Suchergebnisse - (beta OR bela)-convolutional variational autoencoder~
-
1
Autoren:
Quelle: Engineering Applications of Artificial Intelligence. 159:111620
-
2
Autoren:
Quelle: Diagnostics, Vol 13, Iss 13, p 2199 (2023)
Schlagwörter: chest pneumonia, classification, unsupervised learning, convolution, autoencoder, variational, Medicine (General), R5-920
Dateibeschreibung: electronic resource
-
3
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: 히스토리매칭, 채널저류층, 3D 저류층, 앙상블 기반 방법, 기계 학습, beta-convolutional variational autoencoder, 622.33
Dateibeschreibung: xiii, 158
Relation: 000000178440; https://hdl.handle.net/10371/196356; https://dcollection.snu.ac.kr/common/orgView/000000178440; 000000000050▲000000000058▲000000178440▲
-
4
Autoren:
Quelle: Informatics; Jun2025, Vol. 12 Issue 2, p35, 17p
-
5
Autoren:
Quelle: Journal of Manufacturing Systems. Feb2025, Vol. 78, p410-432. 23p.
Schlagwörter: ELECTRIC drives, COMPUTER vision, ELECTRIC faults, MACHINE learning, AUTOENCODERS
-
6
Autoren: et al.
Quelle: International Journal of Network Management; Nov/Dec2024, Vol. 34 Issue 6, p1-17, 17p
-
7
Autoren: et al.
Quelle: Medical & Biological Engineering & Computing. Dec2025, p1-19.
-
8
Autoren:
Quelle: Computer-Aided Civil & Infrastructure Engineering; Jan2024, Vol. 39 Issue 2, p165-185, 21p
Schlagwörter: GROUND motion, LATENT variables, CONCRETE construction, K-means clustering, EARTHQUAKE magnitude
-
9
Autoren: et al.
Quelle: International Journal of Computer Integrated Manufacturing; 2024, Vol. 37 Issue 1/2, p18-36, 19p
-
10
Autoren: et al.
Quelle: Expert systems with applications. 202:117038
Schlagwörter: Non-linear mode decomposition, Turbulent flows, Variational autoencoders, Convolutional neural networks, Machine learning
Dateibeschreibung: print
-
11
Autoren:
Quelle: International journal of electrical and computer engineering systems
Volume 13
Issue 7Schlagwörter: Machine Learning, Variational Autoencoder, Neural Networks, Robotics, beta-VAE
Dateibeschreibung: application/pdf
-
12
Autoren: et al.
Quelle: Water Resources Research; Feb2021, Vol. 57 Issue 2, p1-26, 26p
Schlagwörter: DENSE nonaqueous phase liquids, DEEP learning, GEOLOGICAL statistics
-
13
Autoren:
Quelle: IEEE Transactions on Components, Packaging & Manufacturing Technology. Dec2021, Vol. 11 Issue 12, p2214-2221. 8p.
-
14
Autoren: et al.
Quelle: Computation; Sep2025, Vol. 13 Issue 9, p221, 42p
-
15
Autoren: et al.
Quelle: Frontiers in Neurorobotics; 2024, p1-13, 13p
Schlagwörter: DEEP learning, IMAGE representation, HANDICRAFT
-
16
Autoren: et al.
Quelle: J Chem Inf Model
Schlagwörter: Evolution, Molecular, Deep Learning, Protein Conformation, Stenotrophomonas maltophilia, Molecular Dynamics Simulation, beta-Lactamases
-
17
Autoren:
Quelle: Diagnostics (2075-4418); Jul2024, Vol. 14 Issue 14, p1566, 15p
Schlagwörter: IMAGE recognition (Computer vision), X-ray imaging, LUNG diseases, X-rays, PNEUMONIA
-
18
Autoren: et al.
Quelle: eLife. 2/24/2023, p1-18. 18p.
Schlagwörter: *MOLECULAR dynamics, *BETA lactam antibiotics, *STENOTROPHOMONAS maltophilia, *ANTIBACTERIAL agents, *DEEP learning, *MARKOV processes
-
19
Autoren: et al.
Quelle: IEEE Transactions on Image Processing; 2020, Vol. 29, p7565-7577, 13p
-
20
Autoren: et al.
Quelle: Journal of Chemical Information and Modeling , 65 (10) pp. 5086-5098. (2025)
Schlagwörter: beta-Lactamases, Burkholderia, Molecular Dynamics Simulation, Evolution, Molecular, Catalytic Domain, Markov Chains, Mutation
Dateibeschreibung: application/pdf
Full Text Finder
Nájsť tento článok vo Web of Science