Search Results - (Symbolic–numeric OR Symbolic–numericka) sparse interpolation*
-
1
Authors:
Source: Journal of Symbolic Computation ; volume 44, issue 8, page 943-959 ; ISSN 0747-7171
-
2
Authors:
Source: ACM Communications in Computer Algebra ; volume 51, issue 1, page 18-20 ; ISSN 1932-2240
-
3
Authors:
Source: ACM Communications in Computer Algebra ; volume 43, issue 3/4, page 79-80 ; ISSN 1932-2240
-
4
Authors: et al.
Contributors: et al.
Source: Journal of symbolic computation
Subject Terms: Computer. Automation, Algebra and Number Theory, Symbolic–numeric computing, Multivariate interpolation, 0102 computer and information sciences, 01 natural sciences, Computational Mathematics, Computer Science, 0101 mathematics, multivariate interpolation, Mathematics, Symbolic-numeric computing
File Description: application/pdf; pdf
Access URL: https://repository.uantwerpen.be/docman/irua/6ddde3/5024.pdf
http://dspace.stir.ac.uk/bitstream/1893/28362/1/1-s2.0-S0747717108001879-main.pdf
https://dl.acm.org/doi/10.1145/1145768.1145792
https://cs.uwaterloo.ca/~glabahn/Papers/sparse -interp-issac.pdf
http://cs.uwaterloo.ca/~glabahn/Papers/sparse -interp-issac.pdf
http://www.cecm.sfu.ca/~pborwein/MITACS/papers/wenshin.pdf
https://dblp.uni-trier.de/db/conf/issac/issac2006.html#GiesbrechtLL06
http://win.ua.ac.be/~wlee/pub/gll-interp.pdf
https://core.ac.uk/display/21739411
https://www.sciencedirect.com/science/article/abs/pii/S0747717108001879
https://dblp.uni-trier.de/db/journals/jsc/jsc44.html#GiesbrechtLL09
https://dialnet.unirioja.es/servlet/articulo?codigo=2997671
https://dl.acm.org/doi/10.1016/j.jsc.2008.11.003
https://www.sciencedirect.com/science/article/pii/S0747717108001879
https://hdl.handle.net/10067/945270151162165141
https://repository.uantwerpen.be/docman/irua/6ddde3/5024.pdf -
5
Authors: et al.
Contributors: et al.
Source: Theoretical computer science
Subject Terms: Hadamard polynomial, qd-algorithm, Early termination, 0102 computer and information sciences, Black box polynomial, Generalized eigenvalue, 0101 mathematics, 01 natural sciences, Mathematics, Symbolic–numeric sparse interpolation, Theoretical Computer Science, Computer Science(all)
File Description: application/pdf; pdf
Access URL: http://www.sciencedirect.com/science/article/pii/S0304397508006385
https://dblp.uni-trier.de/db/journals/tcs/tcs409.html#CuytL08
https://dl.acm.org/doi/10.1016/j.tcs.2008.09.002
https://core.ac.uk/display/82482497
https://dspace.stir.ac.uk/handle/1893/29005
https://www.sciencedirect.com/science/article/pii/S0304397508006385
https://hdl.handle.net/10067/759370151162165141
https://repository.uantwerpen.be/docman/irua/ae6289/491f1ac6.pdf -
6
Authors:
Source: ACM Communications in Computer Algebra ; volume 52, issue 4, page 145-147 ; ISSN 1932-2240
-
7
Authors: et al.
Contributors: et al.
Subject Terms: Key words, Symbolic-numeric computing, multivariate interpolation
File Description: application/pdf
-
8
Authors: Lee, Wen-shin
Source: Proceedings of the 2007 international workshop on Symbolic-numeric computation ; page 11-116
-
9
Authors: et al.
Contributors: et al.
Subject Terms: Symbolic-numeric computing, multivariate interpolation, sparse polynomial
File Description: application/pdf
Relation: Is Part Of Dagstuhl Seminar Proceedings, Volume 6271, Challenges in Symbolic Computation Software (2006); https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06271.14
-
10
Authors:
Contributors:
File Description: application/pdf
-
11
Authors: et al.
Contributors: et al.
File Description: application/pdf
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.9743; http://www.scg.uwaterloo.ca/~glabahn/Papers/casc.pdf
-
12
Authors:
Source: Proceedings of the 2011 International Workshop on Symbolic-Numeric Computation, June 7-9, 2011, San Jose, California / Maza, Marc Moreno [edit.]
Subject Terms: Computer. Automation, 0101 mathematics, 01 natural sciences
Access URL: https://dl.acm.org/doi/10.1145/2331684.2331704
https://www.csd.uwo.ca/~moreno/SNC-11-file-for-ACM/p130-Kaltofen.pdf
http://win.ua.ac.be/~wlee/pub/KLY11.pdf
https://dl.acm.org/citation.cfm?id=2331704
http://www4.ncsu.edu/~kaltofen/bibliography/11/KLY11.pdf
https://hdl.handle.net/10067/1555970151162165141 -
13
Authors:
Source: Foundations of Computational Mathematics; Dec2022, Vol. 22 Issue 6, p1801-1862, 62p
-
14
Authors:
Contributors:
Subject Terms: Categories and Subject Descriptors, I.2.1 [Computing Methodologies, Symbolic and Algebraic Manipulation —Algorithms, G.1.2 [Mathematics of Computing, Numerical Analysis—Approximation General Terms, algorithms, theory, experimentation Keywords, multivariate rational function, interpolation, sparse polynomial
File Description: application/pdf
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.63.5812; http://www4.ncsu.edu/~kaltofen/bibliography/07/KYZ07.pdf
-
15
Authors:
Source: Advances in Computational Mathematics; Jun2019, Vol. 45 Issue 3, p1401-1437, 37p
-
16
Authors:
Source: 1932-2232 ; ACM communications in computer algebra
Subject Terms: Mathematics
Availability: https://hdl.handle.net/10067/1070350151162165141
-
17
Authors:
Source: Proceedings of the 2007 international symposium on Symbolic and algebraic computation. :203-210
Subject Terms: 0102 computer and information sciences, 0101 mathematics, 01 natural sciences
Access URL: https://repository.lib.ncsu.edu/bitstream/1840.2/89/1/issac070d-kaltofen.pdf
https://dblp.uni-trier.de/db/conf/issac/issac2007.html#KaltofenY07
https://repository.lib.ncsu.edu/publications/bitstream/1840.2/89/1/issac070d-kaltofen.pdf
https://core.ac.uk/display/101712040
https://dl.acm.org/doi/10.1145/1277548.1277577
http://www.math.ncsu.edu/~kaltofen/bibliography/07/KaYa07.pdf -
18
Authors: CORLESS, ROBERT M.
Source: Maple Transactions; Spring2024, Vol. 4 Issue 2, p1-32, 32p
Subject Terms: MATRIX pencils, LAGRANGE problem, HERMITE polynomials, INTERPOLATION, POLYNOMIALS
-
19
Authors: et al.
Source: ACM Transactions on Mathematical Software; Sep2025, Vol. 51 Issue 3, p1-17, 17p
-
20
Authors: Huang, Qiaolong
Source: Journal of Systems Science & Complexity; Apr2018, Vol. 31 Issue 2, p539-551, 13p
Nájsť tento článok vo Web of Science
Full Text Finder