Výsledky vyhledávání - (conditional OR conditioning) variational autoencoder adaptive synthesis~
-
1
Autoři: a další
Zdroj: International Transactions on Electrical Energy Systems; 9/23/2025, Vol. 2025, p1-12, 12p
-
2
Autoři: a další
Zdroj: Journal of Applied Physics; 4/7/2025, Vol. 137 Issue 13, p1-16, 16p
-
3
Autoři: a další
Zdroj: Mathematics (2227-7390); Jul2025, Vol. 13 Issue 14, p2218, 18p
-
4
Alternate Title: End-to-End Emotional Speech Synthesis Method Based on Conditional Variational Autoencoder. (English)
Autoři: a další
Zdroj: Journal of Signal Processing; Apr2023, Vol. 39 Issue 4, p678-687, 10p
-
5
Autoři: a další
Zdroj: IEEE Transactions on Neural Networks and Learning Systems. 35:9455-9469
Témata: Conditional variational auto-encoder (CVAE), feature generation, few-shot learning (FSL), modality absence, data augmentation
Popis souboru: application/pdf
Přístupová URL adresa: https://pubmed.ncbi.nlm.nih.gov/37018571
-
6
Autoři:
Přispěvatelé:
Témata: IA, Regresor simbólico, VAE, IC, Sintesis, Optimizador, Ingeniería Electrónica -- Tesis y disertaciones académicas, Autocodificadores variacionales (VAE), Regresión simbólica, Optimización y funciones de prueba, Simbolic regressor, CI, Synthesis, Optimizer, AI
Popis souboru: pdf; application/pdf
Relation: M. Melgarejo, M. Medina, J. Lopez y A. Rodriguez, «Optimization test function synthesis with generative adversarial networks and adaptive neuro-fuzzy systems,» Information Sciences, vol. 686, pág. 121 371, 2025, issn: 0020-0255. doi: https : / / doi . org / 10 . 1016 / j . ins . 2024 . 121371. dirección: https : //www.sciencedirect.com/science/article/pii/S0020025524012854.; M. Medina Muñoz, Método para la síntesis de paisajes de optimización bidimensionales basado en redes adversarias generativas, Grupo de Investigación: Laboratorio de Automática e Inteligencia Computacional, Bogotá D.C., Colombia, 2023.; B. van Stein, F. X. Long, M. Frenzel, P. Krause, M. Gitterle y T. Bäck, DoE2Vec: Deep-learning Based Features for Exploratory Landscape Analysis, 2023. arXiv: 2304.01219 [math.OC].; M. J. Mahmoodabadi y A. R. Nemati, «A novel adaptive genetic algorithm for global optimization of mathematical test functions and real-world problems,» Engineering Science and Technology, an International Journal, vol. 19, n.o 4, págs. 2002-2021, 2016.; P. Chen, Z. Shihua, Z. Qiang y N. Kasabov, «A meta-inspired termite queen algorithm for global optimization and engineering design problems,» Engineering Applications of Artificial Intelligence, vol. 111, 2022.; B. Addis y M. Locatelli, «A new class of test functions for global optimization,» Journal of Global Optimization, vol. 38, n.o 3, págs. 479-501, 2007.; K. Hussain, M. Salleh, S. Cheng y R. Naseem, «Common Benchmark Functions for Metaheuristic Evaluation: A Review,» International Journal on Informatics Visualization, vol. 1, págs. 218-223, nov. de 2017. doi:10.30630/joiv.1.4-2.65.; H. M. Azamathulla y F. C. Wu, «Support vector machine approach for longitudinal dispersion coefficients in natural streams,» Applied Soft Computing, vol. 11, n.o 2, págs. 2902-2905, 2011.; C. K. WNg y D. Li, «Test problem generator for unconstrained global optimization, » Computers and Operations Research, vol. 51, págs. 338-349, 2014.; D. Yazdani, J. Branke, M. N. Omidvar et al., «Generalized Moving Peaks Benchmark, » CoRR, vol. abs/2106.06174, 2021. arXiv: 2106.06174. dirección: https: //arxiv.org/abs/2106.06174.; D. Yazdani, M. N. Omidvar, D. Yazdani, K. Deb y A. H. Gandomi, GNBG: A Generalized and Configurable Benchmark Generator for Continuous Numerical Optimization, 2023. arXiv: 2312.07083 [cs.NE].; Y. Wang, N. Wagner y J. M. Rondinelli, «Symbolic regression in materials science, » MRS Communications, vol. 9, n.o 3, págs. 793-805, 2019. doi:10.1557/mrc. 2019.85.; N. C. Cueto Ceilis y H. Peters, An empirical comparison of generative capabilities of GAN vs VAE, Dissertation, 2022.; P. Cristovao, H. Nakada, Y. Tanimura y H. Asoh, «Generating In-Between Images Through Learned Latent Space Representation Using Variational Autoencoders,» IEEE Access, vol. 8, págs. 149 456-149 467, 2020. doi:10.1109/ACCESS.2020. 3016313.; W. G. L. Cava, P. Orzechowski, B. Burlacu et al., «Contemporary Symbolic Regression Methods and their Relative Performance,» CoRR, vol. abs/2107.14351, 2021. arXiv: 2107.14351. dirección: https://arxiv.org/abs/2107.14351.; K. Houston-Edwards, «Machine Learning Becomes a Mathematical Collaborator, » Quantamagazine, 2022.; V. Novo Sanjurjo, Teoría de la optimización. UNED. Universidad Nacional de Educación a Distancia, 1999.; J. López, Optimización Multi-objetivo. Aplicaciones a problemas del mundo real. Universidad Nacional de la Plata, Facultad de Informática, 2015.; F. J. M. Estudillo, Introducción a las matemáticas para la economía. Desclée De Brouwer, S.A., 2005.; M. Bezerra, R. Santelli, E. Oliveira, L. Villar y L. Escaleira, «Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry,» Talanta, vol. 76, págs. 965-77, oct. de 2008. doi:10.1016/j.talanta.2008.05.019.; R. D. Lang y A. P. Engelbrecht, «An exploratory landscape analysis-based benchmark suite,» Algorithms, vol. 14, n.o 3, pág. 78, 2021.; F. Hillier y G. Lieberman, «Introduction To Operations Research,» en ene. de 1969, vol. 139. doi:10.2307/2345190.; S. Edelkamp y S. Schrödl, Heuristic Search - Theory and Applications. ene. de 2012, isbn: 978-0-12-372512-7. doi:10.1016/C2009-0-16511-X.; M.-E. Marmion, F. Mascia, M. López-Ibáñez y T. Stützle, «Towards the Automatic Design of Metaheuristics,» ene. de 2013.; V. V. Vazirani, Approximation Algorithms. Springer Publishing Company, Incorporated, 2010, isbn: 3642084699.; R. S. Sutton y A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA, USA: A Bradford Book, 2018, isbn: 0262039249.; O. Mersmann, M. Preuss y H. Trautmann, «Benchmarking Evolutionary Algorithms: Towards Exploratory Landscape Analysis,» oct. de 2010, isbn: 978-3-642- 15843-8. doi:10.1007/978-3-642-15844-5_8.; N. Hansen, S. Finck, R. Ros y A. Auger, «Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions,» INRIA, Research Report RR-6829, 2009, inria-00362633v2.; A. Törn, M. Ali y S. Viitanen, «Stochastic Global Optimization: Problem Classes and Solution Techniques,» Journal of Global Optimization, vol. 14, págs. 437-447, jun. de 1999. doi:10.1023/A:1008395408187.; G. E. P. Box y K. B. Wilson, «On the Experimental Attainment of Optimum Conditions,» Journal of the Royal Statistical Society: Series B (Methodological), vol. 13, n.o 1, págs. 1-38, dic. de 2018, issn: 0035-9246. doi:10.1111/j.2517- 6161.1951.tb00067.x. eprint: https://academic.oup.com/jrsssb/articlepdf/ 13/1/1/49093871/jrsssb\_13\_1\_1.pdf. dirección: https://doi.org/ 10.1111/j.2517-6161.1951.tb00067.x.; X. Xue, C. Yang, L. Feng, K. Zhang, L. Song y K. C. Tan, A Scalable Test Problem Generator for Sequential Transfer Optimization, 2023. arXiv: 2304.08503 [cs.NE].; T. H. Fay y P. H. Kloppers, «The Gibbs’ phenomenon,» International Journal of Mathematical Education in Science and Technology, vol. 32, n.o 1, págs. 73-89, 2001.; N. Barzilay, S. T. Berkovitz y R. Giryes, «MISS GAN: A Multi-IlluStrator style generative adversarial network for image to illustration translation,» Pattern Recognition Letters, vol. 151, págs. 140-147, 2021.; A. Shokraei Fard, D. C. Reutens y V. Vegh, «From CNNs to GANs for crossmodality medical image estimation,» Computers in Biology and Medicine, vol. 146, 2022.; D. P. Kingma y M. Welling, «An Introduction to Variational Autoencoders,» Foundations and Trends® in Machine Learning, vol. 12, n.o 4, págs. 307-392, 2019, issn: 1935-8245. doi:10.1561/2200000056. dirección: http://dx.doi. org/10.1561/2200000056.; Y. Yang, K. Zheng, C. Wu e Y. Yang, «Improving the Classification Effectiveness of Intrusion Detection by Using Improved Conditional Variational AutoEncoder and Deep Neural Network,» Sensors, vol. 19, pág. 2528, jun. de 2019. doi: 10. 3390/s19112528.; X. Glorot e Y. Bengio, «Understanding the difficulty of training deep feedforward neural networks,» en Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Y. W. Teh y M. Titterington, eds., ép. Proceedings of Machine Learning Research, vol. 9, Chia Laguna Resort, Sardinia, Italy: PMLR, 13–15 May de 2010, págs. 249-256. dirección: https : / / proceedings.mlr.press/v9/glorot10a.html.; L. Friedrich y J. Maziero, «Avoiding barren plateaus with classical deep neural networks,» Physical Review A, vol. 106, n.o 4, oct. de 2022, issn: 2469-9934. doi:10.1103/physreva.106.042433. dirección: http://dx.doi.org/10.1103/ PhysRevA.106.042433.; S. Ge, C. Hang y T. Zhang, «Adaptive neural network control of nonlinear systems by state and output feedback,» IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 29, n.o 6, págs. 818-828, 1999. doi: 10. 1109/3477.809035.; K. He, X. Zhang, S. Ren y J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, 2015. arXiv: 1502.01852 [cs.CV].; R. Pastrana, Disentangling Variational Autoencoders, 2022. arXiv: 2211.07700 [cs.LG].; D. P. Kingma y M.Welling, Auto-Encoding Variational Bayes, 2022. arXiv: 1312. 6114 [stat.ML].; M. Rivera, How to train your VAE, 2024. arXiv: 2309.13160 [cs.LG].; S. Damm, D. Forster, D. Velychko, Z. Dai, A. Fischer y J. Lücke, The ELBO of Variational Autoencoders Converges to a Sum of Three Entropies, 2023. arXiv: 2010.14860 [stat.ML].; I. Higgins, L. Matthey, A. Pal et al., «beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework,» en International Conference on Learning Representations, 2017. dirección: https://openreview.net/forum? id=Sy2fzU9gl.; N. Haut, W. Banzhaf y B. Punch, Correlation versus RMSE Loss Functions in Symbolic Regression Tasks, 2022. arXiv: 2205.15990 [cs.NE].; Z. Chen e Y.-G. Wang, «Efficient Regression Analysis with Ranked-Set Sampling, » Biometrics, vol. 60, n.o 4, págs. 997-1004, dic. de 2004, issn: 0006-341X. doi:10.1111/j.0006-341X.2004.00255.x. eprint: https://academic.oup. com/biometrics/article- pdf/60/4/997/51877372/biometrics\_60\_4\ _997.pdf. dirección: https://doi.org/10.1111/j.0006-341X.2004.00255.x.; A. Acharya, A. Prakash, P. Saxena y A. Nigam, «Sampling: Why and How of it? Anita S Acharya, Anupam Prakash, Pikee Saxena, Aruna Nigam,» Indian Journal of Medical Specilaities, ene. de 2013. doi:10.7713/ijms.2013.0032.; V. Melo, «Kaizen programming,» jul. de 2014, isbn: 978-1-4503-2662-9. doi: 10. 1145/2576768.2598264.; J. S. Farris, «Methods for Computing Wagner Trees,» Systematic Biology, vol. 19, n.o 1, págs. 83-92, mar. de 1970, issn: 1063-5157. doi:10.1093/sysbio/19.1.83. eprint: https://academic.oup.com/sysbio/article-pdf/19/1/83/4642459/ 19-1-83.pdf. dirección: https://doi.org/10.1093/sysbio/19.1.83.; W. M. Fitch, «Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology,» Systematic Zoology, vol. 20, n.o 4, págs. 406-416, 1971, issn: 00397989. dirección: http://www.jstor.org/stable/2412116 (visitado 02-07-2024).; J. R. Koza, Genetic programming: On the programming of computers by means of natural selection. MIT Press, 1992.; R. Poli, W. Langdon y N. Mcphee, A Field Guide to Genetic Programming. ene. de 2008, isbn: 978-1-4092-0073-4.; T. Stephens, gplearn Documentation, Release 0.4.2, ago. de 2023. dirección: https: //gplearn.readthedocs.io/en/0.4.2/.; M. Cranmer, Interpretable Machine Learning for Science with PySR and SymbolicRegression. jl, 2023. arXiv: 2305.01582 [astro-ph.IM].; M. Schmidt y H. Lipson, «Distilling Free-Form Natural Laws from Experimental Data,» Science (New York, N.Y.), vol. 324, págs. 81-5, mayo de 2009. doi: 10. 1126/science.1165893.; Z. Wang y A. C. Bovik, «Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures,» IEEE Signal Processing Magazine, vol. 26, n.o 1, págs. 98-117, 2009. doi:10.1109/MSP.2008.930649.; P. Schober, C. Boer y L. Schwarte, «Correlation Coefficients: Appropriate Use and Interpretation,» Anesthesia & Analgesia, vol. 126, pág. 1, feb. de 2018. doi:10.1213/ANE.0000000000002864.; R. Steuer, J. Kurths, C. Daub, J. Weise y J. Selbig, «The Mutual Information: Detecting and Evaluating Dependencies between Variables,» Bioinformatics (Oxford, England), vol. 18 Suppl 2, S231-40, feb. de 2002. doi:10.1093/ bioinformatics/18.suppl_2.S231.; A. Kiran y S. S. Kumar, «A Comparative Analysis of GAN and VAE based Synthetic Data Generators for High Dimensional, Imbalanced Tabular data,» en 2023 2nd International Conference for Innovation in Technology (INOCON), 2023, págs. 1-6. doi:10.1109/INOCON57975.2023.10101315.; K.-L. Lim, X. Jiang y C. Yi, «Deep Clustering With Variational Autoencoder,» IEEE Signal Processing Letters, vol. 27, págs. 231-235, 2020. doi:10.1109/LSP. 2020.2965328.; M. Abadi, A. Agarwal, P. Barham et al., «TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems,» CoRR, vol. abs/1603.04467, 2016. arXiv: 1603.04467. dirección: http://arxiv.org/abs/1603.04467.; A. Paszke, S. Gross, F. Massa et al., «PyTorch: An Imperative Style, High- Performance Deep Learning Library,» CoRR, vol. abs/1912.01703, 2019. arXiv: 1912.01703. dirección: http://arxiv.org/abs/1912.01703.; D. Kingma y J. Ba, «Adam: A Method for Stochastic Optimization,» International Conference on Learning Representations, dic. de 2014.; A. Kalinin, A. Jafari, E. Avots, C. Ozcinar y G. Anbarjafari, Generative AI-based Style Recommendation Using Fashion ItemDetection and Classification, jun. de 2024. doi:10.21203/rs.3.rs-4517638/v1.; M. C. Connor, G. H. Canal y C. J. Rozell, Variational Autoencoder with Learned Latent Structure, 2021. arXiv: 2006.10597 [stat.ML]. dirección: https: //arxiv.org/abs/2006.10597.; D. Wolpert y W. Macready, «No free lunch theorems for optimization,» IEEE Transactions on Evolutionary Computation, vol. 1, n.o 1, págs. 67-82, 1997. doi:10.1109/4235.585893.; Y.-H. Dai, «Convergence Properties of the BFGS Algoritm,» SIAM Journal on Optimization, vol. 13, n.o 3, págs. 693-701, 2002. doi:10.1137/S1052623401383455. eprint: https : / / doi . org / 10 . 1137 / S1052623401383455. dirección: https : //doi.org/10.1137/S1052623401383455.; M. Jamil y X. Yang, «A Literature Survey of Benchmark Functions For Global Optimization Problems,» CoRR, vol. abs/1308.4008, 2013. arXiv: 1308.4008. dirección: http://arxiv.org/abs/1308.4008.; H. Kanemitsu, H. Imai y M. Miyaskoshi, «Definitions and Properties of (Local) Minima and Multimodal Functions using Level Set for Continuous Optimization Problems,» IEICE Proceeding Series, vol. 2, págs. 94-97, mar. de 2014. doi: 10. 15248/proc.2.94.; F. X. Long, B. van Stein, M. Frenzel, P. Krause, M. Gitterle y T. Bäck, «Generating Cheap Representative Functions for Expensive Automotive Crashworthiness Optimization,» ACM Trans. Evol. Learn. Optim., feb. de 2024, Just Accepted. doi:10.1145/3646554. dirección: https://doi.org/10.1145/3646554.; R. D. Lang y A. P. Engelbrecht, «An Exploratory Landscape Analysis-Based Benchmark Suite,» Algorithms, vol. 14, n.o 3, 2021, issn: 1999-4893. doi: 10. 3390/a14030078. dirección: https://www.mdpi.com/1999-4893/14/3/78.; https://hdl.handle.net/11349/42411
Dostupnost: https://hdl.handle.net/11349/42411
-
7
Autoři: a další
Zdroj: PLoS ONE; 10/31/2025, Vol. 20 Issue 10, p1-28, 28p
-
8
Autoři: a další
Zdroj: Medical physics [Med Phys] 2025 Jul; Vol. 52 (7), pp. e17912. Date of Electronic Publication: 2025 May 29.
Způsob vydávání: Journal Article
Informace o časopise: Publisher: John Wiley and Sons, Inc Country of Publication: United States NLM ID: 0425746 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2473-4209 (Electronic) Linking ISSN: 00942405 NLM ISO Abbreviation: Med Phys Subsets: MEDLINE
-
9
Autoři: a další
Zdroj: Sensors (14248220); Jan2025, Vol. 25 Issue 2, p494, 19p
-
10
Autoři: a další
Zdroj: Applied Sciences (2076-3417); Aug2025, Vol. 15 Issue 16, p8977, 24p
-
11
Autoři: a další
Zdroj: Scientific Reports; 10/8/2025, Vol. 15 Issue 1, p1-19, 19p
-
12
Autoři: a další
Zdroj: NPJ Quantum Information; 7/7/2025, Vol. 11 Issue 1, p1-15, 15p
-
13
Autoři: a další
Zdroj: Symmetry (20738994); Jun2025, Vol. 17 Issue 6, p947, 20p
-
14
Autoři: a další
Zdroj: Medical Physics; Jan2025, Vol. 52 Issue 1, p188-200, 13p
-
15
Autoři: a další
Zdroj: Future Internet; Sep2025, Vol. 17 Issue 9, p413, 19p
-
16
Autoři:
Zdroj: Scientific Reports; 11/24/2025, Vol. 15 Issue 1, p1-19, 19p
-
17
Autoři: a další
Zdroj: Cluster Computing; Nov2025, Vol. 28 Issue 13, p1-22, 22p
-
18
Autoři: a další
Zdroj: Journal of Cheminformatics. 10/13/2025, Vol. 17 Issue 1, p1-10. 10p.
-
19
Autoři: a další
Zdroj: Remote Sensing; Jul2025, Vol. 17 Issue 13, p2287, 19p
-
20
Autoři:
Zdroj: Experimental Biology & Medicine; 2025, p1-18, 18p
Full Text Finder
Nájsť tento článok vo Web of Science