Search Results - ACM: D.: Software/D.2: SOFTWARE ENGINEERING/D.2.10: Design~

Refine Results
  1. 1

    1. American Heart Association. (2021). Heart disease and stroke statistics—2021 update. Circulation, 143(8), e254-e743. 2. Rahman, M., Al Amin, M., Hasan, R., Hossain, S. T., Rahman, M. H., & Rashed, R. A. M. (2025). A Predictive AI Framework for Cardiovascular Disease Screening in the US: Integrating EHR Data with Machine and Deep Learning Models. British Journal of Nursing Studies, 5(2), 40-48. 3. ZakirHossain, M., Khan, M. M., Thapa, S., Uddin, R., Meem, E. J., Niloy, S. K., ... & Bhavani, G. D. (2025, February). Advanced Deep Learning Techniques for Precision Diagnosis of Tea Leaf Diseases. In 2025 IEEE International Conference on Emerging Technologies and Applications (MPSec ICETA) (pp. 1-6). IEEE. 4. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785-794). ACM. 5. Damen, J. A., Hooft, L., Schuit, E., Debray, T. P., Collins, G. S., Tzoulaki, I., Lassale, C. M., Siontis, G. C., Chiocchia, V., Roberts, C., Schlüssel, M. M., Gerry, S., Black, J. A., Heus, P., van der Schouw, Y. T., Peelen, L. M., & Moons, K. G. (2016). Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ, 353, i2416. 6. Framingham Heart Study. (1948). Framingham Heart Study cohort research data. National Heart, Lung, and Blood Institute. 7. Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L. H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L. A., & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific Data, 3, 160035. 8. Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology, 69(21), 2657-2664. 9. Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems 30 (NIPS 2017) (pp. 4765-4774). 10. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. 11. Shameer, K., Johnson, K. W., Glicksberg, B. S., Dudley, J. T., & Sengupta, P. P. (2018). Machine learning in cardiovascular medicine: are we there yet? Heart, 104(14), 1156-1164. 12. Steyerberg, E. W., Vergouwe, Y., & van Calster, B. (2019). Towards better clinical prediction models: seven steps for development and an ABCD for validation. European Heart Journal, 40(15), 1255–1264. 13. Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., Sprosen, T., Peakman, T., & Collins, R. (2015). UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Medicine, 12(3), e1001779. 14. Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M., & Qureshi, N. (2017). Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLOS ONE, 12(4), e0174944. 15. World Health Organization. (2021). Cardiovascular diseases (CVDs). Retrieved from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) 16. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., ... Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16) (pp. 265–283). 17. Chollet, F. (2015). Keras (Version 2.4.0) [Computer software]. https://github.com/fchollet/keras

    Authors: Okunola, Abiodun

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6

    Source: Lecture Notes in Computer Science ISBN: 9783642358128

    File Description: application/pdf; 265 - 293 páginas; Digital

  7. 7
  8. 8
  9. 9

    Source: ICSE'11: Proceedings of the 33rd International Conference on Software Engineering ; ICSE'11 - 33rd International Conference on Software Engineering ; https://inria.hal.science/inria-00537789 ; ICSE'11 - 33rd International Conference on Software Engineering, May 2011, Honolulu, HI, United States. pp.431-440, ⟨10.1145/1985793.1985852⟩

    Subject Geographic: Honolulu, HI, United States

    Relation: info:eu-repo/semantics/altIdentifier/arxiv/1109.2807; ARXIV: 1109.2807

  10. 10

    Source: ISSN: 0948-695X.

  11. 11
  12. 12
  13. 13
  14. 14

    Source: 29th IEEE International Conference on Software Maintenance
    https://hal.inria.fr/hal-00875387
    29th IEEE International Conference on Software Maintenance, Oct 2013, Eindhoven, Netherlands. pp.80-89, ⟨10.1109/ICSM.2013.19⟩

    Subject Geographic: Eindhoven, Netherlands

  15. 15
  16. 16

    Source: 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems
    https://inria.hal.science/hal-00983046
    9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, IEEE/ACM, Jun 2014, Hyderabad, India

    Subject Geographic: Hyderabad, India

    Time: Hyderabad, India

    Relation: info:eu-repo/grantAgreement/EC/FP7/264840/EU/Trans-European Research Training Network on Engineering and Provisioning of Service-Based Cloud Applications/RELATE

  17. 17
  18. 18

    Source: Second IEEE International Conference on Robotic Computing ; https://hal.sorbonne-universite.fr/hal-01666652 ; Second IEEE International Conference on Robotic Computing, Jan 2018, Laguna Hills, California, United States ; http://www.ieee-irc.org

    Subject Geographic: Laguna Hills, California, United States

  19. 19
  20. 20