Suchergebnisse - 3D encoder-decoder architecture*
-
1
A novel hybrid layer-based encoder–decoder framework for 3D segmentation in congenital heart disease
Autoren: et al.
Quelle: Sci Rep
Scientific Reports, Vol 15, Iss 1, Pp 1-10 (2025)Schlagwörter: Heart Defects, Congenital, Science, Deep learning, Heart, Hybrid architectures, Article, Imaging, Three-Dimensional, Deep Learning, 3D CT image, Image Processing, Computer-Assisted, Medicine, Humans, Algorithms, Congenital heart disease, Cardiac segmentation
-
2
Autoren: et al.
Quelle: IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. :1516-1519
Schlagwörter: Electrical engineering. Electronics Nuclear engineering, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Dateibeschreibung: text
-
3
Autoren:
Quelle: IEEE Access, Vol 13, Pp 69596-69618 (2025)
-
4
Autoren:
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing, Machine Learning (cs.LG)
Zugangs-URL: http://arxiv.org/abs/2309.13587
-
5
Autoren:
Quelle: Lecture Notes in Computer Science ISBN: 9783031090011
-
6
Autoren: et al.
-
7
Autoren: et al.
Quelle: Sensors (Basel)
Sensors, Vol 23, Iss 1, p 61 (2022)
Sensors; Volume 23; Issue 1; Pages: 61Schlagwörter: Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Machine Learning, inverse problems, Chemical technology, seismic velocity, deep learning, FOS: Physical sciences, TP1-1185, 02 engineering and technology, transfer learning, seismic inversion, 01 natural sciences, Article, Geophysics (physics.geo-ph), Machine Learning (cs.LG), 0104 chemical sciences, Physics - Geophysics, FOS: Electrical engineering, electronic engineering, information engineering, 3D reconstruction, encoder–decoder, Electrical Engineering and Systems Science - Signal Processing, 0210 nano-technology
Dateibeschreibung: application/pdf
-
8
Autoren: et al.
Quelle: Science of Remote Sensing, Vol 11, Iss , Pp 100206- (2025)
Schlagwörter: MT-InSAR, Deformation retrieval, Lightweight, 3D encoder-decoder architecture, Separable CNN, Physical geography, GB3-5030, Science
Dateibeschreibung: electronic resource
-
9
Autoren: et al.
Quelle: Applied Sciences, Vol 11, Iss 9, p 3912 (2021)
Schlagwörter: artificial intelligence, cardiac CT, cardiac MRI, deep learning, ResNet, variational autoencoder, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
Dateibeschreibung: electronic resource
-
10
Autoren:
Quelle: IEEE Robotics and Automation Letters. 10:844-851
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Robotics, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing, Robotics (cs.RO), Machine Learning (cs.LG)
Zugangs-URL: http://arxiv.org/abs/2501.00514
-
11
Autoren: et al.
Quelle: Front Neurosci
Frontiers in Neuroscience, Vol 18 (2024)Schlagwörter: 03 medical and health sciences, 0302 clinical medicine, adaptive feature extraction, brain lesion segmentation, computer-aided diagnosis, Neurosciences. Biological psychiatry. Neuropsychiatry, attention mechanism, medical image analysis, encoder-decoder architecture, RC321-571, Neuroscience
-
12
-
13
Autoren:
Quelle: Biomedical Signal Processing & Control. Sep2025, Vol. 107, pN.PAG-N.PAG. 1p.
Schlagwörter: Long short-term memory, Machine learning, Optical coherence tomography, Surgeons, Deep learning
-
14
Autoren: et al.
Quelle: Discover Artificial Intelligence; 11/24/2025, Vol. 5 Issue 1, p1-17, 17p
Schlagwörter: DATA augmentation, DENTISTRY, ORTHODONTICS, ARTIFICIAL neural networks, MORPHOLOGY
-
15
Autoren: Ji, Hangyu
Schlagwörter: FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing
Zugangs-URL: http://arxiv.org/abs/2506.05297
-
16
Autoren: et al.
Quelle: Lecture Notes in Computer Science ISBN: 9783030875886
Schlagwörter: Segmentation map, FOS: Computer and information sciences, Computer Science - Machine Learning, Decoding, Convolutional neural network, 02 engineering and technology, 3D modeling, Machine Learning (cs.LG), Medical computing, 03 medical and health sciences, Magnetic resonance imaging, 0302 clinical medicine, Network coding, Statistical tests, Learn+, Machine learning, MRI scan, FOS: Electrical engineering, electronic engineering, information engineering, 0202 electrical engineering, electronic engineering, information engineering, Hierarchical encoder-decoder architecture, Encoder-decoder architecture, CT and MRI pancreas segmentation, Image and Video Processing (eess.IV), Feature learning, Fully convolutional neural networks, CT-scan, Electrical Engineering and Systems Science - Image and Video Processing, Computerized tomography, Convolution, Convolutional neural networks, Medical imaging, Fully convolutional neural network
-
17
Autoren: et al.
Weitere Verfasser: et al.
Quelle: e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
Universidad Carlos III de Madrid (UC3M)
IEEE Transactions on Geoscience and Remote SensingSchlagwörter: Informática, Noise measurement, Drought detection, Data models, Biological system modeling, Convolutional neural networks (CNNS), Droughts, Predictive models, Europe, Label correction (LC), Noisy labels (NLs), Medio Ambiente, Solid modeling, Training, Three-dimensional displays, Spatiotemporal data, Encoder-decoder architecture, Noise, Hydro-climatological data
Dateibeschreibung: application/pdf
Zugangs-URL: https://hdl.handle.net/10016/46966
-
18
Autoren: et al.
Quelle: Remote Sensing, Vol 13, Iss 23, p 4917 (2021)
Schlagwörter: 3D point clouds, shape completion, deep learning, multi-view-based methods, Science
Dateibeschreibung: electronic resource
-
19
Autoren: et al.
Quelle: Mathematics (2227-7390); Sep2025, Vol. 13 Issue 17, p2752, 18p
-
20
Autoren: et al.
Quelle: Lin, X, Liu, Y, Feng, C, Chen, Z, Yang, X & Cui, H 2024, 'Automatic Evaluation Method for Functional Movement Screening Based on Multi-Scale Lightweight 3D Convolution and an Encoder–Decoder', Electronics (Switzerland), vol. 13, no. 10, 1813. https://doi.org/10.3390/electronics13101813
Schlagwörter: 3D convolution, automatic evaluation method, encoder–decoder, functional movement screening, human movement feature
Dateibeschreibung: application/pdf
Full Text Finder
Nájsť tento článok vo Web of Science