khorshidi, G. (2020). BEHRT: Transformer for electronic health records. Scientific Reports, *10*(1), 7155. 9. Lipton, Z. C., Kale, D. C., Elkan, C., & Wetzel, R. (2016). Learning to diagnose with LSTM recurrent neural networks. In 4th International Conference on Learning Representations (ICLR). 10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems 26 (pp. 3111–3119). 11. Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016). Deep patient: An unsupervised representation to predict the future of patients from the electronic health records. Scientific Reports, *6*(1), 26094. 12. Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., Sundberg, P., Yee, H., Zhang, K., Zhang, Y., Flores, G., Duggan, G. E., Irvine, J., Le, Q., & Litsch, K. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, *1*(1), 18. 13. Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, *22*(5), 1589–1604. 14. Tonekaboni, S., Joshi, S., McCradden, M. D., & Goldenberg, A. (2019). What clinicians want: Contextualizing explainable machine learning for clinical end use. In Proceedings of the 4th Machine Learning for Healthcare Conference (pp. 359–380). PMLR. 15. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems 30 (pp. 5998–6008). 16. Wang, S., McDermott, M. B. A., Chauhan, G., Ghassemi, M., Hughes, M. C., & Naumann, T. (2020). MIMIC-Extract: A data extraction, preprocessing, and representation pipeline for MIMIC-III. In Proceedings of the ACM Conference on Health, Inference, and Learning (pp. 222–235). 17. Yoon, J., Zame, W. R., & van der Schaar, M. (2018). Deep sensing: Active sensing using deep learning. IEEE Transactions on Signal Processing, *66*(19), 5078–5092

    Authors: Billy, Elly

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12

    Source: Arge, L, Eppstein, D & Goodrich, M T 2005, Skip-webs: Efficient distributed data structures for multi-dimensional data sets. in M Aguilera & J Aspners (eds), Proceedings of 24th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. Association for Computing Machinery, pp. 69-76, ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. PODS'05, Las Vegas, United States, 17/07/2005. https://doi.org/10.1145/1073814.1073827

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

    Source: ACM Sigmetrics 2017- International Conference on Measurement and Modeling of Computer Systems ; https://inria.hal.science/hal-01494235 ; ACM Sigmetrics 2017- International Conference on Measurement and Modeling of Computer Systems, Jun 2017, Urbana-Champaign, Illinois, United States. pp.51--51, ⟨10.1145/3078505.3078531⟩ ; http://www.sigmetrics.org/sigmetrics2017/

    Subject Geographic: Urbana-Champaign, Illinois, United States

    Relation: info:eu-repo/semantics/altIdentifier/arxiv/1701.00335; ARXIV: 1701.00335

  20. 20