Výsledky vyhľadávania - ACM: C.: Computer Systems Organization/C.4: PERFORMANCE OF SYSTEMS/C.4.0: Design studies

Upresniť hľadanie
  1. 1

    1. American Heart Association. (2021). Heart disease and stroke statistics—2021 update. Circulation, 143(8), e254-e743. 2. Rahman, M., Al Amin, M., Hasan, R., Hossain, S. T., Rahman, M. H., & Rashed, R. A. M. (2025). A Predictive AI Framework for Cardiovascular Disease Screening in the US: Integrating EHR Data with Machine and Deep Learning Models. British Journal of Nursing Studies, 5(2), 40-48. 3. ZakirHossain, M., Khan, M. M., Thapa, S., Uddin, R., Meem, E. J., Niloy, S. K., ... & Bhavani, G. D. (2025, February). Advanced Deep Learning Techniques for Precision Diagnosis of Tea Leaf Diseases. In 2025 IEEE International Conference on Emerging Technologies and Applications (MPSec ICETA) (pp. 1-6). IEEE. 4. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785-794). ACM. 5. Damen, J. A., Hooft, L., Schuit, E., Debray, T. P., Collins, G. S., Tzoulaki, I., Lassale, C. M., Siontis, G. C., Chiocchia, V., Roberts, C., Schlüssel, M. M., Gerry, S., Black, J. A., Heus, P., van der Schouw, Y. T., Peelen, L. M., & Moons, K. G. (2016). Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ, 353, i2416. 6. Framingham Heart Study. (1948). Framingham Heart Study cohort research data. National Heart, Lung, and Blood Institute. 7. Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L. H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L. A., & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific Data, 3, 160035. 8. Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology, 69(21), 2657-2664. 9. Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems 30 (NIPS 2017) (pp. 4765-4774). 10. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. 11. Shameer, K., Johnson, K. W., Glicksberg, B. S., Dudley, J. T., & Sengupta, P. P. (2018). Machine learning in cardiovascular medicine: are we there yet? Heart, 104(14), 1156-1164. 12. Steyerberg, E. W., Vergouwe, Y., & van Calster, B. (2019). Towards better clinical prediction models: seven steps for development and an ABCD for validation. European Heart Journal, 40(15), 1255–1264. 13. Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., Sprosen, T., Peakman, T., & Collins, R. (2015). UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Medicine, 12(3), e1001779. 14. Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M., & Qureshi, N. (2017). Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLOS ONE, 12(4), e0174944. 15. World Health Organization. (2021). Cardiovascular diseases (CVDs). Retrieved from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) 16. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., ... Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16) (pp. 265–283). 17. Chollet, F. (2015). Keras (Version 2.4.0) [Computer software]. https://github.com/fchollet/keras

  2. 2
  3. 3

    Prispievatelia: Sardashti, Somayeh Seznec, André Wood, David A. a ďalší

    Zdroj: Proceeding of the 47th Annual IEEE/ACM International Symposium on Microarchitecture ; MICRO - 47th Annual IEEE/ACM International Symposium on Microarchitecture ; https://inria.hal.science/hal-01088050 ; MICRO - 47th Annual IEEE/ACM International Symposium on Microarchitecture, Dec 2014, Cambridge, United Kingdom

    Geografické téma: Cambridge, United Kingdom

    Relation: info:eu-repo/grantAgreement//267175/EU/Defying Amdahl\'s Law/DAL

  4. 4
  5. 5
  6. 6
  7. 7

    Prispievatelia: Sun, Wen Simon, Véronique Monnet, Sébastien a ďalší

    Zdroj: ACM Sigmetrics 2017- International Conference on Measurement and Modeling of Computer Systems ; https://inria.hal.science/hal-01494235 ; ACM Sigmetrics 2017- International Conference on Measurement and Modeling of Computer Systems, Jun 2017, Urbana-Champaign, Illinois, United States. pp.51--51, ⟨10.1145/3078505.3078531⟩ ; http://www.sigmetrics.org/sigmetrics2017/

    Geografické téma: Urbana-Champaign, Illinois, United States

    Relation: info:eu-repo/semantics/altIdentifier/arxiv/1701.00335; ARXIV: 1701.00335

  8. 8

    Zdroj: ISSN: 1045-9219 ; IEEE Transactions on Parallel and Distributed Systems ; https://inria.hal.science/hal-03324177 ; IEEE Transactions on Parallel and Distributed Systems, 2022, 33 (6), pp.1464-1477. ⟨10.1109/TPDS.2021.3111159⟩.

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    Zdroj: CLARIN Annual Conference 2016
    CLARIN Annual Conference 2016, CLARIN ERIC; Laboratoire Parole et Langage; Laboratoire des Sciences de l’Information et des Systèmes (LSIS); Aix-Marseille Université; Centre National de la Recherche Scientifique (CNRS), Oct 2016, Aix-en-Provence, France

    Predmety: Language resource, [SHS.INFO]Humanities and Social Sciences/Library and information sciences, ACM: H.: Information Systems/H.5: INFORMATION INTERFACES AND PRESENTATION (e.g., HCI)/H.5.2: User Interfaces/H.5.2.3: Evaluation/methodology, [INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL], [SHS.INFO] Humanities and Social Sciences/Library and information sciences, [SHS]Humanities and Social Sciences, User evaluation, [SHS.STAT] Humanities and Social Sciences/Methods and statistics, [INFO.INFO-DL]Computer Science [cs]/Digital Libraries [cs.DL], ACM: C.: Computer Systems Organization, ACM: H.: Information Systems/H.5: INFORMATION INTERFACES AND PRESENTATION (e.g., HCI)/H.5.2: User Interfaces/H.5.2.15: User-centered design, [SHS.LANGUE]Humanities and Social Sciences/Linguistics, Web analytics, ACM: K.: Computing Milieux/K.6: MANAGEMENT OF COMPUTING AND INFORMATION SYSTEMS/K.6.1: Project and People Management/K.6.1.3: Strategic information systems planning, Marketing, [SHS.STAT]Humanities and Social Sciences/Methods and statistics, Open Research, Statistics, Repository, Research infrastructure, [INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA], Virtual Language Observatory (VLO), [SHS.LANGUE] Humanities and Social Sciences/Linguistics, ACM: K.: Computing Milieux/K.6: MANAGEMENT OF COMPUTING AND INFORMATION SYSTEMS/K.6.1: Project and People Management/K.6.1.4: Systems analysis and design, CLARIN, [INFO.INFO-CL] Computer Science [cs]/Computation and Language [cs.CL], [INFO.INFO-NA] Computer Science [cs]/Numerical Analysis [cs.NA], [SHS] Humanities and Social Sciences, [INFO.INFO-DL] Computer Science [cs]/Digital Libraries [cs.DL], ACM: K.: Computing Milieux/K.6: MANAGEMENT OF COMPUTING AND INFORMATION SYSTEMS/K.6.3: Software Management/K.6.3.0: Software development

    Popis súboru: application/pdf

  16. 16
  17. 17
  18. 18
  19. 19

    Zdroj: Onward! 2011 Proceedings of the 10th SIGPLAN symposium on New ideas, new paradigms, and reflections on programming and software ; Onward! 2011 ; https://hal.archives-ouvertes.fr/hal-01543076 ; Onward! 2011, Oct 2011, Portland, United States. ⟨10.1145/2089131.2089140⟩ ; http://onward-conference.org/2011/

    Geografické téma: Portland, United States

  20. 20