Search Results - 0–1 integer linear programming problem

Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Source: De nästa 700 verifierade kompilatorerna 31st International Conference on Principles and Practice of Constraint Programming, CP 2025, Glasgow, United Kingdom Leibniz International Proceedings in Informatics, LIPIcs Practically Feasible Proof Logging for Pseudo-Boolean Optimization: Experimental Data. 340

    File Description: electronic

  9. 9
  10. 10
  11. 11
  12. 12

    Authors: Li, Pingke

    File Description: application/pdf

    Relation: zbl:Zbl 07478629; reference:[1] Astorino, A., Miglionico, G.: Optimizing sensor cover energy via DC programming.Optim. Lett. 10 (2016), 2, 355-368.; reference:[2] Bartolini, N., Calamoneri, T., Porta, T. La, Petrioli, C., Silvestri, S.: Sensor activation and radius adaptation (SARA) in heterogeneous sensor networks.ACM Trans. Sensor Netw. 8 (2012), 3, Article 24. 10.1145/2240092.2240098; reference:[3] Butkovič, P.: Max-linear Systems: Theory and Algorithms.Springer, Berlin 2010. Zbl 1202.15032; reference:[4] Elbassioni, K. M.: A note on systems with max-min and max-product constraints.Fuzzy Sets Syst. 159 (2008), 2272-2277.; reference:[5] Fredman, M. L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms.J. Algorithms 21 (1996), 618-628.; reference:[6] Hoai, P. T., Tuy, H.: Monotonic optimization for sensor cover energy problem.Optim. Lett. 12 (2018), 1569-1587.; reference:[7] Thi, H. A. Le, Pham, D. T.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems.Ann. Oper. Res. 133 (2005), 23-46.; reference:[8] Thi, H. A. Le, Pham, D. T.: DC programming and DCA: thirty years of developments.Math. Program., Ser. B 169 (2018), 5-68.; reference:[9] Li, P.: Fuzzy Relational Equations: Resolution and Optimization.Ph.D. Dissertation, North Carolina State University 2009.; reference:[10] Li, P., Fang, S.-C.: On the resolution and optimization of a system of fuzzy relational equations with sup-$T$ composition.Fuzzy Optim. Decis. Making 7 (2008), 169-214. Zbl 1169.90493; reference:[11] Li, P., Fang, S.-C.: Latticized linear optimization on the unit interval.IEEE Trans. Fuzzy Syst. 16 (2009), 6, 1353-1365.; reference:[12] Priyadarshi, R., Gupta, B., Anurag, A.: Deployment techniques in wireless sensor networks: a survey, classification, challenges, and future research issues.J. Supercomput. 76 (2020), 7333-7373.; reference:[13] ReVelle, C. S.: Facility siting and integer-friendly programming.Eur. J. Oper. Res. 65 (1993), 2, 147-158.; reference:[14] Tuy, H., Minoux, M., Phuong, N. T. H.: Discrete monotonic optimization with application to a discrete location problem.SIAM J. Optim. 17 (2006), 78-97.; reference:[15] Wang, B.: Coverage problems in sensor networks: A survey.ACM Comput. Surv. 43 (2011), 4, Article 32. 10.1145/1978802.1978811; reference:[16] Wang, Y., Wu, S., Chen, Z., Gao, X., Chen, G.: Coverage problem with uncertain properties in wireless sensor networks: A survey.Comput. Netw. 123 (2017), 200-232.; reference:[17] Zhou, Z., Das, S.R., Gupta, H.: Variable radii connected sensor cover in sensor networks.ACM Trans. Sensor Netw. 5 (2009), 1, Article 8. 10.1145/1464420.1464428

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20